Spaces:
Building
on
CPU Upgrade
Building
on
CPU Upgrade
import gradio as gr | |
import requests | |
from typing import List | |
# Define the COLUMN_MIN_MAX as provided | |
COLUMN_MIN_MAX = { | |
"Age": (18, 100), | |
"Blood_Glucose_Level": (0, 3), | |
"Blood_Pressure_Systolic": (0, 3), | |
"Blood_Pressure_Diastolic": (0, 3), | |
"BMI": (0, 3), | |
"Condition_Severity": (0, 3), | |
"Gender": (0, 2), | |
"Ethnicity": (0, 5), | |
"Geographic_Location": (0, 6), | |
"Smoking_Status": (0, 2), | |
"Diagnoses_ICD10": (0, 5), | |
"Medications": (0, 7), | |
"Allergies": (0, 5), | |
"Previous_Treatments": (0, 5), | |
"Alcohol_Consumption": (0, 3), | |
"Exercise_Habits": (0, 4), | |
"Diet": (0, 5), | |
"Functional_Status": (0, 2), | |
"Previous_Trial_Participation": (0, 1), | |
} | |
# Define possible categories for fields without predefined categories | |
additional_categories = { | |
"Gender": ["Male", "Female", "Other"], | |
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"], | |
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"], | |
"Smoking_Status": ["Never", "Former", "Current"], | |
"Diagnoses_ICD10": ["E11.9", "I10", "J45.909", "M54.5", "F32.9", "K21.9"], | |
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"], | |
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"], | |
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"], | |
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"], | |
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"], | |
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"], | |
"Functional_Status": ["Independent", "Assisted", "Dependent"], | |
"Previous_Trial_Participation": ["Yes", "No"] | |
} | |
# Define the input components for the researcher form with constraints | |
min_age_input = gr.Number(label="Minimum Age", value=18, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1]) | |
max_age_input = gr.Number(label="Maximum Age", value=100, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1]) | |
gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender") | |
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity") | |
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location") | |
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Diagnoses (ICD-10)") | |
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications") | |
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies") | |
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments") | |
min_blood_glucose_level_input = gr.Number(label="Minimum Blood Glucose Level", value=0, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1]) | |
max_blood_glucose_level_input = gr.Number(label="Maximum Blood Glucose Level", value=3, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1]) | |
min_blood_pressure_systolic_input = gr.Number(label="Minimum Blood Pressure (Systolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1]) | |
max_blood_pressure_systolic_input = gr.Number(label="Maximum Blood Pressure (Systolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1]) | |
min_blood_pressure_diastolic_input = gr.Number(label="Minimum Blood Pressure (Diastolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1]) | |
max_blood_pressure_diastolic_input = gr.Number(label="Maximum Blood Pressure (Diastolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1]) | |
min_bmi_input = gr.Number(label="Minimum BMI", value=0, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1]) | |
max_bmi_input = gr.Number(label="Maximum BMI", value=3, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1]) | |
smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status") | |
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption") | |
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits") | |
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet") | |
min_condition_severity_input = gr.Number(label="Minimum Condition Severity", value=0, minimum=COLUMN_MIN_MAX["Condition_Severity"][0], maximum=COLUMN_MIN_MAX["Condition_Severity"][1]) | |
max_condition_severity_input = gr.Number(label="Maximum Condition Severity", value=3, minimum=COLUMN_MIN_MAX["Condition_Severity"][0], maximum=COLUMN_MIN_MAX["Condition_Severity"][1]) | |
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status") | |
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation") | |
# Define the server's URL | |
SERVER_URL = "http://127.0.0.1:7860/api/predict" # Ensure this is the correct endpoint | |
def encode_categorical_data(data: List[str], category_name: str) -> List[int]: | |
"""Encodes a list of categorical values into their corresponding indices based on additional_categories.""" | |
sub_cats = additional_categories.get(category_name, []) | |
encoded_data = [] | |
for value in data: | |
if value in sub_cats: | |
encoded_index = sub_cats.index(value) | |
# Validate that the encoded index is within the specified range | |
min_val, max_val = COLUMN_MIN_MAX.get(category_name, (0, len(sub_cats)-1)) | |
if min_val <= encoded_index <= max_val: | |
encoded_data.append(encoded_index) | |
else: | |
print(f"Encoded value for {category_name}='{value}' is out of range. Setting to 0.") | |
encoded_data.append(0) | |
else: | |
print(f"Value '{value}' not recognized in category '{category_name}'. Setting to 0.") | |
encoded_data.append(0) | |
return encoded_data | |
def process_researcher_data( | |
min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, | |
min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic, | |
min_blood_pressure_diastolic, max_blood_pressure_diastolic, min_bmi, max_bmi, smoking_status, alcohol_consumption, | |
exercise_habits, diet, min_condition_severity, max_condition_severity, functional_status, previous_trial_participation | |
): | |
