Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
π add words
Browse filesSigned-off-by: peter szemraj <[email protected]>
app.py
CHANGED
@@ -86,8 +86,8 @@ def proc_submission(
|
|
86 |
|
87 |
_summaries = summarize_via_tokenbatches(
|
88 |
tr_in,
|
89 |
-
model_sm if
|
90 |
-
tokenizer_sm if
|
91 |
batch_length=token_batch_length,
|
92 |
**settings,
|
93 |
)
|
@@ -211,7 +211,7 @@ if __name__ == "__main__":
|
|
211 |
|
212 |
gr.Markdown("# Document Summarization with Long-Document Transformers")
|
213 |
gr.Markdown(
|
214 |
-
"
|
215 |
)
|
216 |
with gr.Column():
|
217 |
|
@@ -223,7 +223,7 @@ if __name__ == "__main__":
|
|
223 |
with gr.Column(scale=0.5, variant='compact'):
|
224 |
|
225 |
model_size = gr.Radio(
|
226 |
-
choices=["base", "large"], label="Model Variant", value="base"
|
227 |
)
|
228 |
num_beams = gr.Radio(
|
229 |
choices=[2, 3, 4],
|
@@ -308,13 +308,7 @@ if __name__ == "__main__":
|
|
308 |
with gr.Column():
|
309 |
gr.Markdown("### About the Model")
|
310 |
gr.Markdown(
|
311 |
-
"
|
312 |
-
)
|
313 |
-
gr.Markdown(
|
314 |
-
"- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. However, increasing these will also increase the amount of time it takes to generate a summary. The `length_penalty` and `repetition_penalty` parameters are also important for the model to generate good summaries."
|
315 |
-
)
|
316 |
-
gr.Markdown(
|
317 |
-
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial."
|
318 |
)
|
319 |
gr.Markdown("---")
|
320 |
|
|
|
86 |
|
87 |
_summaries = summarize_via_tokenbatches(
|
88 |
tr_in,
|
89 |
+
model_sm if "base" in model_size.lower() else model,
|
90 |
+
tokenizer_sm if "base" in model_size.lower() else tokenizer,
|
91 |
batch_length=token_batch_length,
|
92 |
**settings,
|
93 |
)
|
|
|
211 |
|
212 |
gr.Markdown("# Document Summarization with Long-Document Transformers")
|
213 |
gr.Markdown(
|
214 |
+
"This is an example use case for fine-tuned long document transformers. The model is trained on book summaries (via the BookSum dataset). The models in this demo are [LongT5-base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://huggingface.co/pszemraj/pegasus-x-large-book-summary)."
|
215 |
)
|
216 |
with gr.Column():
|
217 |
|
|
|
223 |
with gr.Column(scale=0.5, variant='compact'):
|
224 |
|
225 |
model_size = gr.Radio(
|
226 |
+
choices=["LongT5-base", "Pegasus-X-large"], label="Model Variant", value="base"
|
227 |
)
|
228 |
num_beams = gr.Radio(
|
229 |
choices=[2, 3, 4],
|
|
|
308 |
with gr.Column():
|
309 |
gr.Markdown("### About the Model")
|
310 |
gr.Markdown(
|
311 |
+
"These models are fine-tuned on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
)
|
313 |
gr.Markdown("---")
|
314 |
|