import torch import numpy as np from .imagefunc import log, tensor2pil, pil2tensor, apply_to_batch from PIL import ImageCms, Image, ImageEnhance from PIL.PngImagePlugin import PngInfo NODE_NAME = 'HDR Effects' sRGB_profile = ImageCms.createProfile("sRGB") Lab_profile = ImageCms.createProfile("LAB") def adjust_shadows(luminance_array, shadow_intensity, hdr_intensity): # Darken shadows more as shadow_intensity increases, scaled by hdr_intensity return np.clip(luminance_array - luminance_array * shadow_intensity * hdr_intensity * 0.5, 0, 255) def adjust_highlights(luminance_array, highlight_intensity, hdr_intensity): # Brighten highlights more as highlight_intensity increases, scaled by hdr_intensity return np.clip(luminance_array + (255 - luminance_array) * highlight_intensity * hdr_intensity * 0.5, 0, 255) def apply_adjustment(base, factor, intensity_scale): """Apply positive adjustment scaled by intensity.""" # Ensure the adjustment increases values within [0, 1] range, scaling by intensity adjustment = base + (base * factor * intensity_scale) # Ensure adjustment stays within bounds return np.clip(adjustment, 0, 1) def multiply_blend(base, blend): """Multiply blend mode.""" return np.clip(base * blend, 0, 255) def overlay_blend(base, blend): """Overlay blend mode.""" # Normalize base and blend to [0, 1] for blending calculation base = base / 255.0 blend = blend / 255.0 return np.where(base < 0.5, 2 * base * blend, 1 - 2 * (1 - base) * (1 - blend)) * 255 def adjust_shadows_non_linear(luminance, shadow_intensity, max_shadow_adjustment=1.5): lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize # Apply a non-linear darkening effect based on shadow_intensity shadows = lum_array ** (1 / (1 + shadow_intensity * max_shadow_adjustment)) return np.clip(shadows * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255] def adjust_highlights_non_linear(luminance, highlight_intensity, max_highlight_adjustment=1.5): lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize # Brighten highlights more aggressively based on highlight_intensity highlights = 1 - (1 - lum_array) ** (1 + highlight_intensity * max_highlight_adjustment) return np.clip(highlights * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255] def merge_adjustments_with_blend_modes(luminance, shadows, highlights, hdr_intensity, shadow_intensity, highlight_intensity): # Ensure the data is in the correct format for processing base = np.array(luminance, dtype=np.float32) # Scale the adjustments based on hdr_intensity scaled_shadow_intensity = shadow_intensity ** 2 * hdr_intensity scaled_highlight_intensity = highlight_intensity ** 2 * hdr_intensity # Create luminance-based masks for shadows and highlights shadow_mask = np.clip((1 - (base / 255)) ** 2, 0, 1) highlight_mask = np.clip((base / 255) ** 2, 0, 1) # Apply the adjustments using the masks adjusted_shadows = np.clip(base * (1 - shadow_mask * scaled_shadow_intensity), 0, 255) adjusted_highlights = np.clip(base + (255 - base) * highlight_mask * scaled_highlight_intensity, 0, 255) # Combine the adjusted shadows and highlights adjusted_luminance = np.clip(adjusted_shadows + adjusted_highlights - base, 0, 255) # Blend the adjusted luminance with the original luminance based on hdr_intensity final_luminance = np.clip(base * (1 - hdr_intensity) + adjusted_luminance * hdr_intensity, 0, 255).astype(np.uint8) return Image.fromarray(final_luminance) def apply_gamma_correction(lum_array, intensity, base_gamma): """ Apply gamma correction to the luminance array. :param lum_array: Luminance channel as a NumPy array. :param intensity: HDR intensity factor. :param base_gamma: Base gamma value for correction. """ if intensity == 0: # If intensity is 0, return the array as is. return lum_array gamma = 1 + (base_gamma - 1) * intensity # Scale gamma based on intensity. adjusted = 255 * (lum_array / 255) ** gamma return np.clip(adjusted, 0, 255).astype(np.uint8) class LS_HDREffects: @classmethod def INPUT_TYPES(cls): return {'required': {'image': ('IMAGE', {'default': None}), 'hdr_intensity': ('FLOAT', {'default': 0.5, 'min': 0.0, 'max': 5.0, 'step': 0.01}), 'shadow_intensity': ('FLOAT', {'default': 0.25, 'min': 0.0, 'max': 1.0, 'step': 0.01}), 'highlight_intensity': ('FLOAT', {'default': 0.75, 'min': 0.0, 'max': 1.0, 'step': 0.01}), 'gamma_intensity': ('FLOAT', {'default': 0.25, 'min': 0.0, 'max': 1.0, 'step': 0.01}), 'contrast': ('FLOAT', {'default': 0.1, 'min': 0.0, 'max': 1.0, 'step': 0.01}), 'enhance_color': ('FLOAT', {'default': 0.25, 'min': 0.0, 'max': 1.0, 'step': 0.01}) }} RETURN_TYPES = ('IMAGE',) RETURN_NAMES = ('image',) FUNCTION = 'hdr_effects' CATEGORY = '😺dzNodes/LayerFilter' @apply_to_batch def hdr_effects(self, image, hdr_intensity=0.5, shadow_intensity=0.25, highlight_intensity=0.75, gamma_intensity=0.25, contrast=0.1, enhance_color=0.25): # Load the image img = tensor2pil(image) # Step 1: Convert RGB to LAB for better color preservation img_lab = ImageCms.profileToProfile(img, sRGB_profile, Lab_profile, outputMode='LAB') # Extract L, A, and B channels luminance, a, b = img_lab.split() # Convert luminance to a NumPy array for processing lum_array = np.array(luminance, dtype=np.float32) # Preparing adjustment layers (shadows, midtones, highlights) # This example assumes you have methods to extract or calculate these adjustments shadows_adjusted = adjust_shadows_non_linear(luminance, shadow_intensity) highlights_adjusted = adjust_highlights_non_linear(luminance, highlight_intensity) merged_adjustments = merge_adjustments_with_blend_modes(lum_array, shadows_adjusted, highlights_adjusted, hdr_intensity, shadow_intensity, highlight_intensity) # Apply gamma correction with a base_gamma value (define based on desired effect) gamma_corrected = apply_gamma_correction(np.array(merged_adjustments), hdr_intensity, gamma_intensity) # Merge L channel back with original A and B channels adjusted_lab = Image.merge('LAB', (merged_adjustments, a, b)) # Step 3: Convert LAB back to RGB img_adjusted = ImageCms.profileToProfile(adjusted_lab, Lab_profile, sRGB_profile, outputMode='RGB') # Enhance contrast enhancer = ImageEnhance.Contrast(img_adjusted) contrast_adjusted = enhancer.enhance(1 + contrast) # Enhance color saturation enhancer = ImageEnhance.Color(contrast_adjusted) color_adjusted = enhancer.enhance(1 + enhance_color * 0.2) return pil2tensor(color_adjusted) NODE_CLASS_MAPPINGS = { "LayerFilter: HDREffects": LS_HDREffects } NODE_DISPLAY_NAME_MAPPINGS = { "LayerFilter: HDREffects": "LayerFilter: HDR Effects" }