import torch from PIL import Image import numpy as np from .imagefunc import log, tensor2pil, pil2tensor, gradient, Hex_to_RGB class GradientMap: def __init__(self): self.NODE_NAME = 'GradientMap' @classmethod def INPUT_TYPES(cls): return { "required": { "image": ("IMAGE",), "start_color": ("STRING", {"default": "#015A52"}), "mid_color": ("STRING", {"default": "#02AF9F"}), "end_color": ("STRING", {"default": "#7FFFEC"}), "mid_point": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 1.0, "step": 0.01}), "opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), }, "optional": { "layer_mask": ("MASK",), } } RETURN_TYPES = ("IMAGE", "IMAGE") RETURN_NAMES = ("image", "gradient") FUNCTION = 'apply_gradient_map' CATEGORY = '😺dzNodes/LayerStyle' def apply_gradient_map(self, image, start_color, mid_color, end_color, mid_point, opacity, layer_mask=None): def create_gradient_array(start_color, mid_color, end_color, mid_point): start_rgb = Hex_to_RGB(start_color) mid_rgb = Hex_to_RGB(mid_color) end_rgb = Hex_to_RGB(end_color) mid_index = int(255 * mid_point) gradient1 = np.array([np.linspace(start_rgb[i], mid_rgb[i], mid_index + 1) for i in range(3)]).T gradient2 = np.array([np.linspace(mid_rgb[i], end_rgb[i], 256 - mid_index) for i in range(3)]).T return np.vstack((gradient1[:-1], gradient2)) gradient_array = create_gradient_array(start_color, mid_color, end_color, mid_point) gradient_image = Image.fromarray(np.uint8(gradient_array.reshape(1, -1, 3).repeat(50, axis=0))) gradient_tensor = pil2tensor(gradient_image) ret_images = [] for img in image: pil_image = tensor2pil(img) # Convert to grayscale to get luminance gray_image = np.array(pil_image.convert('L')) # Apply gradient map gradient_mapped = gradient_array[gray_image] # Preserve luminance of original image original_array = np.array(pil_image) luminance = np.sum(original_array * [0.299, 0.587, 0.114], axis=2, keepdims=True) / 255.0 gradient_mapped = gradient_mapped * luminance + original_array * (1 - luminance) gradient_mapped_image = Image.fromarray(np.uint8(gradient_mapped)) # Apply opacity if opacity < 100: gradient_mapped_image = Image.blend(pil_image, gradient_mapped_image, opacity / 100) # Apply mask if provided if layer_mask is not None: mask = tensor2pil(layer_mask).convert('L') pil_image.paste(gradient_mapped_image, (0, 0), mask) else: pil_image = gradient_mapped_image ret_images.append(pil2tensor(pil_image)) log(f"{self.NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish') return (torch.cat(ret_images, dim=0), gradient_tensor) NODE_CLASS_MAPPINGS = { "LayerStyle: Gradient Map": GradientMap } NODE_DISPLAY_NAME_MAPPINGS = { "LayerStyle: Gradient Map": "LayerStyle: Gradient Map" }