Spaces:
Sleeping
Sleeping
Chananchida
commited on
Commit
•
d2ecb95
1
Parent(s):
e77b6f6
Upload 4 files
Browse files- app.py +219 -0
- data/dataset.xlsx +0 -0
- data/embeddings.pkl +3 -0
- requirements.txt +13 -0
app.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @title web interface demo
|
2 |
+
import random
|
3 |
+
import gradio as gr
|
4 |
+
import time
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
import faiss
|
9 |
+
from sklearn.preprocessing import normalize
|
10 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
11 |
+
from sentence_transformers import SentenceTransformer, util
|
12 |
+
from pythainlp import Tokenizer
|
13 |
+
import pickle
|
14 |
+
import evaluate
|
15 |
+
import re
|
16 |
+
from pythainlp.tokenize import sent_tokenize
|
17 |
+
|
18 |
+
DEFAULT_MODEL = 'wangchanberta'
|
19 |
+
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'
|
20 |
+
|
21 |
+
MODEL_DICT = {
|
22 |
+
'wangchanberta': 'Chananchida/wangchanberta-xet_ref-params',
|
23 |
+
'wangchanberta-hyp': 'Chananchida/wangchanberta-xet_hyp-params',
|
24 |
+
}
|
25 |
+
|
26 |
+
EMBEDDINGS_PATH = 'data/embeddings.pkl'
|
27 |
+
DATA_PATH='data/dataset.xlsx'
|
28 |
+
|
29 |
+
|
30 |
+
def load_data(path=DATA_PATH):
|
31 |
+
df = pd.read_excel(path, sheet_name='Default')
|
32 |
+
df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
|
33 |
+
print('Load data done')
|
34 |
+
return df
|
35 |
+
|
36 |
+
|
37 |
+
def load_model(model_name=DEFAULT_MODEL):
|
38 |
+
model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
|
40 |
+
print('Load model done')
|
41 |
+
return model, tokenizer
|
42 |
+
|
43 |
+
def load_embedding_model(model_name=DEFAULT_SENTENCE_EMBEDDING_MODEL):
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
embedding_model = SentenceTransformer(model_name, device='cuda')
|
46 |
+
else:
|
47 |
+
embedding_model = SentenceTransformer(model_name)
|
48 |
+
print('Load sentence embedding model done')
|
49 |
+
return embedding_model
|
50 |
+
|
51 |
+
|
52 |
+
def set_index(vector):
|
53 |
+
if torch.cuda.is_available():
|
54 |
+
res = faiss.StandardGpuResources()
|
55 |
+
index = faiss.IndexFlatL2(vector.shape[1])
|
56 |
+
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index)
|
57 |
+
gpu_index_flat.add(vector)
|
58 |
+
index = gpu_index_flat
|
59 |
+
else:
|
60 |
+
index = faiss.IndexFlatL2(vector.shape[1])
|
61 |
+
index.add(vector)
|
62 |
+
return index
|
63 |
+
|
64 |
+
|
65 |
+
def get_embeddings(embedding_model, text_list):
|
66 |
+
return embedding_model.encode(text_list)
|
67 |
+
|
68 |
+
|
69 |
+
def prepare_sentences_vector(encoded_list):
|
70 |
+
encoded_list = [i.reshape(1, -1) for i in encoded_list]
|
71 |
+
encoded_list = np.vstack(encoded_list).astype('float32')
|
72 |
+
encoded_list = normalize(encoded_list)
|
73 |
+
return encoded_list
|
74 |
+
|
75 |
+
|
76 |
+
def store_embeddings(df, embeddings):
|
77 |
+
with open('embeddings.pkl', "wb") as fOut:
|
78 |
+
pickle.dump({'sentences': df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
|
79 |
+
print('Store embeddings done')
|
80 |
+
|
81 |
+
|
82 |
+
def load_embeddings(file_path=EMBEDDINGS_PATH):
|
83 |
+
with open(file_path, "rb") as fIn:
|
84 |
+
