schuldt-ogre
Update schema
be8150a
raw
history blame
13.6 kB
import gradio as gr
import requests
from typing import List
# Define the COLUMN_MIN_MAX as provided
COLUMN_MIN_MAX = {
"Age": (18, 100),
"Blood_Glucose_Level": (0, 3),
"Blood_Pressure_Systolic": (0, 3),
"Blood_Pressure_Diastolic": (0, 3),
"BMI": (0, 3),
"Condition_Severity": (0, 3),
"Gender": (0, 2),
"Ethnicity": (0, 5),
"Geographic_Location": (0, 6),
"Smoking_Status": (0, 2),
"Diagnoses_ICD10": (0, 5),
"Medications": (0, 7),
"Allergies": (0, 5),
"Previous_Treatments": (0, 5),
"Alcohol_Consumption": (0, 3),
"Exercise_Habits": (0, 4),
"Diet": (0, 5),
"Functional_Status": (0, 2),
"Previous_Trial_Participation": (0, 1),
}
# Define possible categories for fields without predefined categories
additional_categories = {
"Gender": ["Male", "Female", "Other"],
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"],
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"],
"Smoking_Status": ["Never", "Former", "Current"],
"Diagnoses_ICD10": ["E11.9", "I10", "J45.909", "M54.5", "F32.9", "K21.9"],
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"],
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"],
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"],
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"],
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"],
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"],
"Functional_Status": ["Independent", "Assisted", "Dependent"],
"Previous_Trial_Participation": ["Yes", "No"]
}
# Define the input components for the researcher form with constraints
min_age_input = gr.Number(label="Minimum Age", value=18, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1])
max_age_input = gr.Number(label="Maximum Age", value=100, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1])
gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender")
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity")
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location")
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Diagnoses (ICD-10)")
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications")
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies")
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments")
min_blood_glucose_level_input = gr.Number(label="Minimum Blood Glucose Level", value=0, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])
max_blood_glucose_level_input = gr.Number(label="Maximum Blood Glucose Level", value=3, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])
min_blood_pressure_systolic_input = gr.Number(label="Minimum Blood Pressure (Systolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])
max_blood_pressure_systolic_input = gr.Number(label="Maximum Blood Pressure (Systolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])
min_blood_pressure_diastolic_input = gr.Number(label="Minimum Blood Pressure (Diastolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])
max_blood_pressure_diastolic_input = gr.Number(label="Maximum Blood Pressure (Diastolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])
min_bmi_input = gr.Number(label="Minimum BMI", value=0, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])
max_bmi_input = gr.Number(label="Maximum BMI", value=3, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])
smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status")
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption")
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits")
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet")
min_condition_severity_input = gr.Number(label="Minimum Condition Severity", value=0, minimum=COLUMN_MIN_MAX["Condition_Severity"][0], maximum=COLUMN_MIN_MAX["Condition_Severity"][1])
max_condition_severity_input = gr.Number(label="Maximum Condition Severity", value=3, minimum=COLUMN_MIN_MAX["Condition_Severity"][0], maximum=COLUMN_MIN_MAX["Condition_Severity"][1])
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status")
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation")
# Define the server's URL
SERVER_URL = "http://127.0.0.1:7860/api/predict" # Ensure this is the correct endpoint
def encode_categorical_data(data: List[str], category_name: str) -> List[int]:
"""Encodes a list of categorical values into their corresponding indices based on additional_categories."""
sub_cats = additional_categories.get(category_name, [])
encoded_data = []
for value in data:
if value in sub_cats:
encoded_index = sub_cats.index(value)
# Validate that the encoded index is within the specified range
min_val, max_val = COLUMN_MIN_MAX.get(category_name, (0, len(sub_cats)-1))
if min_val <= encoded_index <= max_val:
encoded_data.append(encoded_index)
else:
print(f"Encoded value for {category_name}='{value}' is out of range. Setting to 0.")
encoded_data.append(0)
else:
print(f"Value '{value}' not recognized in category '{category_name}'. Setting to 0.")
