Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
π improve logging and docs
Browse filesSigned-off-by: peter szemraj <[email protected]>
- summarize.py +20 -20
summarize.py
CHANGED
|
@@ -1,25 +1,22 @@
|
|
| 1 |
import logging
|
| 2 |
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
from tqdm.auto import tqdm
|
| 5 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 6 |
|
| 7 |
|
| 8 |
-
def load_model_and_tokenizer(model_name):
|
| 9 |
"""
|
| 10 |
-
load_model_and_tokenizer - a
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
Returns:
|
| 15 |
-
AutoModelForSeq2SeqLM: the model
|
| 16 |
-
AutoTokenizer: the tokenizer
|
| 17 |
"""
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 20 |
model_name,
|
| 21 |
-
# low_cpu_mem_usage=True,
|
| 22 |
-
# use_cache=False,
|
| 23 |
).to(device)
|
| 24 |
model = model.eval()
|
| 25 |
|
|
@@ -32,7 +29,7 @@ def load_model_and_tokenizer(model_name):
|
|
| 32 |
|
| 33 |
def summarize_and_score(
|
| 34 |
ids, mask, model, tokenizer, is_general_attention_model=True, **kwargs
|
| 35 |
-
):
|
| 36 |
"""
|
| 37 |
summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary
|
| 38 |
|
|
@@ -42,9 +39,9 @@ def summarize_and_score(
|
|
| 42 |
model (): the model to use for summarization
|
| 43 |
tokenizer (): the tokenizer to use for summarization
|
| 44 |
is_general_attention_model (bool, optional): whether the model is a general attention model. Defaults to True.
|
| 45 |
-
|
| 46 |
Returns:
|
| 47 |
-
str: the summary
|
| 48 |
"""
|
| 49 |
|
| 50 |
ids = ids[None, :]
|
|
@@ -91,25 +88,29 @@ def summarize_via_tokenbatches(
|
|
| 91 |
batch_length=2048,
|
| 92 |
batch_stride=16,
|
| 93 |
**kwargs,
|
| 94 |
-
):
|
| 95 |
"""
|
| 96 |
-
summarize_via_tokenbatches - a
|
| 97 |
|
| 98 |
Args:
|
| 99 |
input_text (str): the text to summarize
|
| 100 |
-
model (): the model to use for
|
| 101 |
tokenizer (): the tokenizer to use for summarization
|
| 102 |
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
| 103 |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
| 104 |
|
| 105 |
Returns:
|
| 106 |
-
|
| 107 |
"""
|
|
|
|
|
|
|
| 108 |
# log all input parameters
|
| 109 |
if batch_length < 512:
|
| 110 |
batch_length = 512
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
| 113 |
f"input parameters: {kwargs}, batch_length={batch_length}, batch_stride={batch_stride}"
|
| 114 |
)
|
| 115 |
encoded_input = tokenizer(
|
|
@@ -129,7 +130,6 @@ def summarize_via_tokenbatches(
|
|
| 129 |
pbar = tqdm(total=len(in_id_arr))
|
| 130 |
|
| 131 |
for _id, _mask in zip(in_id_arr, att_arr):
|
| 132 |
-
|
| 133 |
result, score = summarize_and_score(
|
| 134 |
ids=_id,
|
| 135 |
mask=_mask,
|
|
@@ -144,7 +144,7 @@ def summarize_via_tokenbatches(
|
|
| 144 |
"summary_score": score,
|
| 145 |
}
|
| 146 |
gen_summaries.append(_sum)
|
| 147 |
-
|
| 148 |
pbar.update()
|
| 149 |
|
| 150 |
pbar.close()
|
|
|
|
| 1 |
import logging
|
| 2 |
|
| 3 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
from tqdm.auto import tqdm
|
| 7 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 8 |
|
| 9 |
|
| 10 |
+
def load_model_and_tokenizer(model_name: str) -> tuple:
|
| 11 |
"""
|
| 12 |
+
load_model_and_tokenizer - load a model and tokenizer from a model name/ID on the hub
|
| 13 |
|
| 14 |
+
:param str model_name: the model name/ID on the hub
|
| 15 |
+
:return tuple: a tuple containing the model and tokenizer
|
|
|
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 19 |
model_name,
|
|
|
|
|
|
|
| 20 |
).to(device)
|
| 21 |
model = model.eval()
|
| 22 |
|
|
|
|
| 29 |
|
| 30 |
def summarize_and_score(
|
| 31 |
ids, mask, model, tokenizer, is_general_attention_model=True, **kwargs
|
| 32 |
+
) -> tuple:
|
| 33 |
"""
|
| 34 |
summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary
|
| 35 |
|
|
|
|
| 39 |
model (): the model to use for summarization
|
| 40 |
tokenizer (): the tokenizer to use for summarization
|
| 41 |
is_general_attention_model (bool, optional): whether the model is a general attention model. Defaults to True.
|
| 42 |
+
**kwargs: any additional arguments to pass to the model
|
| 43 |
Returns:
|
| 44 |
+
tuple (str, float): the summary, the score for the summary
|
| 45 |
"""
|
| 46 |
|
| 47 |
ids = ids[None, :]
|
|
|
|
| 88 |
batch_length=2048,
|
| 89 |
batch_stride=16,
|
| 90 |
**kwargs,
|
| 91 |
+
) -> list:
|
| 92 |
"""
|
| 93 |
+
summarize_via_tokenbatches - summarize a long string via batches of tokens
|
| 94 |
|
| 95 |
Args:
|
| 96 |
input_text (str): the text to summarize
|
| 97 |
+
model (): the model to use for summarization
|
| 98 |
tokenizer (): the tokenizer to use for summarization
|
| 99 |
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
| 100 |
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
| 101 |
|
| 102 |
Returns:
|
| 103 |
+
list: a list of dictionaries containing the input tokens, the summary, and the summary score
|
| 104 |
"""
|
| 105 |
+
|
| 106 |
+
logger = logging.getLogger(__name__)
|
| 107 |
# log all input parameters
|
| 108 |
if batch_length < 512:
|
| 109 |
batch_length = 512
|
| 110 |
+
logger.warning(
|
| 111 |
+
f"batch_length must be at least 512. Setting batch_length to {batch_length}"
|
| 112 |
+
)
|
| 113 |
+
logger.info(
|
| 114 |
f"input parameters: {kwargs}, batch_length={batch_length}, batch_stride={batch_stride}"
|
| 115 |
)
|
| 116 |
encoded_input = tokenizer(
|
|
|
|
| 130 |
pbar = tqdm(total=len(in_id_arr))
|
| 131 |
|
| 132 |
for _id, _mask in zip(in_id_arr, att_arr):
|
|
|
|
| 133 |
result, score = summarize_and_score(
|
| 134 |
ids=_id,
|
| 135 |
mask=_mask,
|
|
|
|
| 144 |
"summary_score": score,
|
| 145 |
}
|
| 146 |
gen_summaries.append(_sum)
|
| 147 |
+
logger.info(f"\t{result[0]}\nScore:\t{score}")
|
| 148 |
pbar.update()
|
| 149 |
|
| 150 |
pbar.close()
|