Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,170 Bytes
ed5c8ca 36f26ce b883378 ed5c8ca 9cf1262 606515a 531a2cf a60f6b6 311eb36 a60f6b6 9e7aadf 606515a ed5c8ca 0c49d71 606515a b0583c8 ed5c8ca 606515a 3765b23 606515a ed5c8ca 919da7e ca07f5f ed5c8ca f233c1b ed5c8ca 0f20da3 ed5c8ca 0f20da3 ed5c8ca 0f20da3 b883378 1653b93 b883378 0c49d71 ed5c8ca 9cf1262 ed5c8ca 0c49d71 9764ecb ed5c8ca beab703 ed5c8ca 4c6b687 ed5c8ca e491d44 1b29f48 d3eb9b5 0f20da3 9764ecb beab703 ed5c8ca 7487900 ed5c8ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import torch
import spaces
from diffusers import DDIMScheduler, StableDiffusionXLPipeline
import ipown
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
import gradio as gr
import cv2
#base_model_path = "SG161222/RealVisXL_V3.0"
#base_model_path = "cagliostrolab/animagine-xl-3.0"
#base_model_path = "playgroundai/playground-v2-1024px-aesthetic"
base_model_path = "frankjoshua/juggernautXL_v8Rundiffusion"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model")
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
# vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
add_watermarker=False,
use_safetensors=True,
variant="fp16"
# vae=vae,
#feature_extractor=safety_feature_extractor,
#safety_checker=safety_checker
)
ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)
@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, face_strength, likeness_strength, progress=gr.Progress(track_tqdm=True)):
# Clear GPU memory
torch.cuda.empty_cache()
# Start the process
pipe.to(device)
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(512, 512))
faceid_all_embeds = []
for image in images:
face = cv2.imread(image)
faces = app.get(face)
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
faceid_all_embeds.append(faceid_embed)
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
total_negative_prompt = negative_prompt
print("Generating SDXL")
image = ip_model.generate(
prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
scale=likeness_strength, width=864, height=1152, guidance_scale=face_strength, num_inference_steps=30
)
print(image)
return image
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("# IP-Adapter-FaceID SDXL demo")
gr.Markdown("A simple Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID) together with [Juggernaut XL v7](https://huggingface.co/stablediffusionapi/juggernaut-xl-v7). You should run this on at least 24 GB of VRAM.")
with gr.Row():
with gr.Column():
files = gr.Files(
label="Drag 1 or more photos of your face",
file_types=["image"]
)
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=250)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(value="Remove files and upload new ones", components=files, size="sm")
prompt = gr.Textbox(label="Prompt",
info="Try something like 'a photo of a man/woman/person'",
placeholder="A photo of a man/woman/person ...",
value="")
negative_prompt = gr.Textbox(label="Negative Prompt", info="What the model should NOT produce.",placeholder="low quality", value="(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth")
style = "Photorealistic"
face_strength = gr.Slider(label="Prompt Strength", info="How much the written prompt weighs into the generated images.", value=7.5, step=0.1, minimum=0, maximum=15)
likeness_strength = gr.Slider(label="Photo Embedding Strength", info="How much your uploaded files weigh into the generated images.", value=1.0, step=0.1, minimum=0, maximum=5)
submit = gr.Button("Submit", variant="primary")
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
submit.click(fn=generate_image,
inputs=[files,prompt,negative_prompt, face_strength, likeness_strength],
outputs=gallery)
# gr.Markdown("This demo includes extra features to mitigate the implicit bias of the model and prevent explicit usage of it to generate content with faces of people, including third parties, that is not safe for all audiences, including naked or semi-naked people.")
demo.launch() |