File size: 5,170 Bytes
ed5c8ca
 
36f26ce
b883378
ed5c8ca
 
9cf1262
606515a
 
531a2cf
a60f6b6
311eb36
 
a60f6b6
9e7aadf
606515a
 
 
 
 
 
 
 
 
 
 
ed5c8ca
0c49d71
606515a
 
 
b0583c8
 
 
ed5c8ca
 
 
606515a
 
3765b23
606515a
ed5c8ca
919da7e
ca07f5f
 
 
 
 
ed5c8ca
 
f233c1b
ed5c8ca
 
 
 
 
 
 
0f20da3
ed5c8ca
 
0f20da3
ed5c8ca
0f20da3
b883378
 
1653b93
b883378
0c49d71
ed5c8ca
 
 
 
 
9cf1262
ed5c8ca
 
 
 
 
 
0c49d71
9764ecb
ed5c8ca
 
 
 
 
 
beab703
ed5c8ca
4c6b687
ed5c8ca
e491d44
1b29f48
 
d3eb9b5
0f20da3
9764ecb
 
beab703
ed5c8ca
 
 
 
 
7487900
ed5c8ca
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch
import spaces
from diffusers import DDIMScheduler, StableDiffusionXLPipeline
import ipown
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
import gradio as gr
import cv2

#base_model_path = "SG161222/RealVisXL_V3.0"
#base_model_path = "cagliostrolab/animagine-xl-3.0"
#base_model_path = "playgroundai/playground-v2-1024px-aesthetic"
base_model_path = "frankjoshua/juggernautXL_v8Rundiffusion"  

ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model")
device = "cuda"

noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
# vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    add_watermarker=False,
    use_safetensors=True,
    variant="fp16"
    # vae=vae,
    #feature_extractor=safety_feature_extractor,
    #safety_checker=safety_checker
)

ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)

@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, face_strength, likeness_strength, progress=gr.Progress(track_tqdm=True)):
    
    # Clear GPU memory
    torch.cuda.empty_cache()
    
    # Start the process
    pipe.to(device)
    app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
    app.prepare(ctx_id=0, det_size=(512, 512))
    
    faceid_all_embeds = []
    for image in images:
        face = cv2.imread(image)
        faces = app.get(face)
        faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        faceid_all_embeds.append(faceid_embed)

    average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
    
    total_negative_prompt = negative_prompt
    
    print("Generating SDXL")
    image = ip_model.generate(
        prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
        scale=likeness_strength, width=864, height=1152, guidance_scale=face_strength, num_inference_steps=30
    )

    print(image)
    return image

def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("# IP-Adapter-FaceID SDXL demo")
    gr.Markdown("A simple Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID) together with [Juggernaut XL v7](https://huggingface.co/stablediffusionapi/juggernaut-xl-v7). You should run this on at least 24 GB of VRAM.")
    with gr.Row():
        with gr.Column():
            files = gr.Files(
                        label="Drag 1 or more photos of your face",
                        file_types=["image"]
                    )
            uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=250)
            with gr.Column(visible=False) as clear_button:
                remove_and_reupload = gr.ClearButton(value="Remove files and upload new ones", components=files, size="sm")
            prompt = gr.Textbox(label="Prompt",
                        info="Try something like 'a photo of a man/woman/person'",
                        placeholder="A photo of a man/woman/person ...",
                        value="")
            negative_prompt = gr.Textbox(label="Negative Prompt", info="What the model should NOT produce.",placeholder="low quality", value="(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth")
            style = "Photorealistic"
            face_strength = gr.Slider(label="Prompt Strength", info="How much the written prompt weighs into the generated images.", value=7.5, step=0.1, minimum=0, maximum=15)
            likeness_strength = gr.Slider(label="Photo Embedding Strength", info="How much your uploaded files weigh into the generated images.", value=1.0, step=0.1, minimum=0, maximum=5)
            submit = gr.Button("Submit", variant="primary")
        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")
        files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
        submit.click(fn=generate_image,
                    inputs=[files,prompt,negative_prompt, face_strength, likeness_strength],
                    outputs=gallery)
    
    # gr.Markdown("This demo includes extra features to mitigate the implicit bias of the model and prevent explicit usage of it to generate content with faces of people, including third parties, that is not safe for all audiences, including naked or semi-naked people.")
    
demo.launch()