Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from speechbrain.pretrained import SpeakerRecognition
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import AutoModel
|
7 |
+
import os
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
speaker_model = SpeakerRecognition.from_hparams(
|
12 |
+
source="speechbrain/spkrec-ecapa-voxceleb",
|
13 |
+
savedir="tmp",
|
14 |
+
run_opts={"device": device}
|
15 |
+
)
|
16 |
+
|
17 |
+
class PretrainedTransformerClassifier(nn.Module):
|
18 |
+
def __init__(self, num_classes=3):
|
19 |
+
super().__init__()
|
20 |
+
self.transformer = AutoModel.from_pretrained('distilbert/distilroberta-base')
|
21 |
+
for param in self.transformer.parameters():
|
22 |
+
param.requires_grad = False
|
23 |
+
|
24 |
+
for param in self.transformer.encoder.layer[-2:].parameters():
|
25 |
+
param.requires_grad = True
|
26 |
+
|
27 |
+
self.embed_projection = nn.Sequential(
|
28 |
+
nn.Linear(1, 768),
|
29 |
+
nn.LayerNorm(768),
|
30 |
+
nn.Dropout(0.1)
|
31 |
+
)
|
32 |
+
|
33 |
+
self.classifier = nn.Sequential(
|
34 |
+
nn.Linear(768, 256),
|
35 |
+
nn.ReLU(),
|
36 |
+
nn.Dropout(0.1),
|
37 |
+
nn.Linear(256, num_classes)
|
38 |
+
)
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
x = self.embed_projection(x.unsqueeze(-1))
|
42 |
+
if len(x.shape) == 2:
|
43 |
+
x = x.unsqueeze(0)
|
44 |
+
|
45 |
+
attention_mask = torch.ones((x.shape[0], x.shape[1])).to(x.device)
|
46 |
+
transformer_output = self.transformer(
|
47 |
+
inputs_embeds=x,
|
48 |
+
attention_mask=attention_mask,
|
49 |
+
return_dict=True
|
50 |
+
)
|
51 |
+
pooled_output = transformer_output.last_hidden_state[:, 0, :]
|
52 |
+
return self.classifier(pooled_output)
|
53 |
+
|
54 |
+
# Load the model from Huggingface Hub
|
55 |
+
def load_model():
|
56 |
+
model_path = hf_hub_download(repo_id="polygraf-ai/vexon-voice-authentication", filename="model.pth")
|
57 |
+
config_path = hf_hub_download(repo_id="polygraf-ai/vexon-voice-authentication", filename="config.pth")
|
58 |
+
|
59 |
+
config = torch.load(config_path)
|
60 |
+
classifier = PretrainedTransformerClassifier(num_classes=config['num_classes']).to(device)
|
61 |
+
classifier.load_state_dict(torch.load(model_path, map_location=device))
|
62 |
+
classifier.eval()
|
63 |
+
|
64 |
+
return classifier, config
|
65 |
+
|
66 |
+
classifier, model_config = load_model()
|
67 |
+
|
68 |
+
def extract_embedding(audio_path):
|
69 |
+
try:
|
70 |
+
signal, fs = torchaudio.load(audio_path)
|
71 |
+
signal = signal.to(device)
|
72 |
+
embedding = speaker_model.encode_batch(signal)
|
73 |
+
return embedding.cpu().detach().numpy().flatten()
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Error processing {audio_path}: {e}")
|
76 |
+
return None
|
77 |
+
|
78 |
+
def verify_speaker(audio_path1, audio_path2):
|
79 |
+
emb1 = extract_embedding(audio_path1)
|
80 |
+
emb2 = extract_embedding(audio_path2)
|
81 |
+
if emb1 is None or emb2 is None:
|
82 |
+
return None
|
83 |
+
|
84 |
+
tensor1 = torch.tensor(emb1).to(device)
|
85 |
+
tensor2 = torch.tensor(emb2).to(device)
|
86 |
+
similarity_score = torch.nn.functional.cosine_similarity(
|
87 |
+
tensor1, tensor2, dim=0
|
88 |
+
).cpu().item()
|
89 |
+
return similarity_score
|
90 |
+
|
91 |
+
def process_audio(audio1, audio2):
|
92 |
+
"""
|
93 |
+
Process two audio files and return authentication results using the pretrained transformer classifier
|
94 |
+
"""
|
95 |
+
if audio1 is None or audio2 is None:
|
96 |
+
return "Please upload both audio files."
