asofter's picture
* initial
e18c8b0
raw
history blame
4.3 kB
import logging
import time
import traceback
from datetime import timedelta
import pandas as pd
import spacy
import streamlit as st
from output import init_settings as init_output_settings
from output import scan as scan_output
from prompt import init_settings as init_prompt_settings
from prompt import scan as scan_prompt
from llm_guard.vault import Vault
if not spacy.util.is_package("en_core_web_trf"):
spacy.cli.download("en_core_web_trf")
PROMPT = "prompt"
OUTPUT = "output"
vault = Vault()
st.set_page_config(
page_title="LLM Guard demo",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
"About": "https://laiyer-ai.github.io/llm-guard/",
},
)
logger = logging.getLogger("llm-guard-demo")
logger.setLevel(logging.INFO)
# Sidebar
st.sidebar.header(
"""
Scanning prompt and output using [LLM Guard](https://laiyer-ai.github.io/llm-guard/)
"""
)
scanner_type = st.sidebar.selectbox("Type", [PROMPT, OUTPUT], index=0)
enabled_scanners = None
settings = None
if scanner_type == PROMPT:
enabled_scanners, settings = init_prompt_settings()
elif scanner_type == OUTPUT:
enabled_scanners, settings = init_output_settings()
# Main pannel
with st.expander("About this demo", expanded=False):
st.info(
"""LLM-Guard is a comprehensive tool designed to fortify the security of Large Language Models (LLMs).
\n\n[Code](https://github.com/laiyer-ai/llm-guard) |
[Documentation](https://laiyer-ai.github.io/llm-guard/)"""
)
st.markdown(
"[![Pypi Downloads](https://img.shields.io/pypi/dm/llm-guard.svg)](https://img.shields.io/pypi/dm/llm-guard.svg)" # noqa
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)"
"![GitHub Repo stars](https://img.shields.io/github/stars/laiyer-ai/llm-guard?style=social)"
)
analyzer_load_state = st.info("Starting LLM Guard...")
analyzer_load_state.empty()
# Read default text
with open("prompt_text.txt") as f:
demo_prompt_text = f.readlines()
with open("output_text.txt") as f:
demo_output_text = f.readlines()
# Before:
st.subheader("Guard Prompt" if scanner_type == PROMPT else "Guard Output")
if scanner_type == PROMPT:
st_prompt_text = st.text_area(
label="Enter prompt", value="".join(demo_prompt_text), height=200, key="prompt_text_input"
)
elif scanner_type == OUTPUT:
col1, col2 = st.columns(2)
st_prompt_text = col1.text_area(
label="Enter prompt", value="".join(demo_prompt_text), height=300, key="prompt_text_input"
)
st_output_text = col2.text_area(
label="Enter output", value="".join(demo_output_text), height=300, key="output_text_input"
)
st_result_text = None
st_analysis = None
st_is_valid = None
st_time_delta = None
try:
with st.form("text_form", clear_on_submit=False):
submitted = st.form_submit_button("Process")
if submitted:
results_valid = {}
results_score = {}
start_time = time.monotonic()
if scanner_type == PROMPT:
st_result_text, results_valid, results_score = scan_prompt(
vault, enabled_scanners, settings, st_prompt_text
)
elif scanner_type == OUTPUT:
st_result_text, results_valid, results_score = scan_output(
vault, enabled_scanners, settings, st_prompt_text, st_output_text
)
end_time = time.monotonic()
st_time_delta = timedelta(seconds=end_time - start_time)
st_is_valid = all(results_valid.values())
st_analysis = [
{"scanner": k, "is valid": results_valid[k], "risk score": results_score[k]}
for k in results_valid
]
except Exception as e:
logger.error(e)
traceback.print_exc()
st.error(e)
# After:
if st_is_valid is not None:
execution_time_ms = round(st_time_delta.total_seconds() * 1000)
st.subheader(f"Results - {'valid' if st_is_valid else 'invalid'} ({execution_time_ms} ms)")
col1, col2 = st.columns(2)
with col1:
st.text_area(label="Sanitized text", value=st_result_text, height=400)
with col2:
st.table(pd.DataFrame(st_analysis))