File size: 6,227 Bytes
b57801d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9cf60c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python
#patch 0.01
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

#DESCRIPTIONx = """## STABLE INSTRUCT 📦

#"""

examples = [
    ["assets/4.png", "Change the color of the jacket to white."],
    ["assets/1.png", "Change the picture to black and white."],
    ["assets/2.png", "Add the chocolate topping to the ice cream."],
    ["assets/3.png", "Make the burger look spicy."],
]

model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

DESCRIPTION = """
"""

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def img2img_generate(
    prompt: str,
    init_image: gr.Image,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    guidance_scale: float = 7,
    randomize_seed: bool = False,
    num_inference_steps=30,
    strength: float = 0.8,
    NUM_IMAGES_PER_PROMPT=1,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    
    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    
    init_image = init_image.resize((768, 768))

    
    output = pipe(
        prompt=prompt,
        image=init_image,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        strength=strength,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        output_type="pil",
    ).images

    return output

css = '''
.gradio-container{max-width: 800px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
  #  gr.Markdown(DESCRIPTIONx)
    with gr.Group():
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                img2img_prompt = gr.Text(
                    label="Instruct",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your instruction",
                    container=False,
                )
                init_image = gr.Image(label="Image", type="pil")
                with gr.Row():
                    img2img_run_button = gr.Button("Generate", variant="primary")
            with gr.Column(scale=1):
                img2img_output = gr.Gallery(label="Result", elem_id="gallery")
        with gr.Accordion("Advanced options", open=False, visible=False):
            with gr.Row():
                img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                img2img_negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                    visible=True,
                )
            img2img_seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            img2img_steps = gr.Slider(
                label="Steps",
                minimum=0,
                maximum=60,
                step=1,
                value=25,
            )
            img2img_number_image = gr.Slider(
                label="No.of.Images",
                minimum=1,
                maximum=4,
                step=1,
                value=1,
            )
            img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                img2img_guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.1,
                    maximum=10,
                    step=0.1,
                    value=5.0,
                )
                strength = gr.Slider(label="Confidence", minimum=0.0, maximum=1.0, step=0.01, value=0.8)

    gr.Examples(
        examples=examples,
        inputs=[init_image, img2img_prompt],
        outputs=img2img_output,
        fn=img2img_generate,
        cache_examples=CACHE_EXAMPLES,
    )

    img2img_use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=img2img_use_negative_prompt,
        outputs=img2img_negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            img2img_prompt.submit,
            img2img_negative_prompt.submit,
            img2img_run_button.click,
        ],
        fn=img2img_generate,
        inputs=[
            img2img_prompt,
            init_image,
            img2img_negative_prompt,
            img2img_use_negative_prompt,
            img2img_seed,
            img2img_guidance_scale,
            img2img_randomize_seed,
            img2img_steps,
            strength,
            img2img_number_image,
        ],
        outputs=[img2img_output],
        api_name="image-to-image",
    )

    #gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards")

if __name__ == "__main__":
    demo.queue().launch(show_api=False, debug=False)