import torch from PIL import Image from .imagefunc import log, pil2tensor, tensor2pil, image2mask, mask2image, chop_image, chop_mode class ImageBlend: def __init__(self): self.NODE_NAME = 'ImageBlend' @classmethod def INPUT_TYPES(self): return { "required": { "background_image": ("IMAGE", ), # "layer_image": ("IMAGE",), # "invert_mask": ("BOOLEAN", {"default": True}), # 反转mask "blend_mode": (chop_mode,), # 混合模式 "opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), # 透明度 }, "optional": { "layer_mask": ("MASK",), # } } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("image",) FUNCTION = 'image_blend' CATEGORY = '😺dzNodes/LayerUtility' def image_blend(self, background_image, layer_image, invert_mask, blend_mode, opacity, layer_mask=None ): b_images = [] l_images = [] l_masks = [] ret_images = [] for b in background_image: b_images.append(torch.unsqueeze(b, 0)) for l in layer_image: l_images.append(torch.unsqueeze(l, 0)) m = tensor2pil(l) if m.mode == 'RGBA': l_masks.append(m.split()[-1]) else: l_masks.append(Image.new('L', m.size, 'white')) if layer_mask is not None: if layer_mask.dim() == 2: layer_mask = torch.unsqueeze(layer_mask, 0) l_masks = [] for m in layer_mask: if invert_mask: m = 1 - m l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L')) max_batch = max(len(b_images), len(l_images), len(l_masks)) for i in range(max_batch): background_image = b_images[i] if i < len(b_images) else b_images[-1] layer_image = l_images[i] if i < len(l_images) else l_images[-1] _mask = l_masks[i] if i < len(l_masks) else l_masks[-1] _canvas = tensor2pil(background_image).convert('RGB') _layer = tensor2pil(layer_image).convert('RGB') if _mask.size != _layer.size: _mask = Image.new('L', _layer.size, 'white') log(f"Warning: {self.NODE_NAME} mask mismatch, dropped!", message_type='warning') # 合成layer _comp = chop_image(_canvas, _layer, blend_mode, opacity) _canvas.paste(_comp, mask=_mask) ret_images.append(pil2tensor(_canvas)) log(f"{self.NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish') return (torch.cat(ret_images, dim=0),) NODE_CLASS_MAPPINGS = { "LayerUtility: ImageBlend": ImageBlend } NODE_DISPLAY_NAME_MAPPINGS = { "LayerUtility: ImageBlend": "LayerUtility: ImageBlend" }