Spaces:
Build error
Build error
import torch | |
from PIL import Image | |
import numpy as np | |
from .imagefunc import log, tensor2pil, pil2tensor, gradient, Hex_to_RGB | |
class GradientMap: | |
def __init__(self): | |
self.NODE_NAME = 'GradientMap' | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"start_color": ("STRING", {"default": "#015A52"}), | |
"mid_color": ("STRING", {"default": "#02AF9F"}), | |
"end_color": ("STRING", {"default": "#7FFFEC"}), | |
"mid_point": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), | |
}, | |
"optional": { | |
"layer_mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "IMAGE") | |
RETURN_NAMES = ("image", "gradient") | |
FUNCTION = 'apply_gradient_map' | |
CATEGORY = '😺dzNodes/LayerStyle' | |
def apply_gradient_map(self, image, start_color, mid_color, end_color, mid_point, opacity, layer_mask=None): | |
def create_gradient_array(start_color, mid_color, end_color, mid_point): | |
start_rgb = Hex_to_RGB(start_color) | |
mid_rgb = Hex_to_RGB(mid_color) | |
end_rgb = Hex_to_RGB(end_color) | |
mid_index = int(255 * mid_point) | |
gradient1 = np.array([np.linspace(start_rgb[i], mid_rgb[i], mid_index + 1) for i in range(3)]).T | |
gradient2 = np.array([np.linspace(mid_rgb[i], end_rgb[i], 256 - mid_index) for i in range(3)]).T | |
return np.vstack((gradient1[:-1], gradient2)) | |
gradient_array = create_gradient_array(start_color, mid_color, end_color, mid_point) | |
gradient_image = Image.fromarray(np.uint8(gradient_array.reshape(1, -1, 3).repeat(50, axis=0))) | |
gradient_tensor = pil2tensor(gradient_image) | |
ret_images = [] | |
for img in image: | |
pil_image = tensor2pil(img) | |
# Convert to grayscale to get luminance | |
gray_image = np.array(pil_image.convert('L')) | |
# Apply gradient map | |
gradient_mapped = gradient_array[gray_image] | |
# Preserve luminance of original image | |
original_array = np.array(pil_image) | |
luminance = np.sum(original_array * [0.299, 0.587, 0.114], axis=2, keepdims=True) / 255.0 | |
gradient_mapped = gradient_mapped * luminance + original_array * (1 - luminance) | |
gradient_mapped_image = Image.fromarray(np.uint8(gradient_mapped)) | |
# Apply opacity | |
if opacity < 100: | |
gradient_mapped_image = Image.blend(pil_image, gradient_mapped_image, opacity / 100) | |
# Apply mask if provided | |
if layer_mask is not None: | |
mask = tensor2pil(layer_mask).convert('L') | |
pil_image.paste(gradient_mapped_image, (0, 0), mask) | |
else: | |
pil_image = gradient_mapped_image | |
ret_images.append(pil2tensor(pil_image)) | |
log(f"{self.NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish') | |
return (torch.cat(ret_images, dim=0), gradient_tensor) | |
NODE_CLASS_MAPPINGS = { | |
"LayerStyle: Gradient Map": GradientMap | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"LayerStyle: Gradient Map": "LayerStyle: Gradient Map" | |
} |