Spaces:
Runtime error
Runtime error
File size: 15,653 Bytes
c7f097c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
from torch.utils.data import Dataset
import numpy as np
import os
import random
import torchvision.transforms as transforms
from PIL import Image, ImageOps
import cv2
import torch
from PIL.ImageFilter import GaussianBlur
import trimesh
import logging
log = logging.getLogger('trimesh')
log.setLevel(40)
def load_trimesh(root_dir):
folders = os.listdir(root_dir)
meshs = {}
for i, f in enumerate(folders):
sub_name = f
meshs[sub_name] = trimesh.load(os.path.join(root_dir, f, '%s_100k.obj' % sub_name))
return meshs
def save_samples_truncted_prob(fname, points, prob):
'''
Save the visualization of sampling to a ply file.
Red points represent positive predictions.
Green points represent negative predictions.
:param fname: File name to save
:param points: [N, 3] array of points
:param prob: [N, 1] array of predictions in the range [0~1]
:return:
'''
r = (prob > 0.5).reshape([-1, 1]) * 255
g = (prob < 0.5).reshape([-1, 1]) * 255
b = np.zeros(r.shape)
to_save = np.concatenate([points, r, g, b], axis=-1)
return np.savetxt(fname,
to_save,
fmt='%.6f %.6f %.6f %d %d %d',
comments='',
header=(
'ply\nformat ascii 1.0\nelement vertex {:d}\nproperty float x\nproperty float y\nproperty float z\nproperty uchar red\nproperty uchar green\nproperty uchar blue\nend_header').format(
points.shape[0])
)
class TrainDataset(Dataset):
@staticmethod
def modify_commandline_options(parser, is_train):
return parser
def __init__(self, opt, phase='train'):
self.opt = opt
self.projection_mode = 'orthogonal'
# Path setup
self.root = self.opt.dataroot
self.RENDER = os.path.join(self.root, 'RENDER')
self.MASK = os.path.join(self.root, 'MASK')
self.PARAM = os.path.join(self.root, 'PARAM')
self.UV_MASK = os.path.join(self.root, 'UV_MASK')
self.UV_NORMAL = os.path.join(self.root, 'UV_NORMAL')
self.UV_RENDER = os.path.join(self.root, 'UV_RENDER')
self.UV_POS = os.path.join(self.root, 'UV_POS')
self.OBJ = os.path.join(self.root, 'GEO', 'OBJ')
self.B_MIN = np.array([-128, -28, -128])
self.B_MAX = np.array([128, 228, 128])
self.is_train = (phase == 'train')
self.load_size = self.opt.loadSize
self.num_views = self.opt.num_views
self.num_sample_inout = self.opt.num_sample_inout
self.num_sample_color = self.opt.num_sample_color
self.yaw_list = list(range(0,360,1))
self.pitch_list = [0]
self.subjects = self.get_subjects()
# PIL to tensor
self.to_tensor = transforms.Compose([
transforms.Resize(self.load_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# augmentation
self.aug_trans = transforms.Compose([
transforms.ColorJitter(brightness=opt.aug_bri, contrast=opt.aug_con, saturation=opt.aug_sat,
hue=opt.aug_hue)
])
self.mesh_dic = load_trimesh(self.OBJ)
def get_subjects(self):
all_subjects = os.listdir(self.RENDER)
var_subjects = np.loadtxt(os.path.join(self.root, 'val.txt'), dtype=str)
if len(var_subjects) == 0:
return all_subjects
if self.is_train:
return sorted(list(set(all_subjects) - set(var_subjects)))
else:
return sorted(list(var_subjects))
def __len__(self):
return len(self.subjects) * len(self.yaw_list) * len(self.pitch_list)
def get_render(self, subject, num_views, yid=0, pid=0, random_sample=False):
'''
Return the render data
:param subject: subject name
:param num_views: how many views to return
:param view_id: the first view_id. If None, select a random one.
