File size: 4,721 Bytes
87e5c9c
 
c006617
 
87e5c9c
 
 
 
 
c006617
87e5c9c
c006617
87e5c9c
c006617
 
87e5c9c
9350787
87e5c9c
 
9350787
2956200
 
87e5c9c
 
9350787
2956200
87e5c9c
 
 
7813441
 
c006617
87e5c9c
 
 
 
 
 
 
 
9350787
c006617
87e5c9c
c006617
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
9350787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c006617
87e5c9c
c006617
87e5c9c
 
 
c006617
87e5c9c
 
 
 
 
c006617
87e5c9c
c006617
 
87e5c9c
 
 
c006617
 
 
 
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c006617
87e5c9c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import logging

logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")

import torch
from tqdm.auto import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer


def load_model_and_tokenizer(model_name: str) -> tuple:
    """
    load_model_and_tokenizer - load a model and tokenizer from a model name/ID on the hub

    :param str model_name: the model name/ID on the hub
    :return tuple: a tuple containing the model and tokenizer
    """
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_name,
    ).to(device)
    model = model.eval()

    tokenizer = AutoTokenizer.from_pretrained(model_name)

    logging.info(f"Loaded model {model_name} to {device}")

    return model, tokenizer


def summarize_and_score(
    ids, mask, model, tokenizer, is_general_attention_model=True, **kwargs
) -> tuple:
    """
    summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary

    Args:
        ids (): the batch of ids
        mask (): the attention mask for the batch
        model   (): the model to use for summarization
        tokenizer (): the tokenizer to use for summarization
        is_general_attention_model (bool, optional): whether the model is a general attention model. Defaults to True.
        **kwargs: any additional arguments to pass to the model
    Returns:
        tuple (str, float): the summary,  the score for the summary
    """

    ids = ids[None, :]
    mask = mask[None, :]

    input_ids = ids.to("cuda") if torch.cuda.is_available() else ids
    attention_mask = mask.to("cuda") if torch.cuda.is_available() else mask

    global_attention_mask = torch.zeros_like(attention_mask)
    # put global attention on <s> token
    global_attention_mask[:, 0] = 1

    if is_general_attention_model:
        summary_pred_ids = model.generate(
            input_ids,
            attention_mask=attention_mask,
            output_scores=True,
            return_dict_in_generate=True,
            **kwargs,
        )
    else:
        summary_pred_ids = model.generate(
            input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask,
            output_scores=True,
            return_dict_in_generate=True,
            **kwargs,
        )
    summary = tokenizer.batch_decode(
        summary_pred_ids.sequences,
        skip_special_tokens=True,
        remove_invalid_values=True,
    )
    score = round(summary_pred_ids.sequences_scores.cpu().numpy()[0], 4)

    return summary, score


def summarize_via_tokenbatches(
    input_text: str,
    model,
    tokenizer,
    batch_length=2048,
    batch_stride=16,
    **kwargs,
) -> list:
    """
    summarize_via_tokenbatches - summarize a long string via batches of tokens

    Args:
        input_text (str): the text to summarize
        model (): the model to use for summarization
        tokenizer (): the tokenizer to use for summarization
        batch_length (int, optional): the length of each batch. Defaults to 2048.
        batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.

    Returns:
        list: a list of dictionaries containing the input tokens, the summary, and the summary score
    """

    logger = logging.getLogger(__name__)
    # log all input parameters
    if batch_length < 512:
        batch_length = 512
        logger.warning(
            f"batch_length must be at least 512. Setting batch_length to {batch_length}"
        )
    logger.info(
        f"input parameters: {kwargs}, batch_length={batch_length}, batch_stride={batch_stride}"
    )
    encoded_input = tokenizer(
        input_text,
        padding="max_length",
        truncation=True,
        max_length=batch_length,
        stride=batch_stride,
        return_overflowing_tokens=True,
        add_special_tokens=False,
        return_tensors="pt",
    )

    in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask
    gen_summaries = []

    pbar = tqdm(total=len(in_id_arr))

    for _id, _mask in zip(in_id_arr, att_arr):
        result, score = summarize_and_score(
            ids=_id,
            mask=_mask,
            model=model,
            tokenizer=tokenizer,
            **kwargs,
        )
        score = round(float(score), 4)
        _sum = {
            "input_tokens": _id,
            "summary": result,
            "summary_score": score,
        }
        gen_summaries.append(_sum)
        logger.info(f"\t{result[0]}\nScore:\t{score}")
        pbar.update()

    pbar.close()

    return gen_summaries