File size: 4,298 Bytes
e18c8b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import logging
import time
import traceback
from datetime import timedelta

import pandas as pd
import spacy
import streamlit as st
from output import init_settings as init_output_settings
from output import scan as scan_output
from prompt import init_settings as init_prompt_settings
from prompt import scan as scan_prompt

from llm_guard.vault import Vault

if not spacy.util.is_package("en_core_web_trf"):
    spacy.cli.download("en_core_web_trf")

PROMPT = "prompt"
OUTPUT = "output"
vault = Vault()

st.set_page_config(
    page_title="LLM Guard demo",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        "About": "https://laiyer-ai.github.io/llm-guard/",
    },
)

logger = logging.getLogger("llm-guard-demo")
logger.setLevel(logging.INFO)

# Sidebar
st.sidebar.header(
    """
Scanning prompt and output using [LLM Guard](https://laiyer-ai.github.io/llm-guard/)
"""
)

scanner_type = st.sidebar.selectbox("Type", [PROMPT, OUTPUT], index=0)

enabled_scanners = None
settings = None
if scanner_type == PROMPT:
    enabled_scanners, settings = init_prompt_settings()
elif scanner_type == OUTPUT:
    enabled_scanners, settings = init_output_settings()

# Main pannel
with st.expander("About this demo", expanded=False):
    st.info(
        """LLM-Guard is a comprehensive tool designed to fortify the security of Large Language Models (LLMs).
        \n\n[Code](https://github.com/laiyer-ai/llm-guard) |
        [Documentation](https://laiyer-ai.github.io/llm-guard/)"""
    )

    st.markdown(
        "[![Pypi Downloads](https://img.shields.io/pypi/dm/llm-guard.svg)](https://img.shields.io/pypi/dm/llm-guard.svg)"  # noqa
        "[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)"
        "![GitHub Repo stars](https://img.shields.io/github/stars/laiyer-ai/llm-guard?style=social)"
    )

analyzer_load_state = st.info("Starting LLM Guard...")

analyzer_load_state.empty()

# Read default text
with open("prompt_text.txt") as f:
    demo_prompt_text = f.readlines()

with open("output_text.txt") as f:
    demo_output_text = f.readlines()

# Before:
st.subheader("Guard Prompt" if scanner_type == PROMPT else "Guard Output")

if scanner_type == PROMPT:
    st_prompt_text = st.text_area(
        label="Enter prompt", value="".join(demo_prompt_text), height=200, key="prompt_text_input"
    )
elif scanner_type == OUTPUT:
    col1, col2 = st.columns(2)
    st_prompt_text = col1.text_area(
        label="Enter prompt", value="".join(demo_prompt_text), height=300, key="prompt_text_input"
    )

    st_output_text = col2.text_area(
        label="Enter output", value="".join(demo_output_text), height=300, key="output_text_input"
    )

st_result_text = None
st_analysis = None
st_is_valid = None
st_time_delta = None

try:
    with st.form("text_form", clear_on_submit=False):
        submitted = st.form_submit_button("Process")
        if submitted:
            results_valid = {}
            results_score = {}

            start_time = time.monotonic()
            if scanner_type == PROMPT:
                st_result_text, results_valid, results_score = scan_prompt(
                    vault, enabled_scanners, settings, st_prompt_text
                )
            elif scanner_type == OUTPUT:
                st_result_text, results_valid, results_score = scan_output(
                    vault, enabled_scanners, settings, st_prompt_text, st_output_text
                )
            end_time = time.monotonic()
            st_time_delta = timedelta(seconds=end_time - start_time)

            st_is_valid = all(results_valid.values())
            st_analysis = [
                {"scanner": k, "is valid": results_valid[k], "risk score": results_score[k]}
                for k in results_valid
            ]

except Exception as e:
    logger.error(e)
    traceback.print_exc()
    st.error(e)

# After:
if st_is_valid is not None:
    execution_time_ms = round(st_time_delta.total_seconds() * 1000)
    st.subheader(f"Results - {'valid' if st_is_valid else 'invalid'} ({execution_time_ms} ms)")

    col1, col2 = st.columns(2)

    with col1:
        st.text_area(label="Sanitized text", value=st_result_text, height=400)

    with col2:
        st.table(pd.DataFrame(st_analysis))