File size: 8,153 Bytes
d2ecb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# @title web interface demo
import random
import gradio as gr
import time
import numpy as np
import pandas as pd
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer, util
from pythainlp import Tokenizer
import pickle
import re
from pythainlp.tokenize import sent_tokenize

DEFAULT_MODEL = 'wangchanberta'
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'

MODEL_DICT = {
    'wangchanberta': 'Chananchida/wangchanberta-xet_ref-params',
    'wangchanberta-hyp': 'Chananchida/wangchanberta-xet_hyp-params',
}

EMBEDDINGS_PATH = 'data/embeddings.pkl'
DATA_PATH='data/dataset.xlsx'


def load_data(path=DATA_PATH):
    df = pd.read_excel(path, sheet_name='Default')
    df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
    print('Load data done')
    return df


def load_model(model_name=DEFAULT_MODEL):
    model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
    tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
    print('Load model done')
    return model, tokenizer

def load_embedding_model(model_name=DEFAULT_SENTENCE_EMBEDDING_MODEL):
    if torch.cuda.is_available():
        embedding_model = SentenceTransformer(model_name, device='cuda')
    else:
        embedding_model = SentenceTransformer(model_name)
    print('Load sentence embedding model done')
    return embedding_model


def set_index(vector):
    if torch.cuda.is_available():
        res = faiss.StandardGpuResources()
        index = faiss.IndexFlatL2(vector.shape[1])
        gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index)
        gpu_index_flat.add(vector)
        index = gpu_index_flat
    else:
        index = faiss.IndexFlatL2(vector.shape[1])
        index.add(vector)
    return index


def get_embeddings(embedding_model, text_list):
    return embedding_model.encode(text_list)


def prepare_sentences_vector(encoded_list):
    encoded_list = [i.reshape(1, -1) for i in encoded_list]
    encoded_list = np.vstack(encoded_list).astype('float32')
    encoded_list = normalize(encoded_list)
    return encoded_list


def store_embeddings(df, embeddings):
    with open('embeddings.pkl', "wb") as fOut:
        pickle.dump({'sentences': df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
    print('Store embeddings done')


def load_embeddings(file_path=EMBEDDINGS_PATH):
    with open(file_path, "rb") as fIn:
        stored_data = pickle.load(fIn)
        stored_sentences = stored_data['sentences']
        stored_embeddings = stored_data['embeddings']
    print('Load (questions) embeddings done')
    return stored_embeddings


def model_pipeline(model, tokenizer, question, similar_context):
    inputs = tokenizer(question, similar_context, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    answer_start_index = outputs.start_logits.argmax()
    answer_end_index = outputs.end_logits.argmax()
    predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
    Answer = tokenizer.decode(predict_answer_tokens)
    return Answer.replace('<unk>','@')


def faiss_search(index, question_vector, k=1):
    distances, indices = index.search(question_vector, k)
    return distances,indices


def predict_faiss(model, tokenizer, embedding_model, df, question, index):
    t = time.time()
    question = question.strip()
    question_vector = get_embeddings(embedding_model, question)
    question_vector = prepare_sentences_vector([question_vector])
    distances,indices = faiss_search(index, question_vector)
    Answers = [df['Answer'][i] for i in indices[0]]
    _time = time.time() - t
    output = {
        "user_question": question,
        "answer": Answers[0],
        "totaltime": round(_time, 3),
        "score": round(distances[0][0], 4)
    }
    return output

def predict(model, tokenizer, embedding_model, df, question, index):
    t = time.time()
    question = question.strip()
    question_vector = get_embeddings(embedding_model, question)
    question_vector = prepare_sentences_vector([question_vector])
    distances,indices = faiss_search(index, question_vector)

    # Answer = model_pipeline(model, tokenizer, df['Question'][indices[0][0]], df['Context'][indices[0][0]])
    Answer = model_pipeline(model, tokenizer, question, df['Context'][indices[0][0]])
    _time = time.time() - t
    output = {
        "user_question": question,
        "answer": Answer,
        "totaltime": round(_time, 3),
        "distance": round(distances[0][0], 4)
    }
    return Answer

def predict_test(model, tokenizer, embedding_model, df, question, index):  # sent_tokenize pythainlp
    t = time.time()
    question = question.strip()
    question_vector = get_embeddings(embedding_model, question)
    question_vector = prepare_sentences_vector([question_vector])
    distances,indices = faiss_search(index, question_vector)

    mostSimContext = df['Context'][indices[0][0]]
    pattern = r'(?<=\s{10}).*'
    matches = re.search(pattern, mostSimContext, flags=re.DOTALL)

    if matches:
        mostSimContext = matches.group(0)

    mostSimContext = mostSimContext.strip()
    mostSimContext = re.sub(r'\s+', ' ', mostSimContext)


    segments = sent_tokenize(mostSimContext, engine="crfcut")
    segments_index = set_index(get_embeddings(embedding_model,segments))
    _distances,_indices = faiss_search(segments_index, question_vector)
    mostSimSegment = segments[_indices[0][0]]

    Answer = model_pipeline(model, tokenizer,question,mostSimSegment)

    # Find the start and end indices of mostSimSegment within mostSimContext
    start_index = mostSimContext.find(Answer)
    end_index = start_index + len(Answer)
    _time = time.time() - t
    output = {
        "user_question": question,
        "answer": df['Answer'][indices[0][0]],
        "totaltime": round(_time, 3),
        "distance": round(distances[0][0], 4),
        "highlight_start": start_index,
        "highlight_end": end_index
    }
    return output

def highlight_text(text, start_index, end_index):
    highlighted_text = ""
    for i, char in enumerate(text):
        if i == start_index:
            highlighted_text += "<mark>"
        highlighted_text += char
        if i == end_index - 1:
            highlighted_text += "</mark>"
    return highlighted_text

def chat_interface_before(question, history):
    response = predict(model, tokenizer, embedding_model, df, question, index)
    return response

def chat_interface_after(question, history):
    response = predict_test(model, tokenizer, embedding_model, df, question, index)
    highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
    return highlighted_answer

examples=[
                                    'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 ในแต่ละแพลตฟอร์ม',
                                    'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter',
                                    'ช่องทางติดตามข่าวสารของเรา',
                                    'ขอช่องทางติดตามข่าวสารทาง Line หน่อย'
                                ]
demo_before = gr.ChatInterface(fn=chat_interface_before, 
                                examples=examples)

demo_after = gr.ChatInterface(fn=chat_interface_after, 
                              examples=examples)

interface = gr.TabbedInterface([demo_before, demo_after], ["Before", "After"])

if __name__ == "__main__":
    # Load your model, tokenizer, data, and index here...
    model, tokenizer = load_model('wangchanberta-hyp')
    embedding_model = load_embedding_model()
    df = load_data()
    index = set_index(prepare_sentences_vector(load_embeddings(EMBEDDINGS_PATH)))
    interface.launch()