Spaces:
Building
on
CPU Upgrade
Building
on
CPU Upgrade
schuldt-ogre
commited on
Commit
•
be8150a
1
Parent(s):
67244f5
Update schema
Browse files
app.py
CHANGED
@@ -1,12 +1,30 @@
|
|
1 |
-
from concrete.ml.deployment import FHEModelClient
|
2 |
-
from pathlib import Path
|
3 |
-
import numpy as np
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
-
import json
|
7 |
-
|
8 |
from typing import List
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Define possible categories for fields without predefined categories
|
11 |
additional_categories = {
|
12 |
"Gender": ["Male", "Female", "Other"],
|
@@ -24,9 +42,10 @@ additional_categories = {
|
|
24 |
"Previous_Trial_Participation": ["Yes", "No"]
|
25 |
}
|
26 |
|
27 |
-
# Define the input components for the researcher form
|
28 |
-
min_age_input = gr.Number(label="Minimum Age", value=18)
|
29 |
-
max_age_input = gr.Number(label="Maximum Age", value=100)
|
|
|
30 |
gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender")
|
31 |
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity")
|
32 |
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location")
|
@@ -34,23 +53,32 @@ diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnose
|
|
34 |
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications")
|
35 |
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies")
|
36 |
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments")
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status")
|
46 |
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption")
|
47 |
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits")
|
48 |
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet")
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status")
|
52 |
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation")
|
53 |
|
|
|
|
|
54 |
|
55 |
def encode_categorical_data(data: List[str], category_name: str) -> List[int]:
|
56 |
"""Encodes a list of categorical values into their corresponding indices based on additional_categories."""
|
@@ -58,12 +86,19 @@ def encode_categorical_data(data: List[str], category_name: str) -> List[int]:
|
|
58 |
encoded_data = []
|
59 |
for value in data:
|
60 |
if value in sub_cats:
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
else:
|
63 |
-
|
|
|
64 |
return encoded_data
|
65 |
|
66 |
-
|
67 |
def process_researcher_data(
|
68 |
min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments,
|
69 |
min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic,
|
@@ -75,6 +110,9 @@ def process_researcher_data(
|
|
75 |
encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity")
|
76 |
encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location")
|
77 |
encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10")
|
|
|
|
|
|
|
78 |
encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status")
|
79 |
encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption")
|
80 |
encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits")
|
@@ -86,195 +124,66 @@ def process_researcher_data(
|
|
86 |
requirements = []
|
87 |
|
88 |
# Add numerical requirements
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
"comparison_type": "less_than"
|
113 |
-
})
|
114 |
-
|
115 |
-
if min_blood_pressure_systolic is not None:
|
116 |
-
requirements.append({
|
117 |
-
"column_name": "Blood_Pressure_Systolic",
|
118 |
-
"value": int(min_blood_pressure_systolic),
|
119 |
-
"comparison_type": "greater_than"
|
120 |
-
})
|
121 |
-
if max_blood_pressure_systolic is not None:
|
122 |
-
requirements.append({
|
123 |
-
"column_name": "Blood_Pressure_Systolic",
|
124 |
-
"value": int(max_blood_pressure_systolic),
|
125 |
-
"comparison_type": "less_than"
|
126 |
-
})
|
127 |
-
|
128 |
-
if min_blood_pressure_diastolic is not None:
|
129 |
-
requirements.append({
|
130 |
-
"column_name": "Blood_Pressure_Diastolic",
|
131 |
-
"value": int(min_blood_pressure_diastolic),
|
132 |
-
"comparison_type": "greater_than"
|
133 |
-
})
|
134 |
-
if max_blood_pressure_diastolic is not None:
|
