Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This file is part of ComfyUI. | |
Copyright (C) 2024 Comfy | |
This program is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
This program is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with this program. If not, see <https://www.gnu.org/licenses/>. | |
""" | |
import torch | |
import logging | |
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep | |
from comfy.ldm.cascade.stage_c import StageC | |
from comfy.ldm.cascade.stage_b import StageB | |
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation | |
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation | |
from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper | |
import comfy.ldm.genmo.joint_model.asymm_models_joint | |
import comfy.ldm.aura.mmdit | |
import comfy.ldm.pixart.pixartms | |
import comfy.ldm.hydit.models | |
import comfy.ldm.audio.dit | |
import comfy.ldm.audio.embedders | |
import comfy.ldm.flux.model | |
import comfy.ldm.lightricks.model | |
import comfy.ldm.hunyuan_video.model | |
import comfy.ldm.cosmos.model | |
import comfy.model_management | |
import comfy.patcher_extension | |
import comfy.conds | |
import comfy.ops | |
from enum import Enum | |
from . import utils | |
import comfy.latent_formats | |
import math | |
from typing import TYPE_CHECKING | |
if TYPE_CHECKING: | |
from comfy.model_patcher import ModelPatcher | |
class ModelType(Enum): | |
EPS = 1 | |
V_PREDICTION = 2 | |
V_PREDICTION_EDM = 3 | |
STABLE_CASCADE = 4 | |
EDM = 5 | |
FLOW = 6 | |
V_PREDICTION_CONTINUOUS = 7 | |
FLUX = 8 | |
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV | |
def model_sampling(model_config, model_type): | |
s = ModelSamplingDiscrete | |
if model_type == ModelType.EPS: | |
c = EPS | |
elif model_type == ModelType.V_PREDICTION: | |
c = V_PREDICTION | |
elif model_type == ModelType.V_PREDICTION_EDM: | |
c = V_PREDICTION | |
s = ModelSamplingContinuousEDM | |
elif model_type == ModelType.FLOW: | |
c = comfy.model_sampling.CONST | |
s = comfy.model_sampling.ModelSamplingDiscreteFlow | |
elif model_type == ModelType.STABLE_CASCADE: | |
c = EPS | |
s = StableCascadeSampling | |
elif model_type == ModelType.EDM: | |
c = EDM | |
s = ModelSamplingContinuousEDM | |
elif model_type == ModelType.V_PREDICTION_CONTINUOUS: | |
c = V_PREDICTION | |
s = ModelSamplingContinuousV | |
elif model_type == ModelType.FLUX: | |
c = comfy.model_sampling.CONST | |
s = comfy.model_sampling.ModelSamplingFlux | |
class ModelSampling(s, c): | |
pass | |
return ModelSampling(model_config) | |
class BaseModel(torch.nn.Module): | |
def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel): | |
super().__init__() | |
unet_config = model_config.unet_config | |
self.latent_format = model_config.latent_format | |
self.model_config = model_config | |
self.manual_cast_dtype = model_config.manual_cast_dtype | |
self.device = device | |
self.current_patcher: 'ModelPatcher' = None | |
if not unet_config.get("disable_unet_model_creation", False): | |
if model_config.custom_operations is None: | |
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None) | |
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8) | |
else: | |
operations = model_config.custom_operations | |
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations) | |
if comfy.model_management.force_channels_last(): | |
self.diffusion_model.to(memory_format=torch.channels_last) | |
logging.debug("using channels last mode for diffusion model") | |
logging.info("model weight dtype {}, manual cast: {}".format(self.get_dtype(), self.manual_cast_dtype)) | |
self.model_type = model_type | |
self.model_sampling = model_sampling(model_config, model_type) | |
self.adm_channels = unet_config.get("adm_in_channels", None) | |
if self.adm_channels is None: | |
self.adm_channels = 0 | |
self.concat_keys = () | |
logging.info("model_type {}".format(model_type.name)) | |
logging.debug("adm {}".format(self.adm_channels)) | |
self.memory_usage_factor = model_config.memory_usage_factor | |
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): | |
return comfy.patcher_extension.WrapperExecutor.new_class_executor( | |
self._apply_model, | |
self, | |
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.APPLY_MODEL, transformer_options) | |
).execute(x, t, c_concat, c_crossattn, control, transformer_options, **kwargs) | |
def _apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): | |
sigma = t | |
xc = self.model_sampling.calculate_input(sigma, x) | |
if c_concat is not None: | |
xc = torch.cat([xc] + [c_concat], dim=1) | |
context = c_crossattn | |
dtype = self.get_dtype() | |
if self.manual_cast_dtype is not None: | |
dtype = self.manual_cast_dtype | |
xc = xc.to(dtype) | |
t = self.model_sampling.timestep(t).float() | |
if context is not None: | |
context = context.to(dtype) | |
extra_conds = {} | |
for o in kwargs: | |
extra = kwargs[o] | |
if hasattr(extra, "dtype"): | |
if extra.dtype != torch.int and extra.dtype != torch.long: | |
