plaidam's picture
Upload 1182 files
3719834 verified
import torch
from PIL import Image
from .imagefunc import log, pil2tensor, tensor2pil, image2mask, mask2image, chop_image, chop_mode
class ImageBlend:
def __init__(self):
self.NODE_NAME = 'ImageBlend'
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"background_image": ("IMAGE", ), #
"layer_image": ("IMAGE",), #
"invert_mask": ("BOOLEAN", {"default": True}), # 反转mask
"blend_mode": (chop_mode,), # 混合模式
"opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), # 透明度
},
"optional": {
"layer_mask": ("MASK",), #
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'image_blend'
CATEGORY = '😺dzNodes/LayerUtility'
def image_blend(self, background_image, layer_image,
invert_mask, blend_mode, opacity,
layer_mask=None
):
b_images = []
l_images = []
l_masks = []
ret_images = []
for b in background_image:
b_images.append(torch.unsqueeze(b, 0))
for l in layer_image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
else:
l_masks.append(Image.new('L', m.size, 'white'))
if layer_mask is not None:
if layer_mask.dim() == 2:
layer_mask = torch.unsqueeze(layer_mask, 0)
l_masks = []
for m in layer_mask:
if invert_mask:
m = 1 - m
l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
max_batch = max(len(b_images), len(l_images), len(l_masks))
for i in range(max_batch):
background_image = b_images[i] if i < len(b_images) else b_images[-1]
layer_image = l_images[i] if i < len(l_images) else l_images[-1]
_mask = l_masks[i] if i < len(l_masks) else l_masks[-1]
_canvas = tensor2pil(background_image).convert('RGB')
_layer = tensor2pil(layer_image).convert('RGB')
if _mask.size != _layer.size:
_mask = Image.new('L', _layer.size, 'white')
log(f"Warning: {self.NODE_NAME} mask mismatch, dropped!", message_type='warning')
# 合成layer
_comp = chop_image(_canvas, _layer, blend_mode, opacity)
_canvas.paste(_comp, mask=_mask)
ret_images.append(pil2tensor(_canvas))
log(f"{self.NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)
NODE_CLASS_MAPPINGS = {
"LayerUtility: ImageBlend": ImageBlend
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LayerUtility: ImageBlend": "LayerUtility: ImageBlend"
}