plaidam's picture
Upload 1182 files
3719834 verified
import torch
from PIL import Image
import numpy as np
from .imagefunc import log, tensor2pil, pil2tensor, gradient, Hex_to_RGB
class GradientMap:
def __init__(self):
self.NODE_NAME = 'GradientMap'
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"start_color": ("STRING", {"default": "#015A52"}),
"mid_color": ("STRING", {"default": "#02AF9F"}),
"end_color": ("STRING", {"default": "#7FFFEC"}),
"mid_point": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 1.0, "step": 0.01}),
"opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}),
},
"optional": {
"layer_mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE", "IMAGE")
RETURN_NAMES = ("image", "gradient")
FUNCTION = 'apply_gradient_map'
CATEGORY = '😺dzNodes/LayerStyle'
def apply_gradient_map(self, image, start_color, mid_color, end_color, mid_point, opacity, layer_mask=None):
def create_gradient_array(start_color, mid_color, end_color, mid_point):
start_rgb = Hex_to_RGB(start_color)
mid_rgb = Hex_to_RGB(mid_color)
end_rgb = Hex_to_RGB(end_color)
mid_index = int(255 * mid_point)
gradient1 = np.array([np.linspace(start_rgb[i], mid_rgb[i], mid_index + 1) for i in range(3)]).T
gradient2 = np.array([np.linspace(mid_rgb[i], end_rgb[i], 256 - mid_index) for i in range(3)]).T
return np.vstack((gradient1[:-1], gradient2))
gradient_array = create_gradient_array(start_color, mid_color, end_color, mid_point)
gradient_image = Image.fromarray(np.uint8(gradient_array.reshape(1, -1, 3).repeat(50, axis=0)))
gradient_tensor = pil2tensor(gradient_image)
ret_images = []
for img in image:
pil_image = tensor2pil(img)
# Convert to grayscale to get luminance
gray_image = np.array(pil_image.convert('L'))
# Apply gradient map
gradient_mapped = gradient_array[gray_image]
# Preserve luminance of original image
original_array = np.array(pil_image)
luminance = np.sum(original_array * [0.299, 0.587, 0.114], axis=2, keepdims=True) / 255.0
gradient_mapped = gradient_mapped * luminance + original_array * (1 - luminance)
gradient_mapped_image = Image.fromarray(np.uint8(gradient_mapped))
# Apply opacity
if opacity < 100:
gradient_mapped_image = Image.blend(pil_image, gradient_mapped_image, opacity / 100)
# Apply mask if provided
if layer_mask is not None:
mask = tensor2pil(layer_mask).convert('L')
pil_image.paste(gradient_mapped_image, (0, 0), mask)
else:
pil_image = gradient_mapped_image
ret_images.append(pil2tensor(pil_image))
log(f"{self.NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0), gradient_tensor)
NODE_CLASS_MAPPINGS = {
"LayerStyle: Gradient Map": GradientMap
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LayerStyle: Gradient Map": "LayerStyle: Gradient Map"
}