Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,107 Bytes
276ee99 5f2c216 87e5c9c 0f39362 665f924 87e5c9c 5f2c216 87e5c9c 3688939 87e5c9c d5e892e 87e5c9c 665f924 c13ffb4 665f924 7452863 665f924 87e5c9c 3ddba7d 50d040d 3ddba7d 50d040d 3ddba7d 50d040d 87e5c9c 11d8f98 87e5c9c c13ffb4 87e5c9c 5f2c216 87e5c9c 5f2c216 87e5c9c 5f2c216 87e5c9c 5f2c216 87e5c9c 5f2c216 87e5c9c 5f2c216 87e5c9c 5f2c216 ba90de1 5f2c216 b40e029 7452863 b40e029 5f2c216 87e5c9c 0f39362 87e5c9c 5f2c216 87e5c9c 11d8f98 87e5c9c 276ee99 87e5c9c ba90de1 72c7da5 ba90de1 72c7da5 ba90de1 1413bdf 0f39362 7452863 0f39362 b4e0534 87e5c9c 210cc02 87e5c9c 22fd690 c13ffb4 ba90de1 c13ffb4 87e5c9c ba90de1 c13ffb4 87e5c9c c13ffb4 87e5c9c 11d8f98 87e5c9c 7e755b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import os
import contextlib
import logging
import random
import re
import time
from pathlib import Path
import gradio as gr
import nltk
from cleantext import clean
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from pdf2text import convert_PDF_to_Text
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_example_filenames, truncate_word_count
_here = Path(__file__).parent
nltk.download("stopwords") # TODO=find where this requirement originates from
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
def proc_submission(
input_text: str,
model_size: str,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
max_input_length: int = 1024,
):
"""
proc_submission - a helper function for the gradio module to process submissions
Args:
input_text (str): the input text to summarize
model_size (str): the size of the model to use
num_beams (int): the number of beams to use
token_batch_length (int): the length of the token batches to use
length_penalty (float): the length penalty to use
repetition_penalty (float): the repetition penalty to use
no_repeat_ngram_size (int): the no repeat ngram size to use
max_input_length (int, optional): the maximum input length to use. Defaults to 768.
Returns:
str in HTML format, string of the summary, str of score
"""
settings = {
"length_penalty": float(length_penalty),
"repetition_penalty": float(repetition_penalty),
"no_repeat_ngram_size": int(no_repeat_ngram_size),
"encoder_no_repeat_ngram_size": 4,
"num_beams": int(num_beams),
"min_length": 4,
"max_length": int(token_batch_length // 4),
"early_stopping": True,
"do_sample": False,
}
st = time.perf_counter()
history = {}
clean_text = clean(input_text, lower=False)
max_input_length = 2560 if "base" in model_size.lower() else max_input_length
processed = truncate_word_count(clean_text, max_input_length)
if processed["was_truncated"]:
tr_in = processed["truncated_text"]
# create elaborate HTML warning
input_wc = re.split(r"\s+", input_text)
msg = f"""
<div style="background-color: #FFA500; color: white; padding: 20px;">
<h3>Warning</h3>
<p>Input text was truncated to {max_input_length} words. That's about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
</div>
"""
logging.warning(msg)
history["WARNING"] = msg
else:
tr_in = input_text
msg = None
if len(input_text) < 50:
# this is essentially a different case from the above
msg = f"""
<div style="background-color: #880808; color: white; padding: 20px;">
<h3>Warning</h3>
<p>Input text is too short to summarize. Detected {len(input_text)} characters.
Please load text by selecting an example from the dropdown menu or by pasting text into the text box.</p>
</div>
"""
logging.warning(msg)
logging.warning("RETURNING EMPTY STRING")
history["WARNING"] = msg
return msg, "", []
_summaries = summarize_via_tokenbatches(
tr_in,
model_sm if "base" in model_size.lower() else model,
tokenizer_sm if "base" in model_size.lower() else tokenizer,
batch_length=token_batch_length,
**settings,
)
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
sum_scores = [
f" - Section {i}: {round(s['summary_score'],4)}"
for i, s in enumerate(_summaries)
]
sum_text_out = "\n".join(sum_text)
history["Summary Scores"] = "<br><br>"
scores_out = "\n".join(sum_scores)
rt = round((time.perf_counter() - st) / 60, 2)
print(f"Runtime: {rt} minutes")
html = ""
html += f"<p>Runtime: {rt} minutes on CPU</p>"
if msg is not None:
html += msg
html += ""
return html, sum_text_out, scores_out
def load_single_example_text(
example_path: str or Path,
max_pages=20,
):
"""
load_single_example - a helper function for the gradio module to load examples
Returns:
list of str, the examples
"""
global name_to_path
full_ex_path = name_to_path[example_path]
full_ex_path = Path(full_ex_path)
if full_ex_path.suffix == ".txt":
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
raw_text = f.read()
text = clean(raw_text, lower=False)
elif full_ex_path.suffix == ".pdf":
logging.info(f"Loading PDF file {full_ex_path}")
conversion_stats = convert_PDF_to_Text(
full_ex_path,
ocr_model=ocr_model,
max_pages=max_pages,
)
text = conversion_stats["converted_text"]
else:
logging.error(f"Unknown file type {full_ex_path.suffix}")
text = "ERROR - check example path"
return text
def load_uploaded_file(file_obj, max_pages=20):
"""
load_uploaded_file - process an uploaded file
Args:
file_obj (POTENTIALLY list): Gradio file object inside a list
Returns:
str, the uploaded file contents
"""
# file_path = Path(file_obj[0].name)
# check if mysterious file object is a list
if isinstance(file_obj, list):
file_obj = file_obj[0]
file_path = Path(file_obj.name)
try:
if file_path.suffix == ".txt":
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
raw_text = f.read()
text = clean(raw_text, lower=False)
elif file_path.suffix == ".pdf":
logging.info(f"Loading PDF file {file_path}")
conversion_stats = convert_PDF_to_Text(
file_path,
ocr_model=ocr_model,
max_pages=max_pages,
)
text = conversion_stats["converted_text"]
else:
logging.error(f"Unknown file type {file_path.suffix}")
text = "ERROR - check example path"
return text
except Exception as e:
logging.info(f"Trying to load file with path {file_path}, error: {e}")
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF."