stored_data = pickle.load(fIn)
|
85 |
+
stored_sentences = stored_data['sentences']
|
86 |
+
stored_embeddings = stored_data['embeddings']
|
87 |
+
print('Load (questions) embeddings done')
|
88 |
+
return stored_embeddings
|
89 |
+
|
90 |
+
|
91 |
+
def model_pipeline(model, tokenizer, question, similar_context):
|
92 |
+
inputs = tokenizer(question, similar_context, return_tensors="pt")
|
93 |
+
with torch.no_grad():
|
94 |
+
outputs = model(**inputs)
|
95 |
+
answer_start_index = outputs.start_logits.argmax()
|
96 |
+
answer_end_index = outputs.end_logits.argmax()
|
97 |
+
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
|
98 |
+
Answer = tokenizer.decode(predict_answer_tokens)
|
99 |
+
return Answer.replace('<unk>','@')
|
100 |
+
|
101 |
+
|
102 |
+
def faiss_search(index, question_vector, k=1):
|
103 |
+
distances, indices = index.search(question_vector, k)
|
104 |
+
return distances,indices
|
105 |
+
|
106 |
+
|
107 |
+
def predict_faiss(model, tokenizer, embedding_model, df, question, index):
|
108 |
+
t = time.time()
|
109 |
+
question = question.strip()
|
110 |
+
question_vector = get_embeddings(embedding_model, question)
|
111 |
+
question_vector = prepare_sentences_vector([question_vector])
|
112 |
+
distances,indices = faiss_search(index, question_vector)
|
113 |
+
Answers = [df['Answer'][i] for i in indices[0]]
|
114 |
+
_time = time.time() - t
|
115 |
+
output = {
|
116 |
+
"user_question": question,
|
117 |
+
"answer": Answers[0],
|
118 |
+
"totaltime": round(_time, 3),
|
119 |
+
"score": round(distances[0][0], 4)
|
120 |
+
}
|
121 |
+
return output
|
122 |
+
|
123 |
+
def predict(model, tokenizer, embedding_model, df, question, index):
|
124 |
+
t = time.time()
|
125 |
+
question = question.strip()
|
126 |
+
question_vector = get_embeddings(embedding_model, question)
|
127 |
+
question_vector = prepare_sentences_vector([question_vector])
|
128 |
+
distances,indices = faiss_search(index, question_vector)
|
129 |
+
|
130 |
+
# Answer = model_pipeline(model, tokenizer, df['Question'][indices[0][0]], df['Context'][indices[0][0]])
|
131 |
+
Answer = model_pipeline(model, tokenizer, question, df['Context'][indices[0][0]])
|
132 |
+
_time = time.time() - t
|
133 |
+
output = {
|
134 |
+
"user_question": question,
|
135 |
+
"answer": Answer,
|
136 |
+
"totaltime": round(_time, 3),
|
137 |
+
"distance": round(distances[0][0], 4)
|
138 |
+
}
|
139 |
+
return Answer
|
140 |
+
|
141 |
+
def predict_test(model, tokenizer, embedding_model, df, question, index): # sent_tokenize pythainlp
|
142 |
+
t = time.time()
|
143 |
+
question = question.strip()
|
144 |
+
question_vector = get_embeddings(embedding_model, question)
|
145 |
+
question_vector = prepare_sentences_vector([question_vector])
|
146 |
+
distances,indices = faiss_search(index, question_vector)
|
147 |
+
|
148 |
+
mostSimContext = df['Context'][indices[0][0]]
|
149 |
+
pattern = r'(?<=\s{10}).*'
|
150 |
+
matches = re.search(pattern, mostSimContext, flags=re.DOTALL)
|
151 |
+
|
152 |
+
if matches:
|
153 |
+
mostSimContext = matches.group(0)
|
154 |
+
|
155 |
+
mostSimContext = mostSimContext.strip()
|
156 |
+
mostSimContext = re.sub(r'\s+', ' ', mostSimContext)
|
157 |
