Spaces:
Sleeping
Sleeping
from ragatouille import RAGPretrainedModel | |
import subprocess | |
import json | |
import spaces | |
import firebase_admin | |
from firebase_admin import credentials, firestore | |
import logging | |
from pathlib import Path | |
from time import perf_counter | |
from datetime import datetime | |
import gradio as gr | |
from jinja2 import Environment, FileSystemLoader | |
import numpy as np | |
from sentence_transformers import CrossEncoder | |
from backend.query_llm import generate_hf, generate_openai | |
from backend.semantic_search import table, retriever | |
VECTOR_COLUMN_NAME = "vector" | |
TEXT_COLUMN_NAME = "text" | |
proj_dir = Path(__file__).parent | |
# Setting up the logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Set up the template environment with the templates directory | |
env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
# Load the templates directly from the environment | |
template = env.get_template('template.j2') | |
template_html = env.get_template('template_html.j2') | |
#___________________ | |
# service_account_key='firebase.json' | |
# # Create a Certificate object from the service account info | |
# cred = credentials.Certificate(service_account_key) | |
# # Initialize the Firebase Admin | |
# firebase_admin.initialize_app(cred) | |
# # # Create a reference to the Firestore database | |
# db = firestore.client() | |
# #db usage | |
# collection_name = 'Nirvachana' # Replace with your collection name | |
# field_name = 'message_count' # Replace with your field name for count | |
# Examples | |
examples = ['Tabulate the difference between veins and arteries','What are defects in Human eye?', | |
'Frame 5 short questions and 5 MCQ on Chapter 2 ','Suggest creative and engaging ideas to teach students on Chapter on Metals and Non Metals ' | |
] | |
# def get_and_increment_value_count(db , collection_name, field_name): | |
# """ | |
# Retrieves a value count from the specified Firestore collection and field, | |
# increments it by 1, and updates the field with the new value.""" | |
# collection_ref = db.collection(collection_name) | |
# doc_ref = collection_ref.document('count_doc') # Assuming a dedicated document for count | |
# # Use a transaction to ensure consistency across reads and writes | |
# try: | |
# with db.transaction() as transaction: | |
# # Get the current value count (or initialize to 0 if it doesn't exist) | |
# current_count_doc = doc_ref.get() | |
# current_count_data = current_count_doc.to_dict() | |
# if current_count_data: | |
# current_count = current_count_data.get(field_name, 0) | |
# else: | |
# current_count = 0 | |
# # Increment the count | |
# new_count = current_count + 1 | |
# # Update the document with the new count | |
# transaction.set(doc_ref, {field_name: new_count}) | |
# return new_count | |
# except Exception as e: | |
# print(f"Error retrieving and updating value count: {e}") | |
# return None # Indicate error | |
# def update_count_html(): | |
# usage_count = get_and_increment_value_count(db ,collection_name, field_name) | |
# ccount_html = gr.HTML(value=f""" | |
# <div style="display: flex; justify-content: flex-end;"> | |
# <span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span> | |
# <span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span> | |
# </div> | |
# """) | |
# return count_html | |
# def store_message(db,query,answer,cross_encoder): | |
# timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | |
# # Create a new document reference with a dynamic document name based on timestamp | |
# new_completion= db.collection('Nirvachana').document(f"chatlogs_{timestamp}") | |
# new_completion.set({ | |
# 'query': query, | |
# 'answer':answer, | |
# 'created_time': firestore.SERVER_TIMESTAMP, | |
# 'embedding': cross_encoder, | |
# 'title': 'Expenditure observer bot' | |
# }) | |
def add_text(history, text): | |
history = [] if history is None else history | |
history = history + [(text, None)] | |
return history, gr.Textbox(value="", interactive=False) | |
def bot(history, cross_encoder): | |
top_rerank = 15 | |
top_k_rank = 10 | |
query = history[-1][0] | |
if not query: | |
gr.Warning("Please submit a non-empty string as a prompt") | |
raise ValueError("Empty string was submitted") | |
logger.warning('Retrieving documents...') | |
# if COLBERT RAGATATOUILLE PROCEDURE : | |
if cross_encoder=='(HIGH ACCURATE) ColBERT': | |
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
documents_full=RAG_db.search(query,k=top_k_rank) | |
documents=[item['content'] for item in documents_full] | |