135 |
-
requirements.append({
|
136 |
-
"column_name": "Blood_Pressure_Diastolic",
|
137 |
-
"value": int(max_blood_pressure_diastolic),
|
138 |
-
"comparison_type": "less_than"
|
139 |
-
})
|
140 |
-
|
141 |
-
if min_bmi is not None:
|
142 |
-
requirements.append({
|
143 |
-
"column_name": "BMI",
|
144 |
-
"value": float(min_bmi),
|
145 |
-
"comparison_type": "greater_than"
|
146 |
-
})
|
147 |
-
if max_bmi is not None:
|
148 |
-
requirements.append({
|
149 |
-
"column_name": "BMI",
|
150 |
-
"value": float(max_bmi),
|
151 |
-
"comparison_type": "less_than"
|
152 |
-
})
|
153 |
-
|
154 |
-
if min_condition_severity is not None:
|
155 |
-
requirements.append({
|
156 |
-
"column_name": "Condition_Severity",
|
157 |
-
"value": int(min_condition_severity),
|
158 |
-
"comparison_type": "greater_than"
|
159 |
-
})
|
160 |
-
if max_condition_severity is not None:
|
161 |
-
requirements.append({
|
162 |
-
"column_name": "Condition_Severity",
|
163 |
-
"value": int(max_condition_severity),
|
164 |
-
"comparison_type": "less_than"
|
165 |
-
})
|
166 |
-
|
167 |
-
# Add categorical requirements
|
168 |
-
for gender_value in encoded_gender:
|
169 |
-
if gender_value > 0:
|
170 |
-
requirements.append({
|
171 |
-
"column_name": "Gender",
|
172 |
-
"value": gender_value,
|
173 |
-
"comparison_type": "equal"
|
174 |
-
})
|
175 |
-
|
176 |
-
for ethnicity_value in encoded_ethnicity:
|
177 |
-
if ethnicity_value > 0:
|
178 |
requirements.append({
|
179 |
-
"column_name":
|
180 |
-
"value":
|
181 |
-
"comparison_type":
|
182 |
})
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
"comparison_type": "equal"
|
206 |
-
})
|
207 |
-
|
208 |
-
for alcohol_value in encoded_alcohol_consumption:
|
209 |
-
if alcohol_value > 0:
|
210 |
-
requirements.append({
|
211 |
-
"column_name": "Alcohol_Consumption",
|
212 |
-
"value": alcohol_value,
|
213 |
-
"comparison_type": "equal"
|
214 |
-
})
|
215 |
-
|
216 |
-
for exercise_value in encoded_exercise_habits:
|
217 |
-
if exercise_value > 0:
|
218 |
-
requirements.append({
|
219 |
-
"column_name": "Exercise_Habits",
|
220 |
-
"value": exercise_value,
|
221 |
-
"comparison_type": "equal"
|
222 |
-
})
|
223 |
-
|
224 |
-
for diet_value in encoded_diet:
|
225 |
-
if diet_value > 0:
|
226 |
-
requirements.append({
|
227 |
-
"column_name": "Diet",
|
228 |
-
"value": diet_value,
|
229 |
-
"comparison_type": "equal"
|
230 |
-
})
|
231 |
-
|
232 |
-
for status in encoded_functional_status:
|
233 |
-
if status > 0:
|
234 |
-
requirements.append({
|
235 |
-
"column_name": "Functional_Status",
|
236 |
-
"value": status,
|
237 |
-
"comparison_type": "equal"
|
238 |
-
})
|
239 |
-
|
240 |
-
for participation in encoded_previous_trial_participation:
|
241 |
-
if participation > 0:
|
242 |
-
requirements.append({
|
243 |
-
"column_name": "Previous_Trial_Participation",
|
244 |
-
"value": participation,
|
245 |
-
"comparison_type": "equal"
|
246 |
-
})
|
247 |
-
|
248 |
-
# Encode and add non-categorical fields like medications, allergies, previous treatments
|
249 |
-
for medication in medications:
|
250 |
-
encoded_medications = encode_categorical_data([medication], "Medications")
|
251 |
-
for med_value in encoded_medications:
|
252 |
-
if med_value > 0:
|
253 |
-
requirements.append({
|
254 |
-
"column_name": "Medications",
|
255 |
-
"value": med_value,
|
256 |
-
"comparison_type": "equal"
|
257 |
-
})
|
258 |
-
|
259 |
-
for allergy in allergies:
|
260 |
-
encoded_allergies = encode_categorical_data([allergy], "Allergies")
|
261 |
-
for allergy_value in encoded_allergies:
|
262 |
-
if allergy_value > 0:
|
263 |
requirements.append({
|
264 |
-
"column_name":
|
265 |
-
"value":
|
266 |
-
"comparison_type":
|
267 |
})
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
for treatment_value in encoded_treatments:
|
272 |
-
if treatment_value > 0:
|
273 |
-
requirements.append({
|
274 |
-
"column_name": "Previous_Treatments",
|
275 |
-
"value": treatment_value,
|
276 |
-
"comparison_type": "equal"
|
277 |
-
})
|
278 |
|
279 |
# Construct the payload as a regular dictionary
|