+
|
158 |
+
|
159 |
+
segments = sent_tokenize(mostSimContext, engine="crfcut")
|
160 |
+
segments_index = set_index(get_embeddings(embedding_model,segments))
|
161 |
+
_distances,_indices = faiss_search(segments_index, question_vector)
|
162 |
+
mostSimSegment = segments[_indices[0][0]]
|
163 |
+
|
164 |
+
Answer = model_pipeline(model, tokenizer,question,mostSimSegment)
|
165 |
+
|
166 |
+
# Find the start and end indices of mostSimSegment within mostSimContext
|
167 |
+
start_index = mostSimContext.find(Answer)
|
168 |
+
end_index = start_index + len(Answer)
|
169 |
+
_time = time.time() - t
|
170 |
+
output = {
|
171 |
+
"user_question": question,
|
172 |
+
"answer": df['Answer'][indices[0][0]],
|
173 |
+
"totaltime": round(_time, 3),
|
174 |
+
"distance": round(distances[0][0], 4),
|
175 |
+
"highlight_start": start_index,
|
176 |
+
"highlight_end": end_index
|
177 |
+
}
|
178 |
+
return output
|
179 |
+
|
180 |
+
def highlight_text(text, start_index, end_index):
|
181 |
+
highlighted_text = ""
|
182 |
+
for i, char in enumerate(text):
|
183 |
+
if i == start_index:
|
184 |
+
highlighted_text += "<mark>"
|
185 |
+
highlighted_text += char
|
186 |
+
if i == end_index - 1:
|
187 |
+
highlighted_text += "</mark>"
|
188 |
+
return highlighted_text
|
189 |
+
|
190 |
+
def chat_interface_before(question, history):
|
191 |
+
response = predict(model, tokenizer, embedding_model, df, question, index)
|
192 |
+
return response
|
193 |
+
|
194 |
+
def chat_interface_after(question, history):
|
195 |
+
response = predict_test(model, tokenizer, embedding_model, df, question, index)
|
196 |
+
highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
|
197 |
+
return highlighted_answer
|
198 |
+
|
199 |
+
examples=[
|
200 |
+
'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 ในแต่ละแพลตฟอร์ม',
|
201 |
+
'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter',
|
202 |
+
'ช่องทางติดตามข่าวสารของเรา',
|
203 |
+
'ขอช่องทางติดตามข่าวสารทาง Line หน่อย'
|
204 |
+
]
|
205 |
+
demo_before = gr.ChatInterface(fn=chat_interface_before,
|
206 |
+
examples=examples)
|
207 |
+
|
208 |
+
demo_after = gr.ChatInterface(fn=chat_interface_after,
|
209 |
+
examples=examples)
|
210 |
+
|
211 |
+
interface = gr.TabbedInterface([demo_before, demo_after], ["Before", "After"])
|
212 |
+
|
213 |
+
if __name__ == "__main__":
|
214 |
+
# Load your model, tokenizer, data, and index here...
|
215 |
+
model, tokenizer = load_model('wangchanberta-hyp')
|
216 |
+
embedding_model = load_embedding_model()
|
217 |
+
df = load_data()
|
218 |
+
index = set_index(prepare_sentences_vector(load_embeddings(EMBEDDINGS_PATH)))
|
219 |
+
interface.launch()
|
data/dataset.xlsx
ADDED
Binary file (330 kB). View file
|
|
data/embeddings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eb3bfadbf8444133238c887c871b8f3dda10d9db57a236868e67dc81bd0dc2c
|
3 |
+
size 2380335
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pythainlp
|
2 |
+
datasets
|
3 |
+
accelerate
|
4 |
+
faiss-gpu
|
5 |
+
sentence-transformers
|
6 |
+
python-crfsuite
|
7 |
+
numpy
|
8 |
+
pandas
|
9 |
+
torch
|
10 |
+
transformers
|
11 |
+
gensim==4.3.2
|
12 |
+
safetensors==0.4.2
|
13 |
+
scikit-learn==1.2.2
|