from ragatouille import RAGPretrainedModel import subprocess import json import spaces import firebase_admin from firebase_admin import credentials, firestore import logging from pathlib import Path from time import perf_counter from datetime import datetime import gradio as gr from jinja2 import Environment, FileSystemLoader import numpy as np from sentence_transformers import CrossEncoder from backend.query_llm import generate_hf, generate_openai from backend.semantic_search import table, retriever VECTOR_COLUMN_NAME = "vector" TEXT_COLUMN_NAME = "text" proj_dir = Path(__file__).parent # Setting up the logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Set up the template environment with the templates directory env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) # Load the templates directly from the environment template = env.get_template('template.j2') template_html = env.get_template('template_html.j2') #___________________ # service_account_key='firebase.json' # # Create a Certificate object from the service account info # cred = credentials.Certificate(service_account_key) # # Initialize the Firebase Admin # firebase_admin.initialize_app(cred) # # # Create a reference to the Firestore database # db = firestore.client() # #db usage # collection_name = 'Nirvachana' # Replace with your collection name # field_name = 'message_count' # Replace with your field name for count # Examples examples = ['Tabulate the difference between veins and arteries','What are defects in Human eye?', 'Frame 5 short questions and 5 MCQ on Chapter 2 ','Suggest creative and engaging ideas to teach students on Chapter on Metals and Non Metals ' ] # def get_and_increment_value_count(db , collection_name, field_name): # """ # Retrieves a value count from the specified Firestore collection and field, # increments it by 1, and updates the field with the new value.""" # collection_ref = db.collection(collection_name) # doc_ref = collection_ref.document('count_doc') # Assuming a dedicated document for count # # Use a transaction to ensure consistency across reads and writes # try: # with db.transaction() as transaction: # # Get the current value count (or initialize to 0 if it doesn't exist) # current_count_doc = doc_ref.get() # current_count_data = current_count_doc.to_dict() # if current_count_data: # current_count = current_count_data.get(field_name, 0) # else: # current_count = 0 # # Increment the count # new_count = current_count + 1 # # Update the document with the new count # transaction.set(doc_ref, {field_name: new_count}) # return new_count # except Exception as e: # print(f"Error retrieving and updating value count: {e}") # return None # Indicate error # def update_count_html(): # usage_count = get_and_increment_value_count(db ,collection_name, field_name) # ccount_html = gr.HTML(value=f""" #
# No of Usages: # {usage_count} #
# """) # return count_html # def store_message(db,query,answer,cross_encoder): # timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # # Create a new document reference with a dynamic document name based on timestamp # new_completion= db.collection('Nirvachana').document(f"chatlogs_{timestamp}") # new_completion.set({ # 'query': query, # 'answer':answer, # 'created_time': firestore.SERVER_TIMESTAMP, # 'embedding': cross_encoder, # 'title': 'Expenditure observer bot' # }) def add_text(history, text): history = [] if history is None else history history = history + [(text, None)] return history, gr.Textbox(value="", interactive=False) def bot(history, cross_encoder): top_rerank = 15 top_k_rank = 10 query = history[-1][0] if not query: gr.Warning("Please submit a non-empty string as a prompt") raise ValueError("Empty string was submitted") logger.warning('Retrieving documents...') # if COLBERT RAGATATOUILLE PROCEDURE : if cross_encoder=='(HIGH ACCURATE) ColBERT': gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') documents_full=RAG_db.search(query,k=top_k_rank) documents=[item['content'] for item in documents_full] # Create Prompt prompt = template.render(documents=documents, query=query) prompt_html = template_html.render(documents=documents, query=query) generate_fn = generate_hf history[-1][1] = "" for character in generate_fn(prompt, history[:-1]): history[-1][1] = character print('Final history is ',history) yield history, prompt_html #store_message(db,history[-1][0],history[-1][1],cross_encoder) else: # Retrieve documents relevant to query document_start = perf_counter() query_vec = retriever.encode(query) logger.warning(f'Finished query vec') doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) logger.warning(f'Finished search') documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() documents = [doc[TEXT_COLUMN_NAME] for doc in documents] logger.warning(f'start cross encoder {len(documents)}') # Retrieve documents relevant to query query_doc_pair = [[query, doc] for doc in documents] if cross_encoder=='(FAST) MiniLM-L6v2' : cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') elif cross_encoder=='(ACCURATE) BGE reranker': cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') cross_scores = cross_encoder1.predict(query_doc_pair) sim_scores_argsort = list(reversed(np.argsort(cross_scores))) logger.warning(f'Finished cross encoder {len(documents)}') documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] logger.warning(f'num documents {len(documents)}') document_time = perf_counter() - document_start logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') # Create Prompt prompt = template.render(documents=documents, query=query) prompt_html = template_html.render(documents=documents, query=query) generate_fn = generate_hf history[-1][1] = "" for character in generate_fn(prompt, history[:-1]): history[-1][1] = character print('Final history is ',history) yield history, prompt_html #store_message(db,history[-1][0],history[-1][1],cross_encoder) def system_instructions(question_difficulty, topic,document_str): return f""" [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {document_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]""" #with gr.Blocks(theme='Insuz/SimpleIndigo') as demo: with gr.Blocks(theme='NoCrypt/miku') as CHATBOT: with gr.Row(): with gr.Column(scale=10): # gr.Markdown( # """ # # Theme preview: `paris` # To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`. # You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version # of this theme. # """ # ) gr.HTML(value="""

CHEERFULL CBSE-

AI Assisted Fun Learning

""", elem_id='heading') gr.HTML(value=f"""

A free Artificial Intelligence Chatbot assistant trained on CBSE Class 10 Science Notes to engage and help students and teachers of Puducherry.