:return:
'img': [num_views, C, W, H] images
'calib': [num_views, 4, 4] calibration matrix
'extrinsic': [num_views, 4, 4] extrinsic matrix
'mask': [num_views, 1, W, H] masks
'''
pitch = self.pitch_list[pid]
# The ids are an even distribution of num_views around view_id
view_ids = [self.yaw_list[(yid + len(self.yaw_list) // num_views * offset) % len(self.yaw_list)]
for offset in range(num_views)]
if random_sample:
view_ids = np.random.choice(self.yaw_list, num_views, replace=False)
calib_list = []
render_list = []
mask_list = []
extrinsic_list = []
for vid in view_ids:
param_path = os.path.join(self.PARAM, subject, '%d_%d_%02d.npy' % (vid, pitch, 0))
render_path = os.path.join(self.RENDER, subject, '%d_%d_%02d.jpg' % (vid, pitch, 0))
mask_path = os.path.join(self.MASK, subject, '%d_%d_%02d.png' % (vid, pitch, 0))
# loading calibration data
param = np.load(param_path, allow_pickle=True)
# pixel unit / world unit
ortho_ratio = param.item().get('ortho_ratio')
# world unit / model unit
scale = param.item().get('scale')
# camera center world coordinate
center = param.item().get('center')
# model rotation
R = param.item().get('R')
translate = -np.matmul(R, center).reshape(3, 1)
extrinsic = np.concatenate([R, translate], axis=1)
extrinsic = np.concatenate([extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0)
# Match camera space to image pixel space
scale_intrinsic = np.identity(4)
scale_intrinsic[0, 0] = scale / ortho_ratio
scale_intrinsic[1, 1] = -scale / ortho_ratio
scale_intrinsic[2, 2] = scale / ortho_ratio
# Match image pixel space to image uv space
uv_intrinsic = np.identity(4)
uv_intrinsic[0, 0] = 1.0 / float(self.opt.loadSize // 2)
uv_intrinsic[1, 1] = 1.0 / float(self.opt.loadSize // 2)
uv_intrinsic[2, 2] = 1.0 / float(self.opt.loadSize // 2)
# Transform under image pixel space
trans_intrinsic = np.identity(4)
mask = Image.open(mask_path).convert('L')
render = Image.open(render_path).convert('RGB')
if self.is_train:
# Pad images
pad_size = int(0.1 * self.load_size)
render = ImageOps.expand(render, pad_size, fill=0)
mask = ImageOps.expand(mask, pad_size, fill=0)
w, h = render.size
th, tw = self.load_size, self.load_size
# random flip
if self.opt.random_flip and np.random.rand() > 0.5:
scale_intrinsic[0, 0] *= -1
render = transforms.RandomHorizontalFlip(p=1.0)(render)
mask = transforms.RandomHorizontalFlip(p=1.0)(mask)
# random scale
if self.opt.random_scale:
rand_scale = random.uniform(0.9, 1.1)
w = int(rand_scale * w)
h = int(rand_scale * h)
render = render.resize((w, h), Image.BILINEAR)
mask = mask.resize((w, h), Image.NEAREST)
scale_intrinsic *= rand_scale
scale_intrinsic[3, 3] = 1
# random translate in the pixel space
if self.opt.random_trans:
dx = random.randint(-int(round((w - tw) / 10.)),
int(round((w - tw) / 10.)))
dy = random.randint(-int(round((h - th) / 10.)),
int(round((h - th) / 10.)))
else:
dx = 0
dy = 0
trans_intrinsic[0, 3] = -dx / float(self.opt.loadSize // 2)
trans_intrinsic[1, 3] = -dy / float(self.opt.loadSize // 2)
x1 = int(round((w - tw) / 2.)) + dx
y1 = int(round((h - th) / 2.)) + dy
render = render.crop((x1, y1, x1 + tw, y1 + th))
mask = mask.crop((x1, y1, x1 + tw, y1 + th))
render = self.aug_trans(render)
# random blur
if self.opt.aug_blur > 0.00001:
blur = GaussianBlur(np.random.uniform(0, self.opt.aug_blur))
render = render.filter(blur)
intrinsic = np.matmul(trans_intrinsic, np.matmul(uv_intrinsic, scale_intrinsic))
calib = torch.Tensor(np.matmul(intrinsic, extrinsic)).float()
extrinsic = torch.Tensor(extrinsic).float()
mask = transforms.Resize(self.load_size)(mask)
mask = transforms.ToTensor()(mask).float()
mask_list.append(mask)
render = self.to_tensor(render)
render = mask.expand_as(render) * render
render_list.append(render)
calib_list.append(calib)
extrinsic_list.append(extrinsic)
return {
'img': torch.stack(render_list, dim=0),
'calib': torch.stack(calib_list, dim=0),
'extrinsic': torch.stack(extrinsic_list, dim=0),
'mask': torch.stack(mask_list, dim=0)
}
def select_sampling_method(self, subject):
if not self.is_train:
random.seed(1991)
np.random.seed(1991)
torch.manual_seed(1991)
mesh = self.mesh_dic[subject]
surface_points, _ = trimesh.sample.sample_surface(mesh, 4 * self.num_sample_inout)
sample_points = surface_points + np.random.normal(scale=self.opt.sigma, size=surface_points.shape)
# add random points within image space
length = self.B_MAX - self.B_MIN
random_points = np.random.rand(self.num_sample_inout // 4, 3) * length + self.B_MIN
sample_points = np.concatenate([sample_points, random_points], 0)
np.random.shuffle(sample_points)
inside = mesh.contains(sample_points)
inside_points = sample_points[inside]
outside_points = sample_points[np.logical_not(inside)]
nin = inside_points.shape[0]
inside_points = inside_points[
:self.num_sample_inout // 2] if nin > self.num_sample_inout // 2 else inside_points
outside_points = outside_points[
:self.num_sample_inout // 2] if nin > self.num_sample_inout // 2 else outside_points[
:(self.num_sample_inout - nin)]
samples = np.concatenate([inside_points, outside_points], 0).T
labels = np.concatenate([np.ones((1, inside_points.shape[0])), np.zeros((1, outside_points.shape[0]))], 1)
# save_samples_truncted_prob('out.ply', samples.T, labels.T)
# exit()
samples = torch.Tensor(samples).float()
labels = torch.Tensor(labels).float()
del mesh
return {
'samples': samples,
'labels': labels
}
def get_color_sampling(self, subject, yid, pid=0):
yaw = self.yaw_list[yid]
pitch = self.pitch_list[pid]
uv_render_path = os.path.join(self.UV_RENDER, subject, '%d_%d_%02d.jpg' % (yaw, pitch, 0))
uv_mask_path = os.path.join(self.UV_MASK, subject, '%02d.png' % (0))
uv_pos_path = os.path.join(self.UV_POS, subject, '%02d.exr' % (0))
uv_normal_path = os.path.join(self.UV_NORMAL, subject, '%02d.png' % (0))
