radames's picture
initial commit
c7f097c
raw
history blame
15.7 kB
from torch.utils.data import Dataset
import numpy as np
import os
import random
import torchvision.transforms as transforms
from PIL import Image, ImageOps
import cv2
import torch
from PIL.ImageFilter import GaussianBlur
import trimesh
import logging
log = logging.getLogger('trimesh')
log.setLevel(40)
def load_trimesh(root_dir):
folders = os.listdir(root_dir)
meshs = {}
for i, f in enumerate(folders):
sub_name = f
meshs[sub_name] = trimesh.load(os.path.join(root_dir, f, '%s_100k.obj' % sub_name))
return meshs
def save_samples_truncted_prob(fname, points, prob):
'''
Save the visualization of sampling to a ply file.
Red points represent positive predictions.
Green points represent negative predictions.
:param fname: File name to save
:param points: [N, 3] array of points
:param prob: [N, 1] array of predictions in the range [0~1]
:return:
'''
r = (prob > 0.5).reshape([-1, 1]) * 255
g = (prob < 0.5).reshape([-1, 1]) * 255
b = np.zeros(r.shape)
to_save = np.concatenate([points, r, g, b], axis=-1)
return np.savetxt(fname,
to_save,
fmt='%.6f %.6f %.6f %d %d %d',
comments='',
header=(
'ply\nformat ascii 1.0\nelement vertex {:d}\nproperty float x\nproperty float y\nproperty float z\nproperty uchar red\nproperty uchar green\nproperty uchar blue\nend_header').format(
points.shape[0])
)
class TrainDataset(Dataset):
@staticmethod
def modify_commandline_options(parser, is_train):
return parser
def __init__(self, opt, phase='train'):
self.opt = opt
self.projection_mode = 'orthogonal'
# Path setup
self.root = self.opt.dataroot
self.RENDER = os.path.join(self.root, 'RENDER')
self.MASK = os.path.join(self.root, 'MASK')
self.PARAM = os.path.join(self.root, 'PARAM')
self.UV_MASK = os.path.join(self.root, 'UV_MASK')
self.UV_NORMAL = os.path.join(self.root, 'UV_NORMAL')
self.UV_RENDER = os.path.join(self.root, 'UV_RENDER')
self.UV_POS = os.path.join(self.root, 'UV_POS')
self.OBJ = os.path.join(self.root, 'GEO', 'OBJ')
self.B_MIN = np.array([-128, -28, -128])
self.B_MAX = np.array([128, 228, 128])
self.is_train = (phase == 'train')
self.load_size = self.opt.loadSize
self.num_views = self.opt.num_views
self.num_sample_inout = self.opt.num_sample_inout
self.num_sample_color = self.opt.num_sample_color
self.yaw_list = list(range(0,360,1))
self.pitch_list = [0]
self.subjects = self.get_subjects()
# PIL to tensor
self.to_tensor = transforms.Compose([
transforms.Resize(self.load_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# augmentation
self.aug_trans = transforms.Compose([
transforms.ColorJitter(brightness=opt.aug_bri, contrast=opt.aug_con, saturation=opt.aug_sat,
hue=opt.aug_hue)
])
self.mesh_dic = load_trimesh(self.OBJ)
def get_subjects(self):
all_subjects = os.listdir(self.RENDER)
var_subjects = np.loadtxt(os.path.join(self.root, 'val.txt'), dtype=str)
if len(var_subjects) == 0:
return all_subjects
if self.is_train:
return sorted(list(set(all_subjects) - set(var_subjects)))
else:
return sorted(list(var_subjects))
def __len__(self):
return len(self.subjects) * len(self.yaw_list) * len(self.pitch_list)
def get_render(self, subject, num_views, yid=0, pid=0, random_sample=False):
'''
Return the render data
:param subject: subject name
:param num_views: how many views to return
:param view_id: the first view_id. If None, select a random one.