""", elem_id='Sub-heading') #usage_count = get_and_increment_value_count(db,collection_name, field_name) gr.HTML(value=f"""

Developed by K M Ramyasri , PGT . Suggestions may be sent to mramesh.irs@gov.in.

""", elem_id='Sub-heading1 ') with gr.Column(scale=3): gr.Image(value='logo.png',height=200,width=200) # gr.HTML(value="""

CHEERFULL CBSE-

AI Assisted Fun Learning

# Chatbot #
""", elem_id='heading') # gr.HTML(value=f""" #

# A free Artificial Intelligence Chatbot assistant trained on CBSE Class 10 Science Notes to engage and help students and teachers of Puducherry. #

# """, elem_id='Sub-heading') # #usage_count = get_and_increment_value_count(db,collection_name, field_name) # gr.HTML(value=f"""

Developed by K M Ramyasri , PGT . Suggestions may be sent to mramesh.irs@gov.in.

""", elem_id='Sub-heading1 ') # # count_html = gr.HTML(value=f""" # #
# # No of Usages: # # {usage_count} # #
# # """) chatbot = gr.Chatbot( [], elem_id="chatbot", avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), bubble_full_width=False, show_copy_button=True, show_share_button=True, ) with gr.Row(): txt = gr.Textbox( scale=3, show_label=False, placeholder="Enter text and press enter", container=False, ) txt_btn = gr.Button(value="Submit text", scale=1) cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)") prompt_html = gr.HTML() # Turn off interactivity while generating if you click txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) # Turn it back on txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) # Turn off interactivity while generating if you hit enter txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) # Turn it back on txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) # Examples gr.Examples(examples, txt) RAG_db=gr.State() with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: def load_model(): RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') return 'Ready to Go!!' with gr.Column(scale=4): gr.HTML("""

AI NANBAN - CBSE Class Quiz Maker

AI-powered Learning Game

⚠️ Students create quiz from any topic /CBSE Chapter ! ⚠️
""") #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') with gr.Column(scale=2): load_btn = gr.Button("Click to Load!🚀") load_text=gr.Textbox() load_btn.click(load_model,[],load_text) topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic from CBSE notes") with gr.Row(): radio = gr.Radio( ["easy", "average", "hard"], label="How difficult should the quiz be?" ) generate_quiz_btn = gr.Button("Generate Quiz!🚀") quiz_msg=gr.Textbox() question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( visible=False), gr.Radio(visible=False), gr.Radio(visible=False)] print(question_radios) @spaces.GPU @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg,question_radios], api_name="generate_quiz") def generate_quiz(question_difficulty, topic, user_prompt): top_k_rank=10 RAG_db_=RAG_db.value documents_full=RAG_db_.search(topic,k=top_k_rank) documents=[item['content'] for item in documents_full] document_summaries = [f"[DOCUMENT {i+1}]: {summary}" for i, summary in enumerate(documents)] documents_str='\n'.join(document_summaries) formatted_prompt = system_instructions( question_difficulty, topic,document_str) print(formatted_prompt) pre_prompt = [ {"role": "system", "content": formatted_prompt} ] generate_kwargs = dict( temperature=0.2, max_new_tokens=4000, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=42, ) while True: try: response = client.text_generation( formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, ) output_json = json.loads(f"{response}") break except Exception as e: print(f"Exception occurred: {e}") print("Trying again...please wait") continue response = client.text_generation( formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, ) print(response) print('output json', output_json) global quiz_data quiz_data = output_json question_radio_list = [] for question_num in range(1, 11): question_key = f"Q{question_num}" answer_key = f"A{question_num}" question = quiz_data.get(question_key) answer = quiz_data.get(quiz_data.get(answer_key)) if not question or not answer: continue choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] choice_list = [] for choice_key in choice_keys: choice = quiz_data.get(choice_key, "Choice not found") choice_list.append(f"{choice}") radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) question_radio_list.append(radio) print('Question radio list ' , question_radio_list) return 'Quiz Generated!', question_radio_list check_button = gr.Button("Check Score") score_textbox = gr.Markdown() @check_button.click(inputs=question_radios, outputs=score_textbox) def compare_answers(*user_answers): user_anwser_list = [] user_anwser_list = user_answers answers_list = [] for question_num in range(1, 20): answer_key = f"A{question_num}" answer = quiz_data.get(quiz_data.get(answer_key)) if not answer: break answers_list.append(answer) score = 0 for item in user_anwser_list: if item in answers_list: score += 1 if score>5: message = f"### Good ! You got {score} over 10!" elif score>7: message = f"### Excellent ! You got {score} over 10!" else: message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !" return message demo = gr.TabbedInterface([CHATBOT,QUIZBOT], ["AI ChatBot", "AI Nanban-Quizbot"]) demo.queue() demo.launch(debug=True)