if __name__ == "__main__":
logging.info("Starting app instance")
os.environ[
"TOKENIZERS_PARALLELISM"
] = "false" # parallelism on tokenizers is buggy with gradio
logging.info("Loading summ models")
with contextlib.redirect_stdout(None):
model, tokenizer = load_model_and_tokenizer(
"pszemraj/pegasus-x-large-book-summary"
)
model_sm, tokenizer_sm = load_model_and_tokenizer(
"pszemraj/long-t5-tglobal-base-16384-book-summary"
)
logging.info("Loading OCR model")
with contextlib.redirect_stdout(None):
ocr_model = ocr_predictor(
"db_resnet50",
"crnn_mobilenet_v3_large",
pretrained=True,
assume_straight_pages=True,
)
name_to_path = load_example_filenames(_here / "examples")
logging.info(f"Loaded {len(name_to_path)} examples")
demo = gr.Blocks()
_examples = list(name_to_path.keys())
with demo:
gr.Markdown("# Document Summarization with Long-Document Transformers")
gr.Markdown(
"This is an example use case for fine-tuned long document transformers. The model is trained on book summaries (via the BookSum dataset). The models in this demo are [LongT5-base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://huggingface.co/pszemraj/pegasus-x-large-book-summary)."
)
with gr.Column():
gr.Markdown("## Load Inputs & Select Parameters")
gr.Markdown(
"Enter text below in the text area. The text will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). Optionally load an example below or upload a file. (`.txt` or `.pdf` - _[link to guide](https://i.imgur.com/c6Cs9ly.png)_)"
)
with gr.Row(variant="compact"):
with gr.Column(scale=0.5, variant="compact"):
model_size = gr.Radio(
choices=["LongT5-base", "Pegasus-X-large"],
label="Model Variant",
value="LongT5-base",
)
num_beams = gr.Radio(
choices=[2, 3, 4],
label="Beam Search: # of Beams",
value=2,
)
with gr.Column(variant="compact"):
example_name = gr.Dropdown(
_examples,
label="Examples",
value=random.choice(_examples),
)
uploaded_file = gr.File(
label="File Upload",
file_count="single",
type="file",
)
with gr.Row():
input_text = gr.Textbox(
lines=4,
label="Input Text (for summarization)",
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
)
with gr.Column(min_width=100, scale=0.5):
load_examples_button = gr.Button(
"Load Example",
)
load_file_button = gr.Button("Upload File")
with gr.Column():
gr.Markdown("## Generate Summary")
gr.Markdown(
"Summarization should take ~1-2 minutes for most settings, but may extend up to 5-10 minutes in some scenarios."
)
summarize_button = gr.Button(
"Summarize!",
variant="primary",
)
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
gr.Markdown("### Summary Output")
summary_text = gr.Textbox(
label="Summary", placeholder="The generated summary will appear here"
)
gr.Markdown(
"The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
)
summary_scores = gr.Textbox(
label="Summary Scores", placeholder="Summary scores will appear here"
)
gr.Markdown("---")
with gr.Column():
gr.Markdown("### Advanced Settings")
with gr.Row(variant="compact"):
length_penalty = gr.inputs.Slider(
minimum=0.5,
maximum=1.0,
label="length penalty",
default=0.7,
step=0.05,
)
token_batch_length = gr.Radio(
choices=[512, 768, 1024, 1536],
label="token batch length",
value=1024,
)
with gr.Row(variant="compact"):
repetition_penalty = gr.inputs.Slider(
minimum=1.0,
maximum=5.0,
label="repetition penalty",
default=3.5,
step=0.1,
)
no_repeat_ngram_size = gr.Radio(
choices=[2, 3, 4],
label="no repeat ngram size",
value=3,
)
with gr.Column():
gr.Markdown("### About the Model")
gr.Markdown(
"These models are fine-tuned on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
)
gr.Markdown("---")
load_examples_button.click(
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
)
load_file_button.click(
fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
)
summarize_button.click(
fn=proc_submission,
inputs=[
input_text,
model_size,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
],
outputs=[output_text, summary_text, summary_scores],
)
demo.launch(enable_queue=True)
|