:return:
'img': [num_views, C, W, H] images
'calib': [num_views, 4, 4] calibration matrix
'extrinsic': [num_views, 4, 4] extrinsic matrix
'mask': [num_views, 1, W, H] masks
'''
pitch = self.pitch_list[pid]
# The ids are an even distribution of num_views around view_id
view_ids = [self.yaw_list[(yid + len(self.yaw_list) // num_views * offset) % len(self.yaw_list)]
for offset in range(num_views)]
if random_sample:
view_ids = np.random.choice(self.yaw_list, num_views, replace=False)
calib_list = []
render_list = []
mask_list = []
extrinsic_list = []
for vid in view_ids:
param_path = os.path.join(self.PARAM, subject, '%d_%d_%02d.npy' % (vid, pitch, 0))
render_path = os.path.join(self.RENDER, subject, '%d_%d_%02d.jpg' % (vid, pitch, 0))
mask_path = os.path.join(self.MASK, subject, '%d_%d_%02d.png' % (vid, pitch, 0))
# loading calibration data
param = np.load(param_path, allow_pickle=True)
# pixel unit / world unit
ortho_ratio = param.item().get('ortho_ratio')
# world unit / model unit
scale = param.item().get('scale')
# camera center world coordinate
center = param.item().get('center')
# model rotation
R = param.item().get('R')
translate = -np.matmul(R, center).reshape(3, 1)
extrinsic = np.concatenate([R, translate], axis=1)
extrinsic = np.concatenate([extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0)
# Match camera space to image pixel space
scale_intrinsic = np.identity(4)
scale_intrinsic[0, 0] = scale / ortho_ratio
scale_intrinsic[1, 1] = -scale / ortho_ratio
scale_intrinsic[2, 2] = scale / ortho_ratio
# Match image pixel space to image uv space
uv_intrinsic = np.identity(4)
uv_intrinsic[0, 0] = 1.0 / float(self.opt.loadSize // 2)
uv_intrinsic[1, 1] = 1.0 / float(self.opt.loadSize // 2)
uv_intrinsic[2, 2] = 1.0 / float(self.opt.loadSize // 2)
# Transform under image pixel space
trans_intrinsic = np.identity(4)
mask = Image.open(mask_path).convert('L')
render = Image.open(render_path).convert('RGB')
if self.is_train:
# Pad images
pad_size = int(0.1 * self.load_size)
render = ImageOps.expand(render, pad_size, fill=0)
mask = ImageOps.expand(mask, pad_size, fill=0)
w, h = render.size
th, tw = self.load_size, self.load_size
# random flip
if self.opt.random_flip and np.random.rand() > 0.5:
scale_intrinsic[0, 0] *= -1
render = transforms.RandomHorizontalFlip(p=1.0)(render)
mask = transforms.RandomHorizontalFlip(p=1.0)(mask)
# random scale
if self.opt.random_scale:
rand_scale = random.uniform(0.9, 1.1)
w = int(rand_scale * w)
h = int(rand_scale * h)
render = render.resize((w, h), Image.BILINEAR)
mask = mask.resize((w, h), Image.NEAREST)
scale_intrinsic *= rand_scale
scale_intrinsic[3, 3] = 1
# random translate in the pixel space
if self.opt.random_trans:
dx = random.randint(-int(round((w - tw) / 10.)),
int(round((w - tw) / 10.)))
dy = random.randint(-int(round((h - th) / 10.)),
int(round((h - th) / 10.)))
else:
dx = 0
dy = 0
trans_intrinsic[0, 3] = -dx / float(self.opt.loadSize // 2)
trans_intrinsic[1, 3] = -dy / float(self.opt.loadSize // 2)
x1 = int(round((w - tw) / 2.)) + dx
y1 = int(round((h - th) / 2.)) + dy
render = render.crop((x1, y1, x1 + tw, y1 + th))
mask = mask.crop((x1, y1, x1 + tw, y1 + th))
render = self.aug_trans(render)
# random blur
if self.opt.aug_blur > 0.00001:
blur = GaussianBlur(np.random.uniform(0, self.opt.aug_blur))
render = render.filter(blur)
intrinsic = np.matmul(trans_intrinsic, np.matmul(uv_intrinsic, scale_intrinsic))
calib = torch.Tensor(np.matmul(intrinsic, extrinsic)).float()
extrinsic = torch.Tensor(extrinsic).float()
mask = transforms.Resize(self.load_size)(mask)
mask = transforms.ToTensor()(mask).float()
mask_list.append(mask)
render = self.to_tensor(render)
render = mask.expand_as(render) * render
render_list.append(render)
calib_list.append(calib)
extrinsic_list.append(extrinsic)
return {
'img': torch.stack(render_list, dim=0),
'calib': torch.stack(calib_list, dim=0),
'extrinsic': torch.stack(extrinsic_list, dim=0),
'mask': torch.stack(mask_list, dim=0)
}
def select_sampling_method(self, subject):
if not self.is_train:
random.seed(1991)
np.random.seed(1991)
torch.manual_seed(1991)
mesh = self.mesh_dic[subject]
surface_points, _ = trimesh.sample.sample_surface(mesh, 4 * self.num_sample_inout)
sample_points = surface_points + np.random.normal(scale=self.opt.sigma, size=surface_points.shape)
# add random points within image space
length = self.B_MAX - self.B_MIN
random_points = np.random.rand(self.num_sample_inout // 4, 3) * length + self.B_MIN
sample_points = np.concatenate([sample_points, random_points], 0)
np.random.shuffle(sample_points)
inside = mesh.contains(sample_points)
inside_points = sample_points[inside]
outside_points = sample_points[np.logical_not(inside)]
nin = inside_points.shape[0]
inside_points = inside_points[
:self.num_sample_inout // 2] if nin > self.num_sample_inout // 2 else inside_points
outside_points = outside_points[
:self.num_sample_inout // 2] if nin > self.num_sample_inout // 2 else outside_points[
:(self.num_sample_inout - nin)]
samples = np.concatenate([inside_points, outside_points], 0).T
labels = np.concatenate([np.ones((1, inside_points.shape[0])), np.zeros((1, outside_points.shape[0]))], 1)
# save_samples_truncted_prob('out.ply', samples.T, labels.T)
# exit()
samples = torch.Tensor(samples).float()
labels = torch.Tensor(labels).float()
del mesh
return {
'samples': samples,
'labels': labels
}
def get_color_sampling(self, subject, yid, pid=0):
yaw = self.yaw_list[yid]
pitch = self.pitch_list[pid]
uv_render_path = os.path.join(self.UV_RENDER, subject, '%d_%d_%02d.jpg' % (yaw, pitch, 0))
uv_mask_path = os.path.join(self.UV_MASK, subject, '%02d.png' % (0))
uv_pos_path = os.path.join(self.UV_POS, subject, '%02d.exr' % (0))
uv_normal_path = os.path.join(self.UV_NORMAL, subject, '%02d.png' % (0))