280 |
payload = {
|
@@ -282,13 +191,7 @@ def process_researcher_data(
|
|
282 |
"requirements": requirements
|
283 |
}
|
284 |
|
285 |
-
|
286 |
-
payload = json.dumps(payload)
|
287 |
-
|
288 |
-
print("Payload:", payload)
|
289 |
-
|
290 |
-
# Store the server's URL
|
291 |
-
SERVER_URL = "https://ppaihack-match.azurewebsites.net/requirements/create"
|
292 |
|
293 |
# Make the request to the server
|
294 |
try:
|
@@ -311,7 +214,6 @@ def process_researcher_data(
|
|
311 |
|
312 |
return response.get("message", "No message received from server")
|
313 |
|
314 |
-
|
315 |
# Create the Gradio interface for researchers
|
316 |
researcher_demo = gr.Interface(
|
317 |
fn=process_researcher_data,
|
@@ -330,4 +232,4 @@ researcher_demo = gr.Interface(
|
|
330 |
|
331 |
# Launch the researcher interface with a public link
|
332 |
if __name__ == "__main__":
|
333 |
-
researcher_demo.launch(share=True)
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
|
|
|
|
3 |
from typing import List
|
4 |
|
5 |
+
# Define the COLUMN_MIN_MAX as provided
|
6 |
+
COLUMN_MIN_MAX = {
|
7 |
+
"Age": (18, 100),
|
8 |
+
"Blood_Glucose_Level": (0, 3),
|
9 |
+
"Blood_Pressure_Systolic": (0, 3),
|
10 |
+
"Blood_Pressure_Diastolic": (0, 3),
|
11 |
+
"BMI": (0, 3),
|
12 |
+
"Condition_Severity": (0, 3),
|
13 |
+
"Gender": (0, 2),
|
14 |
+
"Ethnicity": (0, 5),
|
15 |
+
"Geographic_Location": (0, 6),
|
16 |
+
"Smoking_Status": (0, 2),
|
17 |
+
"Diagnoses_ICD10": (0, 5),
|
18 |
+
"Medications": (0, 7),
|
19 |
+
"Allergies": (0, 5),
|
20 |
+
"Previous_Treatments": (0, 5),
|
21 |
+
"Alcohol_Consumption": (0, 3),
|
22 |
+
"Exercise_Habits": (0, 4),
|
23 |
+
"Diet": (0, 5),
|
24 |
+
"Functional_Status": (0, 2),
|
25 |
+
"Previous_Trial_Participation": (0, 1),
|
26 |
+
}
|
27 |
+
|
28 |
# Define possible categories for fields without predefined categories
|
29 |
additional_categories = {
|
30 |
"Gender": ["Male", "Female", "Other"],
|
|
|
42 |
"Previous_Trial_Participation": ["Yes", "No"]
|
43 |
}
|
44 |
|
45 |
+
# Define the input components for the researcher form with constraints
|
46 |
+
min_age_input = gr.Number(label="Minimum Age", value=18, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1])
|
47 |
+
max_age_input = gr.Number(label="Maximum Age", value=100, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1])
|
48 |
+
|
49 |
gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender")
|
50 |
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity")
|
51 |
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location")
|
|
|
53 |
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications")
|
54 |
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies")
|
55 |
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments")
|
56 |
+
|
57 |
+
min_blood_glucose_level_input = gr.Number(label="Minimum Blood Glucose Level", value=0, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])
|
58 |
+
max_blood_glucose_level_input = gr.Number(label="Maximum Blood Glucose Level", value=3, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1])
|
59 |
+
|
60 |
+
min_blood_pressure_systolic_input = gr.Number(label="Minimum Blood Pressure (Systolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])
|
61 |
+
max_blood_pressure_systolic_input = gr.Number(label="Maximum Blood Pressure (Systolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1])
|
62 |
+
|
63 |
+
min_blood_pressure_diastolic_input = gr.Number(label="Minimum Blood Pressure (Diastolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])
|
64 |
+
max_blood_pressure_diastolic_input = gr.Number(label="Maximum Blood Pressure (Diastolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1])
|
65 |
+
|
66 |
+
min_bmi_input = gr.Number(label="Minimum BMI", value=0, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])
|
67 |
+
max_bmi_input = gr.Number(label="Maximum BMI", value=3, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1])
|
68 |
+
|
69 |
smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status")
|
