File size: 6,180 Bytes
ee2ac99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a16ea6c
 
ee2ac99
 
 
 
a16ea6c
ee2ac99
 
 
 
a16ea6c
ee2ac99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b0d746
ee2ac99
 
 
 
9b0d746
ee2ac99
 
 
1340fcc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
import torch
import torchaudio
from speechbrain.pretrained import SpeakerRecognition
import torch.nn as nn
from transformers import AutoModel
import os
from huggingface_hub import hf_hub_download

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
speaker_model = SpeakerRecognition.from_hparams(
    source="speechbrain/spkrec-ecapa-voxceleb",
    savedir="tmp",
    run_opts={"device": device}
)

class PretrainedTransformerClassifier(nn.Module):
    def __init__(self, num_classes=3):
        super().__init__()
        self.transformer = AutoModel.from_pretrained('distilbert/distilroberta-base')
        for param in self.transformer.parameters():
            param.requires_grad = False
            
        for param in self.transformer.encoder.layer[-2:].parameters():
            param.requires_grad = True
        
        self.embed_projection = nn.Sequential(
            nn.Linear(1, 768),
            nn.LayerNorm(768),
            nn.Dropout(0.1)
        )
        
        self.classifier = nn.Sequential(
            nn.Linear(768, 256),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(256, num_classes)
        )

    def forward(self, x):
        x = self.embed_projection(x.unsqueeze(-1))
        if len(x.shape) == 2:
            x = x.unsqueeze(0)
            
        attention_mask = torch.ones((x.shape[0], x.shape[1])).to(x.device)
        transformer_output = self.transformer(
            inputs_embeds=x,
            attention_mask=attention_mask,
            return_dict=True
        )
        pooled_output = transformer_output.last_hidden_state[:, 0, :]
        return self.classifier(pooled_output)

# Load the model from Huggingface Hub
def load_model():
    model_path = hf_hub_download(repo_id="polygraf-ai/vexon-voice-authentication", filename="model.pth")
    config_path = hf_hub_download(repo_id="polygraf-ai/vexon-voice-authentication", filename="config.pth")
    
    config = torch.load(config_path)
    classifier = PretrainedTransformerClassifier(num_classes=config['num_classes']).to(device)
    classifier.load_state_dict(torch.load(model_path, map_location=device))
    classifier.eval()
    
    return classifier, config

classifier, model_config = load_model()

def extract_embedding(audio_path):
    try:
        signal, fs = torchaudio.load(audio_path)
        signal = signal.to(device)
        embedding = speaker_model.encode_batch(signal)
        return embedding.cpu().detach().numpy().flatten()
    except Exception as e:
        print(f"Error processing {audio_path}: {e}")
        return None

def verify_speaker(audio_path1, audio_path2):
    emb1 = extract_embedding(audio_path1)
    emb2 = extract_embedding(audio_path2)
    if emb1 is None or emb2 is None:
        return None
    
    tensor1 = torch.tensor(emb1).to(device)
    tensor2 = torch.tensor(emb2).to(device)
    similarity_score = torch.nn.functional.cosine_similarity(
        tensor1, tensor2, dim=0
    ).cpu().item()
    return similarity_score

def process_audio(audio1, audio2):
    """
    Process two audio files and return authentication results using the pretrained transformer classifier
    """
    if audio1 is None or audio2 is None:
        return "Please upload both audio files."
    
    temp_path1 = "temp_audio1.wav"
    temp_path2 = "temp_audio2.wav"
    
    try:
        torchaudio.save(temp_path1, 
                       torchaudio.load(audio1)[0], 
                       torchaudio.load(audio1)[1])
        torchaudio.save(temp_path2, 
                       torchaudio.load(audio2)[0], 
                       torchaudio.load(audio2)[1])
        
        score = verify_speaker(temp_path1, temp_path2)
        if score is None:
            return "Error processing audio files. Please ensure they are valid audio recordings."
        
        with torch.no_grad():
            score_tensor = torch.FloatTensor([[score]]).to(device)
            output = classifier(score_tensor)
            prediction = torch.argmax(output, dim=1).item()
            
        probabilities = torch.softmax(output, dim=1)[0]
        confidence = probabilities[prediction].item()
        
        label = "Original" if prediction == 0 else "Deepfake/Impersonation"
        
        result = f"""
        ๐Ÿ“Š Authentication Results:
        
        ๐Ÿ”น Similarity Score: {score:.4f}
        ๐Ÿ”น Classification: {label}
        ๐Ÿ”น Confidence: {confidence:.4f}
        
        {'โš ๏ธ Potential Voice Impersonation Detected!' if prediction > 0 else 'โœ… Authentic Voice Match'}
        """

        return result
    
    except Exception as e:
        return f"An error occurred: {str(e)}"
    
    finally:
        if os.path.exists(temp_path1):
            os.remove(temp_path1)
        if os.path.exists(temp_path2):
            os.remove(temp_path2)

css = """
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
    color: white;
    border-radius: 8px;
    background: linear-gradient(to right, #2125ff, #4146ff);
    border: none;
    cursor: pointer;
}
.gr-button:hover {
    background: linear-gradient(to right, #1f23e6, #3b40e6);
}
.footer {
    margin-top: 20px;
    text-align: center;
    border-top: 1px solid #ccc;
    padding-top: 10px;
}
"""

demo = gr.Interface(
    fn=process_audio,
    inputs=[
        gr.Audio(label="Reference Voice Recording", type="filepath"),
        gr.Audio(label="Voice Recording to Verify", type="filepath")
    ],
    outputs=gr.Textbox(label="Authentication Results"),
    title="Vexon Voice Authentication",
    description="""
    Upload two voice recordings to verify if they are from the same person and detect potential voice impersonation attempts.
    
    The system uses a pretrained transformer model fine-tuned on voice similarity scores to:
    1. Calculate a similarity score between the recordings
    2. Classify the comparison as Real, DeepFake, or Impersonation
    3. Provide a confidence score for the classification
    
    Note: For best results, ensure recordings are clear and contain speech content.
    """,
    css=css
)

if __name__ == "__main__":
    demo.launch()