File size: 15,184 Bytes
1d3a103
 
 
 
 
 
5f2c216
565eabb
87e5c9c
b8e1b99
0f39362
665f924
87e5c9c
 
 
b8e1b99
 
 
 
 
 
bd3ba15
 
b8e1b99
 
87e5c9c
 
b8e1b99
87e5c9c
5f2c216
87e5c9c
b8e1b99
87e5c9c
b8e1b99
87e5c9c
 
 
9d26661
 
e9ed1f2
87e5c9c
b8e1b99
 
 
 
 
 
 
1d3a103
b8e1b99
 
 
 
 
 
 
 
1d3a103
 
 
 
 
 
 
 
 
 
b8e1b99
 
 
 
 
 
 
 
 
 
 
8312087
565eabb
 
 
8312087
b8e1b99
87e5c9c
 
 
 
b8e1b99
3927544
 
 
 
 
8312087
87e5c9c
 
 
 
 
 
b8e1b99
87e5c9c
 
 
 
 
04190ea
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3927544
87e5c9c
 
 
665f924
 
 
c13ffb4
665f924
7452863
665f924
 
87e5c9c
 
 
 
 
 
3ddba7d
 
 
 
 
 
50d040d
3ddba7d
 
 
50d040d
3ddba7d
50d040d
 
 
b8e1b99
 
 
 
87e5c9c
 
1d3a103
 
 
87e5c9c
1d3a103
87e5c9c
 
 
 
 
 
 
1d3a103
87e5c9c
1d3a103
87e5c9c
c13ffb4
87e5c9c
 
 
34de38e
03e9034
 
34de38e
 
87e5c9c
 
 
 
3927544
1d3a103
87e5c9c
1d3a103
 
 
 
 
87e5c9c
 
 
 
716199b
5f2c216
 
87e5c9c
5f2c216
 
 
 
 
 
 
 
 
 
 
 
87e5c9c
 
 
1d3a103
87e5c9c
1d3a103
87e5c9c
1d3a103
 
 
 
87e5c9c
bd3ba15
 
87e5c9c
 
 
 
 
bd3ba15
5f2c216
 
 
1d3a103
5f2c216
bd3ba15
5f2c216
 
 
 
 
 
 
bd3ba15
1d3a103
5f2c216
87e5c9c
 
bd3ba15
5f2c216
87e5c9c
 
 
bd3ba15
 
 
5f2c216
 
 
 
 
 
 
87e5c9c
bd3ba15
87e5c9c
0f39362
87e5c9c
5f2c216
87e5c9c
11d8f98
87e5c9c
 
 
 
276ee99
87e5c9c
ba90de1
 
b8e1b99
3927544
 
 
72c7da5
 
 
 
 
 
3927544
 
 
 
ba90de1
1413bdf
 
 
 
 
 
 
 
 
 
0f39362
 
7452863
 
 
0f39362
87e5c9c
 
 
 
210cc02
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34de38e
3927544
079d1ca
 
 
 
34de38e
22fd690
c13ffb4
 
ba90de1
3927544
c13ffb4
 
 
bd3ba15
c13ffb4
 
 
93c91df
c13ffb4
93c91df
c13ffb4
87e5c9c
ba90de1
3927544
c13ffb4
 
 
bd3ba15
c13ffb4
 
 
 
 
 
 
87e5c9c
b8e1b99
87e5c9c
3927544
 
 
 
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e1b99
87e5c9c
 
 
 
 
 
34de38e
87e5c9c
 
7e755b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
"""
app.py - the main module for the gradio app

Usage:
    python app.py
"""
import contextlib
import gc
import logging
import os
import random
import re
import time
from pathlib import Path

os.environ["USE_TORCH"] = "1"
os.environ[
    "TOKENIZERS_PARALLELISM"
] = "false"  # parallelism on tokenizers is buggy with gradio

logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
)

import gradio as gr
import nltk
import torch
from cleantext import clean
from doctr.models import ocr_predictor

from pdf2text import convert_PDF_to_Text
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_example_filenames, saves_summary, truncate_word_count

