File size: 4,901 Bytes
ca16a7c
fada25c
4615482
4602937
cb8f565
592600b
6cd1447
ca16a7c
 
 
 
 
 
dd1c2fe
ca16a7c
2b44908
fada25c
c1c397a
ca16a7c
fada25c
c545b48
 
fada25c
 
 
 
 
 
 
 
3430157
fada25c
 
ca16a7c
fada25c
2b44908
fada25c
 
 
ca16a7c
 
 
 
 
 
 
 
 
 
 
fada25c
 
 
6dd9499
ca16a7c
 
6dd9499
 
 
fada25c
 
 
 
 
 
 
 
6dd9499
 
ca16a7c
 
 
6dd9499
 
 
fada25c
 
2b44908
fada25c
2b44908
fada25c
2b44908
fada25c
ca16a7c
 
fada25c
2b44908
 
ca16a7c
 
 
 
 
 
 
 
 
 
 
 
 
 
23b9040
162343b
f40383a
ca16a7c
 
f40383a
 
 
 
162343b
 
 
7adc402
0a5200d
7adc402
7f3fc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455007f
 
 
 
ca16a7c
 
 
 
 
 
 
6570683
7b0ee51
 
0a5200d
f40383a
 
 
 
 
 
 
 
 
 
ca16a7c
7dbb2e1
ca16a7c
 
 
 
 
f40383a
ca16a7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import datetime
import uuid
import random

def select_random_name():
    names = ['Clara', 'Lily']
    return random.choice(names)

# Example usage
# Load environment variables
load_dotenv()

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'  # Changed to the directory containing PDFs

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Variable to store current chat conversation
current_chat_history = []

def data_ingestion_from_directory():
    # Use SimpleDirectoryReader on the directory containing the PDF files
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only       
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    # Use chat history to enhance response
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."

    # Update current chat history
    current_chat_history.append((query, response))

    return response

# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()

def predict(message, history):
    logo_html = '''
    <div class="circle-logo">
      <img src="https://rb.gy/8r06eg" alt="FernAi">
    </div>
    '''
    response = handle_query(message)
    response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
    return response_with_logo

def chat_interface(message, history):
    try:
        # Process the user message and generate a response
        response = handle_query(message)

        # Update chat history
        current_chat_history.append((message, response))

        return response
    except Exception as e:
        return str(e)

# Custom CSS for styling
css = '''
  .circle-logo {
  display: inline-block;
  width: 40px;
  height: 40px;
  border-radius: 50%;
  overflow: hidden;
  margin-right: 10px;
  vertical-align: middle;
}
.circle-logo img {
  width: 100%;
  height: 100%;
  object-fit: cover;
}
.response-with-logo {
  display: flex;
  align-items: center;
  margin-bottom: 10px;
}
footer {
    display: none !important;
    background-color: #F8D7DA;
  }
.svelte-1ed2p3z p {
  font-size: 24px;
  font-weight: bold;
  line-height: 1.2;
  color: #111;
  margin: 20px 0;
}
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''

# Define JavaScript for redirection
js = '''
<script>
function redirectToPage() {
  window.location.href = "https://example.com";  // Replace with your target URL
}
</script>
<button onclick="redirectToPage()">Redirect to another page</button>
'''

gr.ChatInterface(
    fn=chat_interface,
    inputs="text",
    outputs="html",
    live=True,
    css=css,
    description=js
).launch()