70 |
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption")
|
71 |
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits")
|
72 |
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet")
|
73 |
+
|
74 |
+
min_condition_severity_input = gr.Number(label="Minimum Condition Severity", value=0, minimum=COLUMN_MIN_MAX["Condition_Severity"][0], maximum=COLUMN_MIN_MAX["Condition_Severity"][1])
|
75 |
+
max_condition_severity_input = gr.Number(label="Maximum Condition Severity", value=3, minimum=COLUMN_MIN_MAX["Condition_Severity"][0], maximum=COLUMN_MIN_MAX["Condition_Severity"][1])
|
76 |
+
|
77 |
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status")
|
78 |
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation")
|
79 |
|
80 |
+
# Define the server's URL
|
81 |
+
SERVER_URL = "http://127.0.0.1:7860/api/predict" # Ensure this is the correct endpoint
|
82 |
|
83 |
def encode_categorical_data(data: List[str], category_name: str) -> List[int]:
|
84 |
"""Encodes a list of categorical values into their corresponding indices based on additional_categories."""
|
|
|
86 |
encoded_data = []
|
87 |
for value in data:
|
88 |
if value in sub_cats:
|
89 |
+
encoded_index = sub_cats.index(value)
|
90 |
+
# Validate that the encoded index is within the specified range
|
91 |
+
min_val, max_val = COLUMN_MIN_MAX.get(category_name, (0, len(sub_cats)-1))
|
92 |
+
if min_val <= encoded_index <= max_val:
|
93 |
+
encoded_data.append(encoded_index)
|
94 |
+
else:
|
95 |
+
print(f"Encoded value for {category_name}='{value}' is out of range. Setting to 0.")
|
96 |
+
encoded_data.append(0)
|
97 |
else:
|
98 |
+
print(f"Value '{value}' not recognized in category '{category_name}'. Setting to 0.")
|
99 |
+
encoded_data.append(0)
|
100 |
return encoded_data
|
101 |
|
|
|
102 |
def process_researcher_data(
|
103 |
min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments,
|
104 |
min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic,
|
|
|
110 |
encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity")
|
111 |
encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location")
|
112 |
encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10")
|
113 |
+
encoded_medications = encode_categorical_data(medications, "Medications")
|
114 |
+
encoded_allergies = encode_categorical_data(allergies, "Allergies")
|
115 |
+
encoded_previous_treatments = encode_categorical_data(previous_treatments, "Previous_Treatments")
|
116 |
encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status")
|
117 |
encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption")
|
118 |
encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits")
|
|
|
124 |
requirements = []
|
125 |
|
126 |
# Add numerical requirements
|
127 |
+
numerical_fields = [
|
128 |
+
("Age", min_age, "greater_than"),
|
129 |
+
("Age", max_age, "less_than"),
|
130 |
+
("Blood_Glucose_Level", min_blood_glucose_level, "greater_than"),
|
131 |
+
("Blood_Glucose_Level", max_blood_glucose_level, "less_than"),
|
132 |
+
("Blood_Pressure_Systolic", min_blood_pressure_systolic, "greater_than"),
|
133 |
+
("Blood_Pressure_Systolic", max_blood_pressure_systolic, "less_than"),
|
134 |
+
("Blood_Pressure_Diastolic", min_blood_pressure_diastolic, "greater_than"),
|
135 |
+
("Blood_Pressure_Diastolic", max_blood_pressure_diastolic, "less_than"),
|
136 |
+
("BMI", min_bmi, "greater_than"),
|
137 |
+
("BMI", max_bmi, "less_than"),
|
138 |
+
("Condition_Severity", min_condition_severity, "greater_than"),
|
139 |
+
("Condition_Severity", max_condition_severity, "less_than"),
|
140 |
+
]
|
141 |
+
|
142 |
+
for field, value, comparison in numerical_fields:
|
143 |
+
if value is not None:
|
144 |
+
# Ensure the value is within the specified range
|
145 |
+
min_val, max_val = COLUMN_MIN_MAX.get(field, (None, None))
|
146 |
+
if min_val is not None and max_val is not None:
|
147 |
+
if not (min_val <= value <= max_val):
|
148 |
+
print(f"Value for {field}={value} is out of range ({min_val}, {max_val}). Adjusting to fit within range.")