_here = Path(__file__).parent

# os.environ["NLTK_DATA"] = str(_here / "nltk_data")
nltk.download("punkt", force=True, quiet=True)
nltk.download("popular", force=True, quiet=True)


MODEL_OPTIONS = [
    "pszemraj/long-t5-tglobal-base-16384-book-summary",
    "pszemraj/long-t5-tglobal-base-sci-simplify",
    "pszemraj/long-t5-tglobal-base-sci-simplify-elife",
    "pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1",
    "pszemraj/pegasus-x-large-book-summary",
]  # models users can choose from


def predict(
    input_text: str,
    model_name: str,
    token_batch_length: int = 1024,
    empty_cache: bool = True,
    **settings,
) -> list:
    """
    predict - helper fn to support multiple models for summarization at once

    :param str input_text: the input text to summarize
    :param str model_name: model name to use
    :param int token_batch_length: the length of the token batches to use
    :param bool empty_cache: whether to empty the cache before loading a new= model
    :return: list of dicts with keys "summary" and "score"
    """
    if torch.cuda.is_available() and empty_cache:
        torch.cuda.empty_cache()

    model, tokenizer = load_model_and_tokenizer(model_name)
    summaries = summarize_via_tokenbatches(
        input_text,
        model,
        tokenizer,
        batch_length=token_batch_length,
        **settings,
    )

    del model
    del tokenizer
    gc.collect()

    return summaries


def proc_submission(
    input_text: str,
    model_name: str,
    num_beams: int,
    token_batch_length: int,
    length_penalty: float,
    repetition_penalty: float,
    no_repeat_ngram_size: int,
    max_input_length: int = 4096,
):
    """
    proc_submission - a helper function for the gradio module to process submissions

    Args:
        input_text (str): the input text to summarize
        model_name (str): the hf model tag of the model to use
        num_beams (int): the number of beams to use
        token_batch_length (int): the length of the token batches to use
        length_penalty (float): the length penalty to use
        repetition_penalty (float): the repetition penalty to use
        no_repeat_ngram_size (int): the no repeat ngram size to use
        max_input_length (int, optional): the maximum input length to use. Defaults to 2048.

    Returns:
        str in HTML format, string of the summary, str of score
    """

    settings = {
        "length_penalty": float(length_penalty),
        "repetition_penalty": float(repetition_penalty),
        "no_repeat_ngram_size": int(no_repeat_ngram_size),
        "encoder_no_repeat_ngram_size": 4,
        "num_beams": int(num_beams),
        "min_length": 4,
        "max_length": int(token_batch_length // 4),
        "early_stopping": True,
        "do_sample": False,
    }
    st = time.perf_counter()
    history = {}
    clean_text = clean(input_text, lower=False)
    processed = truncate_word_count(clean_text, max_words=max_input_length)

    if processed["was_truncated"]:
        tr_in = processed["truncated_text"]
        # create elaborate HTML warning
        input_wc = re.split(r"\s+", input_text)
        msg = f"""
        <div style="background-color: #FFA500; color: white; padding: 20px;">
        <h3>Warning</h3>
        <p>Input text was truncated to {max_input_length} words. That's about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
        </div>
        """
        logging.warning(msg)
        history["WARNING"] = msg
    else:
        tr_in = input_text
        msg = None

    if len(input_text) < 50:
        # this is essentially a different case from the above
        msg = f"""
        <div style="background-color: #880808; color: white; padding: 20px;">
        <h3>Warning</h3>
        <p>Input text is too short to summarize. Detected {len(input_text)} characters.
        Please load text by selecting an example from the dropdown menu or by pasting text into the text box.</p>
        </div>
        """
        logging.warning(msg)
        logging.warning("RETURNING EMPTY STRING")
        history["WARNING"] = msg

        return msg, "", []

