Richard Neuschulz commited on
Commit
0c49d71
·
1 Parent(s): 3a2c3f9

trying to implement sdxl

Browse files
Files changed (1) hide show
  1. app.py +9 -21
app.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
  import spaces
3
- from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
4
  from transformers import AutoFeatureExtractor
5
  from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
6
- from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
7
  from huggingface_hub import hf_hub_download
8
  from insightface.app import FaceAnalysis
9
  from insightface.utils import face_align
@@ -11,15 +11,8 @@ import gradio as gr
11
  import cv2
12
 
13
  base_model_path = "SG161222/RealVisXL_V3.0"
14
- # vae_model_path = "stabilityai/sd-vae-ft-mse"
15
  image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
16
- ip_ckpt = hf_hub_download(repo_id="h94/ip-adapter-faceid_sdxl.bin", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
17
- ip_plus_ckpt = hf_hub_download(repo_id="h94/ip-adapter-faceid_sdxl.bin", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")
18
-
19
- #safety_model_id = "CompVis/stable-diffusion-safety-checker"
20
- #safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
21
- #safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
22
-
23
  device = "cuda"
24
 
25
  noise_scheduler = DDIMScheduler(
@@ -32,10 +25,11 @@ noise_scheduler = DDIMScheduler(
32
  steps_offset=1,
33
  )
34
  # vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
35
- pipe = StableDiffusionPipeline.from_pretrained(
36
  base_model_path,
37
  torch_dtype=torch.float16,
38
  scheduler=noise_scheduler,
 
39
  # vae=vae,
40
  #feature_extractor=safety_feature_extractor,
41
  #safety_checker=safety_checker
@@ -44,8 +38,7 @@ pipe = StableDiffusionPipeline.from_pretrained(
44
  #pipe.load_lora_weights("h94/IP-Adapter-FaceID", weight_name="ip-adapter-faceid-plusv2_sd15_lora.safetensors")
45
  #pipe.fuse_lora()
46
 
47
- ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
48
- ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)
49
 
50
  @spaces.GPU(enable_queue=True)
51
  def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, progress=gr.Progress(track_tqdm=True)):
@@ -74,12 +67,7 @@ def generate_image(images, prompt, negative_prompt, preserve_face_structure, fac
74
  prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
75
  scale=likeness_strength, width=512, height=512, num_inference_steps=30
76
  )
77
- else:
78
- print("Generating plus")
79
- image = ip_model_plus.generate(
80
- prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
81
- scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=512, height=512, num_inference_steps=30
82
- )
83
  print(image)
84
  return image
85
 
@@ -98,8 +86,8 @@ css = '''
98
  h1{margin-bottom: 0 !important}
99
  '''
100
  with gr.Blocks(css=css) as demo:
101
- gr.Markdown("# IP-Adapter-FaceID Plus demo")
102
- gr.Markdown("Demo for the [h94/IP-Adapter-FaceID model](https://huggingface.co/h94/IP-Adapter-FaceID) - Non-commercial license")
103
  with gr.Row():
104
  with gr.Column():
105
  files = gr.Files(
 
1
  import torch
2
  import spaces
3
+ from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL, StableDiffusionXLPipeline
4
  from transformers import AutoFeatureExtractor
5
  from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
6
+ from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus, IPAdapterFaceIDXL
7
  from huggingface_hub import hf_hub_download
8
  from insightface.app import FaceAnalysis
9
  from insightface.utils import face_align
 
11
  import cv2
12
 
13
  base_model_path = "SG161222/RealVisXL_V3.0"
 
14
  image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
15
+ ip_ckpt = "ip-adapter-faceid_sdxl.bin"
 
 
 
 
 
 
16
  device = "cuda"
17
 
18
  noise_scheduler = DDIMScheduler(
 
25
  steps_offset=1,
26
  )
27
  # vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
28
+ pipe = StableDiffusionXLPipeline.from_pretrained(
29
  base_model_path,
30
  torch_dtype=torch.float16,
31
  scheduler=noise_scheduler,
32
+ add_watermarker=False
33
  # vae=vae,
34
  #feature_extractor=safety_feature_extractor,
35
  #safety_checker=safety_checker
 
38
  #pipe.load_lora_weights("h94/IP-Adapter-FaceID", weight_name="ip-adapter-faceid-plusv2_sd15_lora.safetensors")
39
  #pipe.fuse_lora()
40
 
41
+ ip_model = IPAdapterFaceIDXL(pipe, ip_ckpt, device)
 
42
 
43
  @spaces.GPU(enable_queue=True)
44
  def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, progress=gr.Progress(track_tqdm=True)):
 
67
  prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding,
68
  scale=likeness_strength, width=512, height=512, num_inference_steps=30
69
  )
70
+
 
 
 
 
 
71
  print(image)
72
  return image
73
 
 
86
  h1{margin-bottom: 0 !important}
87
  '''
88
  with gr.Blocks(css=css) as demo:
89
+ gr.Markdown("# IP-Adapter-FaceID SDXL demo")
90
+ gr.Markdown("Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID) - Non-commercial license")
91
  with gr.Row():
92
  with gr.Column():
93
  files = gr.Files(