# Create Prompt | |
prompt = template.render(documents=documents, query=query) | |
prompt_html = template_html.render(documents=documents, query=query) | |
generate_fn = generate_hf | |
history[-1][1] = "" | |
for character in generate_fn(prompt, history[:-1]): | |
history[-1][1] = character | |
print('Final history is ',history) | |
yield history, prompt_html | |
#store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
else: | |
# Retrieve documents relevant to query | |
document_start = perf_counter() | |
query_vec = retriever.encode(query) | |
logger.warning(f'Finished query vec') | |
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) | |
logger.warning(f'Finished search') | |
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() | |
documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
logger.warning(f'start cross encoder {len(documents)}') | |
# Retrieve documents relevant to query | |
query_doc_pair = [[query, doc] for doc in documents] | |
if cross_encoder=='(FAST) MiniLM-L6v2' : | |
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
elif cross_encoder=='(ACCURATE) BGE reranker': | |
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') | |
cross_scores = cross_encoder1.predict(query_doc_pair) | |
sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
logger.warning(f'Finished cross encoder {len(documents)}') | |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
logger.warning(f'num documents {len(documents)}') | |
document_time = perf_counter() - document_start | |
logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') | |
# Create Prompt | |
prompt = template.render(documents=documents, query=query) | |
prompt_html = template_html.render(documents=documents, query=query) | |
generate_fn = generate_hf | |
history[-1][1] = "" | |
for character in generate_fn(prompt, history[:-1]): | |
history[-1][1] = character | |
print('Final history is ',history) | |
yield history, prompt_html | |
#store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
def system_instructions(question_difficulty, topic,document_str): | |
return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {document_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]""" | |
#with gr.Blocks(theme='Insuz/SimpleIndigo') as demo: | |
with gr.Blocks(theme='NoCrypt/miku') as CHATBOT: | |
with gr.Row(): | |
with gr.Column(scale=10): | |
# gr.Markdown( | |
# """ | |
# # Theme preview: `paris` | |
# To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`. | |
# You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version | |
# of this theme. | |
# """ | |
# ) | |
gr.HTML(value="""<div style="color: #FF4500;"><h1>CHEERFULL CBSE-</h1> <h1><span style="color: #008000">AI Assisted Fun Learning</span></h1> | |
</div>""", elem_id='heading') | |
gr.HTML(value=f""" | |
<p style="font-family: sans-serif; font-size: 16px;"> | |
A free Artificial Intelligence Chatbot assistant trained on CBSE Class 10 Science Notes to engage and help students and teachers of Puducherry. | |
</p> | |
""", elem_id='Sub-heading') | |
#usage_count = get_and_increment_value_count(db,collection_name, field_name) | |
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by K M Ramyasri , PGT . Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""", elem_id='Sub-heading1 ') | |
with gr.Column(scale=3): | |
gr.Image(value='logo.png',height=200,width=200) | |
# gr.HTML(value="""<div style="color: #FF4500;"><h1>CHEERFULL CBSE-</h1> <h1><span style="color: #008000">AI Assisted Fun Learning</span></h1> | |
# <img src='logo.png' alt="Chatbot" width="50" height="50" /> | |
# </div>""", elem_id='heading') | |
# gr.HTML(value=f""" | |
# <p style="font-family: sans-serif; font-size: 16px;"> | |
# A free Artificial Intelligence Chatbot assistant trained on CBSE Class 10 Science Notes to engage and help students and teachers of Puducherry. | |
# </p> | |
# """, elem_id='Sub-heading') | |
# #usage_count = get_and_increment_value_count(db,collection_name, field_name) | |
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 16px;">Developed by K M Ramyasri , PGT . Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""", elem_id='Sub-heading1 ') | |
# # count_html = gr.HTML(value=f""" | |
# # <div style="display: flex; justify-content: flex-end;"> | |
# # <span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span> | |
# # <span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span> | |
# # </div> | |
# # """) | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
bubble_full_width=False, | |
show_copy_button=True, | |
show_share_button=True, | |
) | |
with gr.Row(): | |
txt = gr.Textbox( | |
scale=3, | |
show_label=False, | |