|
149 |
+
value = max(min(value, max_val), min_val)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
requirements.append({
|
151 |
+
"column_name": field,
|
152 |
+
"value": value,
|
153 |
+
"comparison_type": comparison
|
154 |
})
|
155 |
|
156 |
+
# Add categorical requirements
|
157 |
+
categorical_fields = [
|
158 |
+
("Gender", encoded_gender, "equal"),
|
159 |
+
("Ethnicity", encoded_ethnicity, "equal"),
|
160 |
+
("Geographic_Location", encoded_geographic_location, "equal"),
|
161 |
+
("Diagnoses_ICD10", encoded_diagnoses_icd10, "equal"),
|
162 |
+
("Medications", encoded_medications, "equal"),
|
163 |
+
("Allergies", encoded_allergies, "equal"),
|
164 |
+
("Previous_Treatments", encoded_previous_treatments, "equal"),
|
165 |
+
("Smoking_Status", encoded_smoking_status, "equal"),
|
166 |
+
("Alcohol_Consumption", encoded_alcohol_consumption, "equal"),
|
167 |
+
("Exercise_Habits", encoded_exercise_habits, "equal"),
|
168 |
+
("Diet", encoded_diet, "equal"),
|
169 |
+
("Functional_Status", encoded_functional_status, "equal"),
|
170 |
+
("Previous_Trial_Participation", encoded_previous_trial_participation, "equal"),
|
171 |
+
]
|
172 |
+
|
173 |
+
for field, encoded_values, comparison in categorical_fields:
|
174 |
+
min_val, max_val = COLUMN_MIN_MAX.get(field, (0, len(additional_categories[field])-1))
|
175 |
+
for encoded in encoded_values:
|
176 |
+
if min_val <= encoded <= max_val:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
requirements.append({
|
178 |
+
"column_name": field,
|
179 |
+
"value": encoded,
|
180 |
+
"comparison_type": comparison
|
181 |
})
|
182 |
+
else:
|
183 |
+
print(f"Encoded value {encoded} for {field} is out of range ({min_val}, {max_val}). Skipping.")
|
184 |
|
185 |
+
# Encode and add non-categorical fields like medications, allergies, previous treatments
|
186 |
+
# Already handled above in categorical_fields
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# Construct the payload as a regular dictionary
|
189 |
payload = {
|
|
|
191 |
"requirements": requirements
|
192 |
}
|
193 |
|
194 |
+
print("Payload to send:", payload) # For debugging
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
# Make the request to the server
|
197 |
try:
|
|
|
214 |
|
215 |
return response.get("message", "No message received from server")
|
216 |
|
|
|
217 |
# Create the Gradio interface for researchers
|
218 |
researcher_demo = gr.Interface(
|
219 |
fn=process_researcher_data,
|
|
|
232 |
|
233 |
# Launch the researcher interface with a public link
|
234 |
if __name__ == "__main__":
|
235 |
+
researcher_demo.launch(share=True)
|