extra = extra.to(dtype) | |
extra_conds[o] = extra | |
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() | |
return self.model_sampling.calculate_denoised(sigma, model_output, x) | |
def get_dtype(self): | |
return self.diffusion_model.dtype | |
def is_adm(self): | |
return self.adm_channels > 0 | |
def encode_adm(self, **kwargs): | |
return None | |
def concat_cond(self, **kwargs): | |
if len(self.concat_keys) > 0: | |
cond_concat = [] | |
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) | |
concat_latent_image = kwargs.get("concat_latent_image", None) | |
if concat_latent_image is None: | |
concat_latent_image = kwargs.get("latent_image", None) | |
else: | |
concat_latent_image = self.process_latent_in(concat_latent_image) | |
noise = kwargs.get("noise", None) | |
device = kwargs["device"] | |
if concat_latent_image.shape[1:] != noise.shape[1:]: | |
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") | |
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0]) | |
if denoise_mask is not None: | |
if len(denoise_mask.shape) == len(noise.shape): | |
denoise_mask = denoise_mask[:, :1] | |
num_dim = noise.ndim - 2 | |
denoise_mask = denoise_mask.reshape((-1, 1) + tuple(denoise_mask.shape[-num_dim:])) | |
if denoise_mask.shape[-2:] != noise.shape[-2:]: | |
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center") | |
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0]) | |
for ck in self.concat_keys: | |
if denoise_mask is not None: | |
if ck == "mask": | |
cond_concat.append(denoise_mask.to(device)) | |
elif ck == "masked_image": | |
cond_concat.append(concat_latent_image.to(device)) # NOTE: the latent_image should be masked by the mask in pixel space | |
elif ck == "mask_inverted": | |
cond_concat.append(1.0 - denoise_mask.to(device)) | |
else: | |
if ck == "mask": | |
cond_concat.append(torch.ones_like(noise)[:, :1]) | |
elif ck == "masked_image": | |
cond_concat.append(self.blank_inpaint_image_like(noise)) | |
elif ck == "mask_inverted": | |
cond_concat.append(torch.zeros_like(noise)[:, :1]) | |
data = torch.cat(cond_concat, dim=1) | |
return data | |
return None | |
def extra_conds(self, **kwargs): | |
out = {} | |
concat_cond = self.concat_cond(**kwargs) | |
if concat_cond is not None: | |
out['c_concat'] = comfy.conds.CONDNoiseShape(concat_cond) | |
adm = self.encode_adm(**kwargs) | |
if adm is not None: | |
out['y'] = comfy.conds.CONDRegular(adm) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) | |
cross_attn_cnet = kwargs.get("cross_attn_controlnet", None) | |
if cross_attn_cnet is not None: | |
out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet) | |
c_concat = kwargs.get("noise_concat", None) | |
if c_concat is not None: | |
out['c_concat'] = comfy.conds.CONDNoiseShape(c_concat) | |
return out | |
def load_model_weights(self, sd, unet_prefix=""): | |
to_load = {} | |
keys = list(sd.keys()) | |
for k in keys: | |
if k.startswith(unet_prefix): | |
to_load[k[len(unet_prefix):]] = sd.pop(k) | |
to_load = self.model_config.process_unet_state_dict(to_load) | |
m, u = self.diffusion_model.load_state_dict(to_load, strict=False) | |
if len(m) > 0: | |
logging.warning("unet missing: {}".format(m)) | |
if len(u) > 0: | |
logging.warning("unet unexpected: {}".format(u)) | |
del to_load | |
return self | |
def process_latent_in(self, latent): | |
return self.latent_format.process_in(latent) | |
def process_latent_out(self, latent): | |
return self.latent_format.process_out(latent) | |
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): | |
extra_sds = [] | |
if clip_state_dict is not None: | |
extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict)) | |
if vae_state_dict is not None: | |
extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict)) | |
if clip_vision_state_dict is not None: | |
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict)) | |
unet_state_dict = self.diffusion_model.state_dict() | |
if self.model_config.scaled_fp8 is not None: | |
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8) | |
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) | |
if self.model_type == ModelType.V_PREDICTION: | |
unet_state_dict["v_pred"] = torch.tensor([]) | |
for sd in extra_sds: | |
unet_state_dict.update(sd) | |
return unet_state_dict | |
def set_inpaint(self): | |
self.concat_keys = ("mask", "masked_image") | |
def blank_inpaint_image_like(latent_image): | |
blank_image = torch.ones_like(latent_image) | |
# these are the values for "zero" in pixel space translated to latent space | |
blank_image[:,0] *= 0.8223 | |
blank_image[:,1] *= -0.6876 | |
blank_image[:,2] *= 0.6364 | |
blank_image[:,3] *= 0.1380 | |
return blank_image | |
self.blank_inpaint_image_like = blank_inpaint_image_like | |
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs): | |
return self.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1)), noise, latent_image) | |
def memory_required(self, input_shape): | |
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): | |
dtype = self.get_dtype() | |
