plaidam's picture
Upload 1182 files
3719834 verified
import torch
import numpy as np
from .imagefunc import log, tensor2pil, pil2tensor, apply_to_batch
from PIL import ImageCms, Image, ImageEnhance
from PIL.PngImagePlugin import PngInfo
NODE_NAME = 'HDR Effects'
sRGB_profile = ImageCms.createProfile("sRGB")
Lab_profile = ImageCms.createProfile("LAB")
def adjust_shadows(luminance_array, shadow_intensity, hdr_intensity):
# Darken shadows more as shadow_intensity increases, scaled by hdr_intensity
return np.clip(luminance_array - luminance_array * shadow_intensity * hdr_intensity * 0.5, 0, 255)
def adjust_highlights(luminance_array, highlight_intensity, hdr_intensity):
# Brighten highlights more as highlight_intensity increases, scaled by hdr_intensity
return np.clip(luminance_array + (255 - luminance_array) * highlight_intensity * hdr_intensity * 0.5, 0, 255)
def apply_adjustment(base, factor, intensity_scale):
"""Apply positive adjustment scaled by intensity."""
# Ensure the adjustment increases values within [0, 1] range, scaling by intensity
adjustment = base + (base * factor * intensity_scale)
# Ensure adjustment stays within bounds
return np.clip(adjustment, 0, 1)
def multiply_blend(base, blend):
"""Multiply blend mode."""
return np.clip(base * blend, 0, 255)
def overlay_blend(base, blend):
"""Overlay blend mode."""
# Normalize base and blend to [0, 1] for blending calculation
base = base / 255.0
blend = blend / 255.0
return np.where(base < 0.5, 2 * base * blend, 1 - 2 * (1 - base) * (1 - blend)) * 255
def adjust_shadows_non_linear(luminance, shadow_intensity, max_shadow_adjustment=1.5):
lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize
# Apply a non-linear darkening effect based on shadow_intensity
shadows = lum_array ** (1 / (1 + shadow_intensity * max_shadow_adjustment))
return np.clip(shadows * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255]
def adjust_highlights_non_linear(luminance, highlight_intensity, max_highlight_adjustment=1.5):
lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize
# Brighten highlights more aggressively based on highlight_intensity
highlights = 1 - (1 - lum_array) ** (1 + highlight_intensity * max_highlight_adjustment)
return np.clip(highlights * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255]
def merge_adjustments_with_blend_modes(luminance, shadows, highlights, hdr_intensity, shadow_intensity,
highlight_intensity):
# Ensure the data is in the correct format for processing
base = np.array(luminance, dtype=np.float32)
# Scale the adjustments based on hdr_intensity
scaled_shadow_intensity = shadow_intensity ** 2 * hdr_intensity
scaled_highlight_intensity = highlight_intensity ** 2 * hdr_intensity
# Create luminance-based masks for shadows and highlights
shadow_mask = np.clip((1 - (base / 255)) ** 2, 0, 1)
highlight_mask = np.clip((base / 255) ** 2, 0, 1)
# Apply the adjustments using the masks
adjusted_shadows = np.clip(base * (1 - shadow_mask * scaled_shadow_intensity), 0, 255)
adjusted_highlights = np.clip(base + (255 - base) * highlight_mask * scaled_highlight_intensity, 0, 255)
# Combine the adjusted shadows and highlights
adjusted_luminance = np.clip(adjusted_shadows + adjusted_highlights - base, 0, 255)
# Blend the adjusted luminance with the original luminance based on hdr_intensity
final_luminance = np.clip(base * (1 - hdr_intensity) + adjusted_luminance * hdr_intensity, 0, 255).astype(np.uint8)
return Image.fromarray(final_luminance)
def apply_gamma_correction(lum_array, intensity, base_gamma):
"""
Apply gamma correction to the luminance array.
:param lum_array: Luminance channel as a NumPy array.
:param intensity: HDR intensity factor.
:param base_gamma: Base gamma value for correction.
"""
if intensity == 0: # If intensity is 0, return the array as is.
return lum_array
gamma = 1 + (base_gamma - 1) * intensity # Scale gamma based on intensity.
adjusted = 255 * (lum_array / 255) ** gamma
return np.clip(adjusted, 0, 255).astype(np.uint8)
class LS_HDREffects:
@classmethod
def INPUT_TYPES(cls):
return {'required': {'image': ('IMAGE', {'default': None}),
'hdr_intensity': ('FLOAT', {'default': 0.5, 'min': 0.0, 'max': 5.0, 'step': 0.01}),
'shadow_intensity': ('FLOAT', {'default': 0.25, 'min': 0.0, 'max': 1.0, 'step': 0.01}),
'highlight_intensity': ('FLOAT', {'default': 0.75, 'min': 0.0, 'max': 1.0, 'step': 0.01}),
'gamma_intensity': ('FLOAT', {'default': 0.25, 'min': 0.0, 'max': 1.0, 'step': 0.01}),
'contrast': ('FLOAT', {'default': 0.1, 'min': 0.0, 'max': 1.0, 'step': 0.01}),
'enhance_color': ('FLOAT', {'default': 0.25, 'min': 0.0, 'max': 1.0, 'step': 0.01})
}}
RETURN_TYPES = ('IMAGE',)
RETURN_NAMES = ('image',)
FUNCTION = 'hdr_effects'
CATEGORY = '😺dzNodes/LayerFilter'
@apply_to_batch
def hdr_effects(self, image, hdr_intensity=0.5, shadow_intensity=0.25, highlight_intensity=0.75,
gamma_intensity=0.25, contrast=0.1, enhance_color=0.25):
# Load the image
img = tensor2pil(image)
# Step 1: Convert RGB to LAB for better color preservation
img_lab = ImageCms.profileToProfile(img, sRGB_profile, Lab_profile, outputMode='LAB')
# Extract L, A, and B channels
luminance, a, b = img_lab.split()
# Convert luminance to a NumPy array for processing
lum_array = np.array(luminance, dtype=np.float32)
# Preparing adjustment layers (shadows, midtones, highlights)
# This example assumes you have methods to extract or calculate these adjustments
shadows_adjusted = adjust_shadows_non_linear(luminance, shadow_intensity)
highlights_adjusted = adjust_highlights_non_linear(luminance, highlight_intensity)
merged_adjustments = merge_adjustments_with_blend_modes(lum_array, shadows_adjusted, highlights_adjusted,
hdr_intensity, shadow_intensity, highlight_intensity)
# Apply gamma correction with a base_gamma value (define based on desired effect)
gamma_corrected = apply_gamma_correction(np.array(merged_adjustments), hdr_intensity, gamma_intensity)
# Merge L channel back with original A and B channels
adjusted_lab = Image.merge('LAB', (merged_adjustments, a, b))
# Step 3: Convert LAB back to RGB
img_adjusted = ImageCms.profileToProfile(adjusted_lab, Lab_profile, sRGB_profile, outputMode='RGB')
# Enhance contrast
enhancer = ImageEnhance.Contrast(img_adjusted)
contrast_adjusted = enhancer.enhance(1 + contrast)
# Enhance color saturation
enhancer = ImageEnhance.Color(contrast_adjusted)
color_adjusted = enhancer.enhance(1 + enhance_color * 0.2)
return pil2tensor(color_adjusted)
NODE_CLASS_MAPPINGS = {
"LayerFilter: HDREffects": LS_HDREffects
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LayerFilter: HDREffects": "LayerFilter: HDR Effects"
}