# Segmentation mask for the uv render.
# [H, W] bool
uv_mask = cv2.imread(uv_mask_path)
uv_mask = uv_mask[:, :, 0] != 0
# UV render. each pixel is the color of the point.
# [H, W, 3] 0 ~ 1 float
uv_render = cv2.imread(uv_render_path)
uv_render = cv2.cvtColor(uv_render, cv2.COLOR_BGR2RGB) / 255.0
# Normal render. each pixel is the surface normal of the point.
# [H, W, 3] -1 ~ 1 float
uv_normal = cv2.imread(uv_normal_path)
uv_normal = cv2.cvtColor(uv_normal, cv2.COLOR_BGR2RGB) / 255.0
uv_normal = 2.0 * uv_normal - 1.0
# Position render. each pixel is the xyz coordinates of the point
uv_pos = cv2.imread(uv_pos_path, 2 | 4)[:, :, ::-1]
### In these few lines we flattern the masks, positions, and normals
uv_mask = uv_mask.reshape((-1))
uv_pos = uv_pos.reshape((-1, 3))
uv_render = uv_render.reshape((-1, 3))
uv_normal = uv_normal.reshape((-1, 3))
surface_points = uv_pos[uv_mask]
surface_colors = uv_render[uv_mask]
surface_normal = uv_normal[uv_mask]
if self.num_sample_color:
sample_list = random.sample(range(0, surface_points.shape[0] - 1), self.num_sample_color)
surface_points = surface_points[sample_list].T
surface_colors = surface_colors[sample_list].T
surface_normal = surface_normal[sample_list].T
# Samples are around the true surface with an offset
normal = torch.Tensor(surface_normal).float()
samples = torch.Tensor(surface_points).float() \
+ torch.normal(mean=torch.zeros((1, normal.size(1))), std=self.opt.sigma).expand_as(normal) * normal
# Normalized to [-1, 1]
rgbs_color = 2.0 * torch.Tensor(surface_colors).float() - 1.0
return {
'color_samples': samples,
'rgbs': rgbs_color
}
def get_item(self, index):
# In case of a missing file or IO error, switch to a random sample instead
# try:
sid = index % len(self.subjects)
tmp = index // len(self.subjects)
yid = tmp % len(self.yaw_list)
pid = tmp // len(self.yaw_list)
# name of the subject 'rp_xxxx_xxx'
subject = self.subjects[sid]
res = {
'name': subject,
'mesh_path': os.path.join(self.OBJ, subject + '.obj'),
'sid': sid,
'yid': yid,
'pid': pid,
'b_min': self.B_MIN,
'b_max': self.B_MAX,
}
render_data = self.get_render(subject, num_views=self.num_views, yid=yid, pid=pid,
random_sample=self.opt.random_multiview)
res.update(render_data)
if self.opt.num_sample_inout:
sample_data = self.select_sampling_method(subject)
res.update(sample_data)
# img = np.uint8((np.transpose(render_data['img'][0].numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0)
# rot = render_data['calib'][0,:3, :3]
# trans = render_data['calib'][0,:3, 3:4]
# pts = torch.addmm(trans, rot, sample_data['samples'][:, sample_data['labels'][0] > 0.5]) # [3, N]
# pts = 0.5 * (pts.numpy().T + 1.0) * render_data['img'].size(2)
# for p in pts:
# img = cv2.circle(img, (p[0], p[1]), 2, (0,255,0), -1)
# cv2.imshow('test', img)
# cv2.waitKey(1)
if self.num_sample_color:
color_data = self.get_color_sampling(subject, yid=yid, pid=pid)
res.update(color_data)
return res
# except Exception as e:
# print(e)
# return self.get_item(index=random.randint(0, self.__len__() - 1))
def __getitem__(self, index):
return self.get_item(index)