|
97 |
+
|
98 |
+
temp_path1 = "temp_audio1.wav"
|
99 |
+
temp_path2 = "temp_audio2.wav"
|
100 |
+
|
101 |
+
try:
|
102 |
+
torchaudio.save(temp_path1,
|
103 |
+
torchaudio.load(audio1)[0],
|
104 |
+
torchaudio.load(audio1)[1])
|
105 |
+
torchaudio.save(temp_path2,
|
106 |
+
torchaudio.load(audio2)[0],
|
107 |
+
torchaudio.load(audio2)[1])
|
108 |
+
|
109 |
+
score = verify_speaker(temp_path1, temp_path2)
|
110 |
+
if score is None:
|
111 |
+
return "Error processing audio files. Please ensure they are valid audio recordings."
|
112 |
+
|
113 |
+
with torch.no_grad():
|
114 |
+
score_tensor = torch.FloatTensor([[score]]).to(device)
|
115 |
+
output = classifier(score_tensor)
|
116 |
+
prediction = torch.argmax(output, dim=1).item()
|
117 |
+
|
118 |
+
probabilities = torch.softmax(output, dim=1)[0]
|
119 |
+
confidence = probabilities[prediction].item()
|
120 |
+
|
121 |
+
result = f"""
|
122 |
+
📊 Authentication Results:
|
123 |
+
|
124 |
+
🔹 Similarity Score: {score:.4f}
|
125 |
+
🔹 Classification: {model_config['labels'][prediction]}
|
126 |
+
🔹 Confidence: {confidence:.4f}
|
127 |
+
|
128 |
+
Analysis Details:
|
129 |
+
- A similarity score closer to 1.0 indicates higher voice similarity
|
130 |
+
- Classification indicates the model's assessment of the voice comparison
|
131 |
+
- Confidence shows how certain the model is about its classification
|
132 |
+
|
133 |
+
{'⚠️ Potential Voice Impersonation Detected!' if prediction > 0 else '✅ Authentic Voice Match'}
|
134 |
+
"""
|
135 |
+
|
136 |
+
return result
|
137 |
+
|
138 |
+
except Exception as e:
|
139 |
+
return f"An error occurred: {str(e)}"
|
140 |
+
|
141 |
+
finally:
|
142 |
+
# Clean up temporary files
|
143 |
+
if os.path.exists(temp_path1):
|
144 |
+
os.remove(temp_path1)
|
145 |
+
if os.path.exists(temp_path2):
|
146 |
+
os.remove(temp_path2)
|
147 |
+
|
148 |
+
css = """
|
149 |
+
.gradio-container {
|
150 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
151 |
+
}
|
152 |
+
.gr-button {
|
153 |
+
color: white;
|
154 |
+
border-radius: 8px;
|
155 |
+
background: linear-gradient(to right, #2125ff, #4146ff);
|
156 |
+
border: none;
|
157 |
+
cursor: pointer;
|
158 |
+
}
|
159 |
+
.gr-button:hover {
|
160 |
+
background: linear-gradient(to right, #1f23e6, #3b40e6);
|
161 |
+
}
|
162 |
+
.footer {
|
163 |
+
margin-top: 20px;
|
164 |
+
text-align: center;
|
165 |
+
border-top: 1px solid #ccc;
|
166 |
+
padding-top: 10px;
|
167 |
+
}
|
168 |
+
"""
|
169 |
+
|
170 |
+
demo = gr.Interface(
|
171 |
+
fn=process_audio,
|
172 |
+
inputs=[
|
173 |
+
gr.Audio(label="Reference Voice Recording", type="filepath"),
|
174 |
+
gr.Audio(label="Voice Recording to Verify", type="filepath")
|
175 |
+
],
|
176 |
+
outputs=gr.Textbox(label="Authentication Results"),
|
177 |
+
title="Vexon Voice Authentication",
|
178 |
+
description="""
|
179 |
+
Upload two voice recordings to verify if they are from the same person and detect potential voice impersonation attempts.
|
180 |
+
|
181 |
+
The system uses a pretrained transformer model fine-tuned on voice similarity scores to:
|
182 |
+
1. Calculate a similarity score between the recordings
|
183 |
+
2. Classify the comparison as Real-Real, Real-Fake, or Impersonation
|
184 |
+
3. Provide a confidence score for the classification
|
185 |
+
|
186 |
+
Note: For best results, ensure recordings are clear and contain speech content.
|
187 |
+
""",
|
188 |
+
css=css,
|
189 |
+
examples=[
|
190 |
+
["reference_sample1.wav", "verify_sample1.wav"],
|
191 |
+
["reference_sample2.wav", "verify_sample2.wav"]
|
192 |
+
]
|
193 |
+
)
|
194 |
+
|
195 |
+
if __name__ == "__main__":
|
196 |
+
demo.launch()
|