# Encode categorical data | |
encoded_gender = encode_categorical_data(gender, "Gender") | |
encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity") | |
encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location") | |
encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10") | |
encoded_medications = encode_categorical_data(medications, "Medications") | |
encoded_allergies = encode_categorical_data(allergies, "Allergies") | |
encoded_previous_treatments = encode_categorical_data(previous_treatments, "Previous_Treatments") | |
encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status") | |
encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption") | |
encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits") | |
encoded_diet = encode_categorical_data(diet, "Diet") | |
encoded_functional_status = encode_categorical_data(functional_status, "Functional_Status") | |
encoded_previous_trial_participation = encode_categorical_data(previous_trial_participation, "Previous_Trial_Participation") | |
# Create a list of requirements | |
requirements = [] | |
# Add numerical requirements | |
numerical_fields = [ | |
("Age", min_age, "greater_than"), | |
("Age", max_age, "less_than"), | |
("Blood_Glucose_Level", min_blood_glucose_level, "greater_than"), | |
("Blood_Glucose_Level", max_blood_glucose_level, "less_than"), | |
("Blood_Pressure_Systolic", min_blood_pressure_systolic, "greater_than"), | |
("Blood_Pressure_Systolic", max_blood_pressure_systolic, "less_than"), | |
("Blood_Pressure_Diastolic", min_blood_pressure_diastolic, "greater_than"), | |
("Blood_Pressure_Diastolic", max_blood_pressure_diastolic, "less_than"), | |
("BMI", min_bmi, "greater_than"), | |
("BMI", max_bmi, "less_than"), | |
("Condition_Severity", min_condition_severity, "greater_than"), | |
("Condition_Severity", max_condition_severity, "less_than"), | |
] | |
for field, value, comparison in numerical_fields: | |
if value is not None: | |
# Ensure the value is within the specified range | |
min_val, max_val = COLUMN_MIN_MAX.get(field, (None, None)) | |
if min_val is not None and max_val is not None: | |
if not (min_val <= value <= max_val): | |
print(f"Value for {field}={value} is out of range ({min_val}, {max_val}). Adjusting to fit within range.") | |
value = max(min(value, max_val), min_val) | |
requirements.append({ | |
"column_name": field, | |
"value": value, | |
"comparison_type": comparison | |
}) | |
# Add categorical requirements | |
categorical_fields = [ | |
("Gender", encoded_gender, "equal"), | |
("Ethnicity", encoded_ethnicity, "equal"), | |
("Geographic_Location", encoded_geographic_location, "equal"), | |
("Diagnoses_ICD10", encoded_diagnoses_icd10, "equal"), | |
("Medications", encoded_medications, "equal"), | |
("Allergies", encoded_allergies, "equal"), | |
("Previous_Treatments", encoded_previous_treatments, "equal"), | |
("Smoking_Status", encoded_smoking_status, "equal"), | |
("Alcohol_Consumption", encoded_alcohol_consumption, "equal"), | |
("Exercise_Habits", encoded_exercise_habits, "equal"), | |
("Diet", encoded_diet, "equal"), | |
("Functional_Status", encoded_functional_status, "equal"), | |
("Previous_Trial_Participation", encoded_previous_trial_participation, "equal"), | |
] | |
for field, encoded_values, comparison in categorical_fields: | |
min_val, max_val = COLUMN_MIN_MAX.get(field, (0, len(additional_categories[field])-1)) | |
for encoded in encoded_values: | |
if min_val <= encoded <= max_val: | |
requirements.append({ | |
"column_name": field, | |
"value": encoded, | |
"comparison_type": comparison | |
}) | |
else: | |
print(f"Encoded value {encoded} for {field} is out of range ({min_val}, {max_val}). Skipping.") | |
# Encode and add non-categorical fields like medications, allergies, previous treatments | |
# Already handled above in categorical_fields | |
# Construct the payload as a regular dictionary | |
payload = { | |
"model_name": "fhe_model_v1", | |
"requirements": requirements | |
} | |
print("Payload to send:", payload) # For debugging | |
# Make the request to the server | |
try: | |
res = requests.post(SERVER_URL, json=payload) | |
res.raise_for_status() # Raise an error for bad status codes | |
except requests.exceptions.HTTPError as http_err: | |
print(f"HTTP error occurred: {http_err}") # For debugging | |
return f"HTTP error occurred: {http_err}" | |
except Exception as err: | |
print(f"Other error occurred: {err}") # For debugging | |
return f"Other error occurred: {err}" | |
# Get the response from the server | |
try: | |
response = res.json() | |
print("Server response:", response) | |
except ValueError: | |
print("Response is not in JSON format.") | |
return "Response is not in JSON format." | |
return response.get("message", "No message received from server") | |
# Create the Gradio interface for researchers | |
researcher_demo = gr.Interface( | |
fn=process_researcher_data, | |
inputs=[ | |
min_age_input, max_age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, | |
medications_input, allergies_input, previous_treatments_input, min_blood_glucose_level_input, | |
max_blood_glucose_level_input, min_blood_pressure_systolic_input, max_blood_pressure_systolic_input, | |
min_blood_pressure_diastolic_input, max_blood_pressure_diastolic_input, min_bmi_input, max_bmi_input, | |
smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, | |
min_condition_severity_input, max_condition_severity_input, functional_status_input, previous_trial_participation_input | |
], | |
outputs="text", | |
title="Clinical Researcher Criteria Form", | |
description="Please enter the criteria for the type of patients you are looking for." | |
) | |
# Launch the researcher interface with a public link | |
if __name__ == "__main__": | |
researcher_demo.launch(share=True) | |