The_Broccolator / comfy /sampler_helpers.py
plaidam's picture
Upload 294 files
be40477 verified
from __future__ import annotations
import uuid
import comfy.model_management
import comfy.conds
import comfy.utils
import comfy.hooks
import comfy.patcher_extension
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
from comfy.model_base import BaseModel
from comfy.controlnet import ControlBase
def prepare_mask(noise_mask, shape, device):
return comfy.utils.reshape_mask(noise_mask, shape).to(device)
def get_models_from_cond(cond, model_type):
models = []
for c in cond:
if model_type in c:
if isinstance(c[model_type], list):
models += c[model_type]
else:
models += [c[model_type]]
return models
def get_hooks_from_cond(cond, full_hooks: comfy.hooks.HookGroup):
# get hooks from conds, and collect cnets so they can be checked for extra_hooks
cnets: list[ControlBase] = []
for c in cond:
if 'hooks' in c:
for hook in c['hooks'].hooks:
full_hooks.add(hook)
if 'control' in c:
cnets.append(c['control'])
def get_extra_hooks_from_cnet(cnet: ControlBase, _list: list):
if cnet.extra_hooks is not None:
_list.append(cnet.extra_hooks)
if cnet.previous_controlnet is None:
return _list
return get_extra_hooks_from_cnet(cnet.previous_controlnet, _list)
hooks_list = []
cnets = set(cnets)
for base_cnet in cnets:
get_extra_hooks_from_cnet(base_cnet, hooks_list)
extra_hooks = comfy.hooks.HookGroup.combine_all_hooks(hooks_list)
if extra_hooks is not None:
for hook in extra_hooks.hooks:
full_hooks.add(hook)
return full_hooks
def convert_cond(cond):
out = []
for c in cond:
temp = c[1].copy()
model_conds = temp.get("model_conds", {})
if c[0] is not None:
temp["cross_attn"] = c[0]
temp["model_conds"] = model_conds
temp["uuid"] = uuid.uuid4()
out.append(temp)
return out
def get_additional_models(conds, dtype):
"""loads additional models in conditioning"""
cnets: list[ControlBase] = []
gligen = []
add_models = []
for k in conds:
cnets += get_models_from_cond(conds[k], "control")
gligen += get_models_from_cond(conds[k], "gligen")
add_models += get_models_from_cond(conds[k], "additional_models")
control_nets = set(cnets)
inference_memory = 0
control_models = []
for m in control_nets:
control_models += m.get_models()
inference_memory += m.inference_memory_requirements(dtype)
gligen = [x[1] for x in gligen]
models = control_models + gligen + add_models
return models, inference_memory
def get_additional_models_from_model_options(model_options: dict[str]=None):
"""loads additional models from registered AddModels hooks"""
models = []
if model_options is not None and "registered_hooks" in model_options:
registered: comfy.hooks.HookGroup = model_options["registered_hooks"]
for hook in registered.get_type(comfy.hooks.EnumHookType.AdditionalModels):
hook: comfy.hooks.AdditionalModelsHook
models.extend(hook.models)
return models
def cleanup_additional_models(models):
"""cleanup additional models that were loaded"""
for m in models:
if hasattr(m, 'cleanup'):
m.cleanup()
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
real_model = model.model
return real_model, conds, models
def cleanup_models(conds, models):
cleanup_additional_models(models)
control_cleanup = []
for k in conds:
control_cleanup += get_models_from_cond(conds[k], "control")
cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
'''
Registers hooks from conds.
'''
# check for hooks in conds - if not registered, see if can be applied
hooks = comfy.hooks.HookGroup()
for k in conds:
get_hooks_from_cond(conds[k], hooks)
# add wrappers and callbacks from ModelPatcher to transformer_options
model_options["transformer_options"]["wrappers"] = comfy.patcher_extension.copy_nested_dicts(model.wrappers)
model_options["transformer_options"]["callbacks"] = comfy.patcher_extension.copy_nested_dicts(model.callbacks)
# begin registering hooks
registered = comfy.hooks.HookGroup()
target_dict = comfy.hooks.create_target_dict(comfy.hooks.EnumWeightTarget.Model)
# handle all TransformerOptionsHooks
for hook in hooks.get_type(comfy.hooks.EnumHookType.TransformerOptions):
hook: comfy.hooks.TransformerOptionsHook
hook.add_hook_patches(model, model_options, target_dict, registered)
# handle all AddModelsHooks
for hook in hooks.get_type(comfy.hooks.EnumHookType.AdditionalModels):
hook: comfy.hooks.AdditionalModelsHook
hook.add_hook_patches(model, model_options, target_dict, registered)
# handle all WeightHooks by registering on ModelPatcher
model.register_all_hook_patches(hooks, target_dict, model_options, registered)
# add registered_hooks onto model_options for further reference
if len(registered) > 0:
model_options["registered_hooks"] = registered
# merge original wrappers and callbacks with hooked wrappers and callbacks
to_load_options: dict[str] = model_options.setdefault("to_load_options", {})
for wc_name in ["wrappers", "callbacks"]:
comfy.patcher_extension.merge_nested_dicts(to_load_options.setdefault(wc_name, {}), model_options["transformer_options"][wc_name],
copy_dict1=False)
return to_load_options