encoded_data.append(0)
return encoded_data
def process_researcher_data(
min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments,
min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic,
min_blood_pressure_diastolic, max_blood_pressure_diastolic, min_bmi, max_bmi, smoking_status, alcohol_consumption,
exercise_habits, diet, min_condition_severity, max_condition_severity, functional_status, previous_trial_participation
):
# Encode categorical data
encoded_gender = encode_categorical_data(gender, "Gender")
encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity")
encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location")
encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10")
encoded_medications = encode_categorical_data(medications, "Medications")
encoded_allergies = encode_categorical_data(allergies, "Allergies")
encoded_previous_treatments = encode_categorical_data(previous_treatments, "Previous_Treatments")
encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status")
encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption")
encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits")
encoded_diet = encode_categorical_data(diet, "Diet")
encoded_functional_status = encode_categorical_data(functional_status, "Functional_Status")
encoded_previous_trial_participation = encode_categorical_data(previous_trial_participation, "Previous_Trial_Participation")
# Create a list of requirements
requirements = []
# Add numerical requirements
numerical_fields = [
("Age", min_age, "greater_than"),
("Age", max_age, "less_than"),
("Blood_Glucose_Level", min_blood_glucose_level, "greater_than"),
("Blood_Glucose_Level", max_blood_glucose_level, "less_than"),
("Blood_Pressure_Systolic", min_blood_pressure_systolic, "greater_than"),
("Blood_Pressure_Systolic", max_blood_pressure_systolic, "less_than"),
("Blood_Pressure_Diastolic", min_blood_pressure_diastolic, "greater_than"),
("Blood_Pressure_Diastolic", max_blood_pressure_diastolic, "less_than"),
("BMI", min_bmi, "greater_than"),
("BMI", max_bmi, "less_than"),
("Condition_Severity", min_condition_severity, "greater_than"),
("Condition_Severity", max_condition_severity, "less_than"),
]
for field, value, comparison in numerical_fields:
if value is not None:
# Ensure the value is within the specified range
min_val, max_val = COLUMN_MIN_MAX.get(field, (None, None))
if min_val is not None and max_val is not None:
if not (min_val <= value <= max_val):
print(f"Value for {field}={value} is out of range ({min_val}, {max_val}). Adjusting to fit within range.")
value = max(min(value, max_val), min_val)
requirements.append({
"column_name": field,
"value": value,
"comparison_type": comparison
})
# Add categorical requirements
categorical_fields = [
("Gender", encoded_gender, "equal"),
("Ethnicity", encoded_ethnicity, "equal"),
("Geographic_Location", encoded_geographic_location, "equal"),
("Diagnoses_ICD10", encoded_diagnoses_icd10, "equal"),
("Medications", encoded_medications, "equal"),
("Allergies", encoded_allergies, "equal"),
("Previous_Treatments", encoded_previous_treatments, "equal"),
("Smoking_Status", encoded_smoking_status, "equal"),
("Alcohol_Consumption", encoded_alcohol_consumption, "equal"),
("Exercise_Habits", encoded_exercise_habits, "equal"),
("Diet", encoded_diet, "equal"),
("Functional_Status", encoded_functional_status, "equal"),
("Previous_Trial_Participation", encoded_previous_trial_participation, "equal"),
]
for field, encoded_values, comparison in categorical_fields:
min_val, max_val = COLUMN_MIN_MAX.get(field, (0, len(additional_categories[field])-1))
for encoded in encoded_values:
if min_val <= encoded <= max_val:
requirements.append({
"column_name": field,
"value": encoded,
"comparison_type": comparison
})
else:
print(f"Encoded value {encoded} for {field} is out of range ({min_val}, {max_val}). Skipping.")
# Encode and add non-categorical fields like medications, allergies, previous treatments
# Already handled above in categorical_fields
# Construct the payload as a regular dictionary
payload = {
"model_name": "fhe_model_v1",
"requirements": requirements
}
print("Payload to send:", payload) # For debugging
# Make the request to the server
try:
res = requests.post(SERVER_URL, json=payload)
res.raise_for_status() # Raise an error for bad status codes
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}") # For debugging
return f"HTTP error occurred: {http_err}"
except Exception as err:
print(f"Other error occurred: {err}") # For debugging
return f"Other error occurred: {err}"
# Get the response from the server
try:
response = res.json()
print("Server response:", response)
except ValueError:
print("Response is not in JSON format.")
return "Response is not in JSON format."
return response.get("message", "No message received from server")
# Create the Gradio interface for researchers
researcher_demo = gr.Interface(
fn=process_researcher_data,
inputs=[
min_age_input, max_age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input,
medications_input, allergies_input, previous_treatments_input, min_blood_glucose_level_input,
max_blood_glucose_level_input, min_blood_pressure_systolic_input, max_blood_pressure_systolic_input,
min_blood_pressure_diastolic_input, max_blood_pressure_diastolic_input, min_bmi_input, max_bmi_input,
smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input,
min_condition_severity_input, max_condition_severity_input, functional_status_input, previous_trial_participation_input
],
outputs="text",
title="Clinical Researcher Criteria Form",
description="Please enter the criteria for the type of patients you are looking for."
)
# Launch the researcher interface with a public link
if __name__ == "__main__":
researcher_demo.launch(share=True)