# Segmentation mask for the uv render.
# [H, W] bool
uv_mask = cv2.imread(uv_mask_path)
uv_mask = uv_mask[:, :, 0] != 0
# UV render. each pixel is the color of the point.
# [H, W, 3] 0 ~ 1 float
uv_render = cv2.imread(uv_render_path)
uv_render = cv2.cvtColor(uv_render, cv2.COLOR_BGR2RGB) / 255.0
# Normal render. each pixel is the surface normal of the point.
# [H, W, 3] -1 ~ 1 float
uv_normal = cv2.imread(uv_normal_path)
uv_normal = cv2.cvtColor(uv_normal, cv2.COLOR_BGR2RGB) / 255.0
uv_normal = 2.0 * uv_normal - 1.0
# Position render. each pixel is the xyz coordinates of the point
uv_pos = cv2.imread(uv_pos_path, 2 | 4)[:, :, ::-1]
### In these few lines we flattern the masks, positions, and normals
uv_mask = uv_mask.reshape((-1))
uv_pos = uv_pos.reshape((-1, 3))
uv_render = uv_render.reshape((-1, 3))
uv_normal = uv_normal.reshape((-1, 3))
surface_points = uv_pos[uv_mask]
surface_colors = uv_render[uv_mask]
surface_normal = uv_normal[uv_mask]
if self.num_sample_color:
sample_list = random.sample(range(0, surface_points.shape[0] - 1), self.num_sample_color)
surface_points = surface_points[sample_list].T
surface_colors = surface_colors[sample_list].T
surface_normal = surface_normal[sample_list].T
# Samples are around the true surface with an offset
normal = torch.Tensor(surface_normal).float()
samples = torch.Tensor(surface_points).float() \
+ torch.normal(mean=torch.zeros((1, normal.size(1))), std=self.opt.sigma).expand_as(normal) * normal
# Normalized to [-1, 1]
rgbs_color = 2.0 * torch.Tensor(surface_colors).float() - 1.0
return {
'color_samples': samples,
'rgbs': rgbs_color
}
def get_item(self, index):
# In case of a missing file or IO error, switch to a random sample instead
# try:
sid = index % len(self.subjects)
tmp = index // len(self.subjects)
yid = tmp % len(self.yaw_list)
pid = tmp // len(self.yaw_list)
# name of the subject 'rp_xxxx_xxx'
subject = self.subjects[sid]
res = {
'name': subject,
'mesh_path': os.path.join(self.OBJ, subject + '.obj'),
'sid': sid,
'yid': yid,
'pid': pid,
'b_min': self.B_MIN,
'b_max': self.B_MAX,
}
render_data = self.get_render(subject, num_views=self.num_views, yid=yid, pid=pid,
random_sample=self.opt.random_multiview)
res.update(render_data)
if self.opt.num_sample_inout:
sample_data = self.select_sampling_method(subject)
res.update(sample_data)
# img = np.uint8((np.transpose(render_data['img'][0].numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0)
# rot = render_data['calib'][0,:3, :3]
# trans = render_data['calib'][0,:3, 3:4]
# pts = torch.addmm(trans, rot, sample_data['samples'][:, sample_data['labels'][0] > 0.5]) # [3, N]
# pts = 0.5 * (pts.numpy().T + 1.0) * render_data['img'].size(2)
# for p in pts:
# img = cv2.circle(img, (p[0], p[1]), 2, (0,255,0), -1)
# cv2.imshow('test', img)
# cv2.waitKey(1)
if self.num_sample_color:
color_data = self.get_color_sampling(subject, yid=yid, pid=pid)
res.update(color_data)
return res
# except Exception as e:
# print(e)
# return self.get_item(index=random.randint(0, self.__len__() - 1))
def __getitem__(self, index):
return self.get_item(index) |