placeholder="Enter text and press enter", | |
container=False, | |
) | |
txt_btn = gr.Button(value="Submit text", scale=1) | |
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)") | |
prompt_html = gr.HTML() | |
# Turn off interactivity while generating if you click | |
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) | |
# Turn it back on | |
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
# Turn off interactivity while generating if you hit enter | |
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) | |
# Turn it back on | |
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
# Examples | |
gr.Examples(examples, txt) | |
RAG_db=gr.State() | |
with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: | |
def load_model(): | |
RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
return 'Ready to Go!!' | |
with gr.Column(scale=4): | |
gr.HTML(""" | |
<center> | |
<h1><span style="color: purple;">AI NANBAN</span> - CBSE Class Quiz Maker</h1> | |
<h2>AI-powered Learning Game</h2> | |
<i>⚠️ Students create quiz from any topic /CBSE Chapter ! ⚠️</i> | |
</center> | |
""") | |
#gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
with gr.Column(scale=2): | |
load_btn = gr.Button("Click to Load!🚀") | |
load_text=gr.Textbox() | |
load_btn.click(load_model,[],load_text) | |
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic from CBSE notes") | |
with gr.Row(): | |
radio = gr.Radio( | |
["easy", "average", "hard"], label="How difficult should the quiz be?" | |
) | |
generate_quiz_btn = gr.Button("Generate Quiz!🚀") | |
quiz_msg=gr.Textbox() | |
question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( | |
visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( | |
visible=False), gr.Radio(visible=False), gr.Radio(visible=False)] | |
print(question_radios) | |
def generate_quiz(question_difficulty, topic, user_prompt): | |
top_k_rank=10 | |
RAG_db_=RAG_db.value | |
documents_full=RAG_db_.search(topic,k=top_k_rank) | |
documents=[item['content'] for item in documents_full] | |
document_summaries = [f"[DOCUMENT {i+1}]: {summary}" for i, summary in enumerate(documents)] | |
documents_str='\n'.join(document_summaries) | |
formatted_prompt = system_instructions( | |
question_difficulty, topic,document_str) | |
print(formatted_prompt) | |
pre_prompt = [ | |
{"role": "system", "content": formatted_prompt} | |
] | |
generate_kwargs = dict( | |
temperature=0.2, | |
max_new_tokens=4000, | |
top_p=0.95, | |
repetition_penalty=1.0, | |
do_sample=True, | |
seed=42, | |
) | |
while True: | |
try: | |
response = client.text_generation( | |
formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, | |
) | |
output_json = json.loads(f"{response}") | |
break | |
except Exception as e: | |
print(f"Exception occurred: {e}") | |
print("Trying again...please wait") | |
continue | |
response = client.text_generation( | |
formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, | |
) | |
print(response) | |
print('output json', output_json) | |
global quiz_data | |
quiz_data = output_json | |
question_radio_list = [] | |
for question_num in range(1, 11): | |
question_key = f"Q{question_num}" | |
answer_key = f"A{question_num}" | |
question = quiz_data.get(question_key) | |
answer = quiz_data.get(quiz_data.get(answer_key)) | |
if not question or not answer: | |
continue | |
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] | |
choice_list = [] | |
for choice_key in choice_keys: | |
choice = quiz_data.get(choice_key, "Choice not found") | |
choice_list.append(f"{choice}") | |
radio = gr.Radio(choices=choice_list, label=question, | |
visible=True, interactive=True) | |
question_radio_list.append(radio) | |
print('Question radio list ' , question_radio_list) | |
return 'Quiz Generated!', question_radio_list | |
check_button = gr.Button("Check Score") | |
score_textbox = gr.Markdown() | |
def compare_answers(*user_answers): | |
user_anwser_list = [] | |
user_anwser_list = user_answers | |
answers_list = [] | |
for question_num in range(1, 20): | |
answer_key = f"A{question_num}" | |
answer = quiz_data.get(quiz_data.get(answer_key)) | |
if not answer: | |
break | |
answers_list.append(answer) | |
score = 0 | |
for item in user_anwser_list: | |
if item in answers_list: | |
score += 1 | |
if score>5: | |
message = f"### Good ! You got {score} over 10!" | |
elif score>7: | |
message = f"### Excellent ! You got {score} over 10!" | |
else: | |
message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !" | |
return message | |
demo = gr.TabbedInterface([CHATBOT,QUIZBOT], ["AI ChatBot", "AI Nanban-Quizbot"]) | |
demo.queue() | |
demo.launch(debug=True) | |