Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
#patch 0.01 | |
import os | |
import random | |
import uuid | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import torch | |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
#DESCRIPTIONx = """## STABLE INSTRUCT 📦 | |
#""" | |
examples = [ | |
["assets/4.png", "Change the color of the jacket to white."], | |
["assets/1.png", "Change the picture to black and white."], | |
["assets/2.png", "Add the chocolate topping to the ice cream."], | |
["assets/3.png", "Make the burger look spicy."], | |
] | |
model_id = "timbrooks/instruct-pix2pix" | |
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
DESCRIPTION = """ | |
""" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = False | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def img2img_generate( | |
prompt: str, | |
init_image: gr.Image, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
seed: int = 0, | |
guidance_scale: float = 7, | |
randomize_seed: bool = False, | |
num_inference_steps=30, | |
strength: float = 0.8, | |
NUM_IMAGES_PER_PROMPT=1, | |
use_resolution_binning: bool = True, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
pipe.to(device) | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
init_image = init_image.resize((768, 768)) | |
output = pipe( | |
prompt=prompt, | |
image=init_image, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
strength=strength, | |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, | |
output_type="pil", | |
).images | |
return output | |
css = ''' | |
.gradio-container{max-width: 800px !important} | |
h1{text-align:center} | |
''' | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
# gr.Markdown(DESCRIPTIONx) | |
with gr.Group(): | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1): | |
img2img_prompt = gr.Text( | |
label="Instruct", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your instruction", | |
container=False, | |
) | |
init_image = gr.Image(label="Image", type="pil") | |
with gr.Row(): | |
img2img_run_button = gr.Button("Generate", variant="primary") | |
with gr.Column(scale=1): | |
img2img_output = gr.Gallery(label="Result", elem_id="gallery") | |
with gr.Accordion("Advanced options", open=False, visible=False): | |
with gr.Row(): | |
img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
img2img_negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
visible=True, | |
) | |
img2img_seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
img2img_steps = gr.Slider( | |
label="Steps", | |
minimum=0, | |
maximum=60, | |
step=1, | |
value=25, | |
) | |
img2img_number_image = gr.Slider( | |
label="No.of.Images", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=1, | |
) | |
img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
img2img_guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=10, | |
step=0.1, | |
value=5.0, | |
) | |
strength = gr.Slider(label="Confidence", minimum=0.0, maximum=1.0, step=0.01, value=0.8) | |
gr.Examples( | |
examples=examples, | |
inputs=[init_image, img2img_prompt], | |
outputs=img2img_output, | |
fn=img2img_generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
img2img_use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=img2img_use_negative_prompt, | |
outputs=img2img_negative_prompt, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
img2img_prompt.submit, | |
img2img_negative_prompt.submit, | |
img2img_run_button.click, | |
], | |
fn=img2img_generate, | |
inputs=[ | |
img2img_prompt, | |
init_image, | |
img2img_negative_prompt, | |
img2img_use_negative_prompt, | |
img2img_seed, | |
img2img_guidance_scale, | |
img2img_randomize_seed, | |
img2img_steps, | |
strength, | |
img2img_number_image, | |
], | |
outputs=[img2img_output], | |
api_name="image-to-image", | |
) | |
#gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards") | |
if __name__ == "__main__": | |
demo.queue().launch(show_api=False, debug=False) |