    _summaries = predict(
        input_text=tr_in,
        model_name=model_name,
        token_batch_length=token_batch_length,
        **settings,
    )
    sum_text = [
        f"Batch {i}:\n\t" + s["summary"][0] for i, s in enumerate(_summaries, start=1)
    ]
    sum_scores = [
        f" - Batch Summary {i}: {round(s['summary_score'],4)}"
        for i, s in enumerate(_summaries)
    ]

    sum_text_out = "\n".join(sum_text)
    history["Summary Scores"] = "<br><br>"
    scores_out = "\n".join(sum_scores)
    rt = round((time.perf_counter() - st) / 60, 2)
    logging.info(f"Runtime: {rt} minutes")
    html = ""
    html += f"<p>Runtime: {rt} minutes with model: {model_name}</p>"
    if msg is not None:
        html += msg

    html += ""

    # save to file
    settings["model_name"] = model_name
    saved_file = saves_summary(_summaries, **settings)

    return html, sum_text_out, scores_out, saved_file


def load_single_example_text(
    example_path: str or Path,
    max_pages: int = 20,
) -> str:
    """
    load_single_example_text - loads a single example text file

    :param strorPath example_path: name of the example to load
    :param int max_pages: the maximum number of pages to load from a PDF
    :return str: the text of the example
    """
    global name_to_path
    full_ex_path = name_to_path[example_path]
    full_ex_path = Path(full_ex_path)
    if full_ex_path.suffix in [".txt", ".md"]:
        with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
            raw_text = f.read()
        text = clean(raw_text, lower=False)
    elif full_ex_path.suffix == ".pdf":
        logging.info(f"Loading PDF file {full_ex_path}")
        conversion_stats = convert_PDF_to_Text(
            full_ex_path,
            ocr_model=ocr_model,
            max_pages=max_pages,
        )
        text = conversion_stats["converted_text"]
    else:
        logging.error(f"Unknown file type {full_ex_path.suffix}")
        text = "ERROR - check example path"

    return text


def load_uploaded_file(file_obj, max_pages: int = 20, lower: bool = False) -> str:
    """
    load_uploaded_file - loads a file uploaded by the user

    :param file_obj (POTENTIALLY list): Gradio file object inside a list
    :param int max_pages: the maximum number of pages to load from a PDF
    :param bool lower: whether to lowercase the text
    :return str: the text of the file
    """

    logger = logging.getLogger(__name__)
    # check if mysterious file object is a list
    if isinstance(file_obj, list):
        file_obj = file_obj[0]
    file_path = Path(file_obj.name)
    try:
        logger.info(f"Loading file:\t{file_path}")
        if file_path.suffix == ".txt":
            with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
                raw_text = f.read()
            text = clean(raw_text, lower=lower)
        elif file_path.suffix == ".pdf":
            logger.info(f"loading as PDF file {file_path}")
            conversion_stats = convert_PDF_to_Text(
                file_path,
                ocr_model=ocr_model,
                max_pages=max_pages,
            )
            text = conversion_stats["converted_text"]
        else:
            logger.error(f"Unknown file type {file_path.suffix}")
            text = "ERROR - check file - unknown file type"

        return text
    except Exception as e:
        logger.error(f"Trying to load file:\t{file_path},\nerror:\t{e}")
        return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF."


if __name__ == "__main__":
    logger = logging.getLogger(__name__)
    logger.info("Starting app instance")
    logger.info("Loading OCR model")
    with contextlib.redirect_stdout(None):
        ocr_model = ocr_predictor(
            "db_resnet50",
            "crnn_mobilenet_v3_large",
            pretrained=True,
            assume_straight_pages=True,
        )
    name_to_path = load_example_filenames(_here / "examples")
    logger.info(f"Loaded {len(name_to_path)} examples")
    demo = gr.Blocks()
    _examples = list(name_to_path.keys())
    with demo:
        gr.Markdown("# Document Summarization with Long-Document Transformers")
        gr.Markdown(
            "This is an example use case for fine-tuned long document transformers. The model is trained on book summaries (via the BookSum dataset). The models in this demo are [LongT5-base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://huggingface.co/pszemraj/pegasus-x-large-book-summary)."
        )
        with gr.Column():
            gr.Markdown("## Load Inputs & Select Parameters")
            gr.Markdown(
                "Enter text below in the text area. The text will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). Optionally load an example below or upload a file. (`.txt` or `.pdf` - _[link to guide](https://i.imgur.com/c6Cs9ly.png)_)"
            )
            with gr.Row(variant="compact"):
                with gr.Column(scale=0.5, variant="compact"):
                    model_name = gr.Dropdown(
                        choices=MODEL_OPTIONS,
                        value=MODEL_OPTIONS[0],
                        label="Model Name",
                    )
                    num_beams = gr.Radio(
                        choices=[2, 3, 4],
                        label="Beam Search: # of Beams",
                        value=2,
                    )
                    load_examples_button = gr.Button(
                        "Load Example in Dropdown",
                    )
                    load_file_button = gr.Button("Load an Uploaded File")
                with gr.Column(variant="compact"):
                    example_name = gr.Dropdown(
                        _examples,
                        label="Examples",
                        value=random.choice(_examples),
                    )
                    uploaded_file = gr.File(
                        label="File Upload",
                        file_count="single",
                        type="file",
                    )
            with gr.Row():
                input_text = gr.Textbox(
                    lines=4,
                    label="Input Text (for summarization)",
                    placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
                )

        with gr.Column():
            gr.Markdown("## Generate Summary")
            gr.Markdown(
                "Summarization should take ~1-2 minutes for most settings, but may extend up to 5-10 minutes in some scenarios."
            )
            summarize_button = gr.Button(
                "Summarize!",
                variant="primary",
            )

            output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
            gr.Markdown("### Summary Output")
            summary_text = gr.Textbox(
                label="Summary", placeholder="The generated summary will appear here"
            )
            gr.Markdown(
                "The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
            )
            summary_scores = gr.Textbox(
                label="Summary Scores", placeholder="Summary scores will appear here"
            )

            text_file = gr.File(
                label="Download as Text File",
                file_count="single",
                type="file",
                interactive=False,
            )

        gr.Markdown("---")
        with gr.Column():
            gr.Markdown("### Advanced Settings")
            with gr.Row(variant="compact"):
                length_penalty = gr.Slider(
                    minimum=0.5,
                    maximum=1.0,
                    label="length penalty",
                    value=0.7,
                    step=0.05,
                )
                token_batch_length = gr.Radio(
                    choices=[512, 1024, 1536, 2048],
                    label="token batch length",
                    value=1536,
                )

            with gr.Row(variant="compact"):
                repetition_penalty = gr.Slider(
                    minimum=1.0,
                    maximum=5.0,
                    label="repetition penalty",
                    value=1.5,
                    step=0.1,
                )
                no_repeat_ngram_size = gr.Radio(
                    choices=[2, 3, 4],
                    label="no repeat ngram size",
                    value=3,
                )
        with gr.Column():
            gr.Markdown("### About")
            gr.Markdown(
                "- Models are fine-tuned on the [BookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that generalizes well and is useful for summarizing text in academic and everyday use."
            )
            gr.Markdown(
                "- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)."
            )
            gr.Markdown("---")

        load_examples_button.click(
            fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
        )

        load_file_button.click(
            fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
        )

        summarize_button.click(
            fn=proc_submission,
            inputs=[
                input_text,
                model_name,
                num_beams,
                token_batch_length,
                length_penalty,
                repetition_penalty,
                no_repeat_ngram_size,
            ],
            outputs=[output_text, summary_text, summary_scores, text_file],
        )

    demo.launch(enable_queue=True)