if self.manual_cast_dtype is not None: | |
dtype = self.manual_cast_dtype | |
#TODO: this needs to be tweaked | |
area = input_shape[0] * math.prod(input_shape[2:]) | |
return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024) | |
else: | |
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. | |
area = input_shape[0] * math.prod(input_shape[2:]) | |
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024) | |
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None): | |
adm_inputs = [] | |
weights = [] | |
noise_aug = [] | |
for unclip_cond in unclip_conditioning: | |
for adm_cond in unclip_cond["clip_vision_output"].image_embeds: | |
weight = unclip_cond["strength"] | |
noise_augment = unclip_cond["noise_augmentation"] | |
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) | |
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed) | |
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight | |
weights.append(weight) | |
noise_aug.append(noise_augment) | |
adm_inputs.append(adm_out) | |
if len(noise_aug) > 1: | |
adm_out = torch.stack(adm_inputs).sum(0) | |
noise_augment = noise_augment_merge | |
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) | |
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) | |
adm_out = torch.cat((c_adm, noise_level_emb), 1) | |
return adm_out | |
class SD21UNCLIP(BaseModel): | |
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None): | |
super().__init__(model_config, model_type, device=device) | |
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config) | |
def encode_adm(self, **kwargs): | |
unclip_conditioning = kwargs.get("unclip_conditioning", None) | |
device = kwargs["device"] | |
if unclip_conditioning is None: | |
return torch.zeros((1, self.adm_channels)) | |
else: | |
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10) | |
def sdxl_pooled(args, noise_augmentor): | |
if "unclip_conditioning" in args: | |
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280] | |
else: | |
return args["pooled_output"] | |
class SDXLRefiner(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.EPS, device=None): | |
super().__init__(model_config, model_type, device=device) | |
self.embedder = Timestep(256) | |
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) | |
def encode_adm(self, **kwargs): | |
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) | |
width = kwargs.get("width", 768) | |
height = kwargs.get("height", 768) | |
crop_w = kwargs.get("crop_w", 0) | |
crop_h = kwargs.get("crop_h", 0) | |
if kwargs.get("prompt_type", "") == "negative": | |
aesthetic_score = kwargs.get("aesthetic_score", 2.5) | |
else: | |
aesthetic_score = kwargs.get("aesthetic_score", 6) | |
out = [] | |
out.append(self.embedder(torch.Tensor([height]))) | |
out.append(self.embedder(torch.Tensor([width]))) | |
out.append(self.embedder(torch.Tensor([crop_h]))) | |
out.append(self.embedder(torch.Tensor([crop_w]))) | |
out.append(self.embedder(torch.Tensor([aesthetic_score]))) | |
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) | |
return torch.cat((clip_pooled.to(flat.device), flat), dim=1) | |
class SDXL(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.EPS, device=None): | |
super().__init__(model_config, model_type, device=device) | |
self.embedder = Timestep(256) | |
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) | |
def encode_adm(self, **kwargs): | |
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) | |
width = kwargs.get("width", 768) | |
height = kwargs.get("height", 768) | |
crop_w = kwargs.get("crop_w", 0) | |
crop_h = kwargs.get("crop_h", 0) | |
target_width = kwargs.get("target_width", width) | |
target_height = kwargs.get("target_height", height) | |
out = [] | |
out.append(self.embedder(torch.Tensor([height]))) | |
out.append(self.embedder(torch.Tensor([width]))) | |
out.append(self.embedder(torch.Tensor([crop_h]))) | |
out.append(self.embedder(torch.Tensor([crop_w]))) | |
out.append(self.embedder(torch.Tensor([target_height]))) | |
out.append(self.embedder(torch.Tensor([target_width]))) | |
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) | |
return torch.cat((clip_pooled.to(flat.device), flat), dim=1) | |
class SVD_img2vid(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): | |
super().__init__(model_config, model_type, device=device) | |
self.embedder = Timestep(256) | |
def encode_adm(self, **kwargs): | |
fps_id = kwargs.get("fps", 6) - 1 | |
motion_bucket_id = kwargs.get("motion_bucket_id", 127) | |
augmentation = kwargs.get("augmentation_level", 0) | |
out = [] | |
out.append(self.embedder(torch.Tensor([fps_id]))) | |
out.append(self.embedder(torch.Tensor([motion_bucket_id]))) | |
out.append(self.embedder(torch.Tensor([augmentation]))) | |
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) | |
return flat | |
def extra_conds(self, **kwargs): | |
out = {} | |
adm = self.encode_adm(**kwargs) | |
if adm is not None: | |
out['y'] = comfy.conds.CONDRegular(adm) | |
latent_image = kwargs.get("concat_latent_image", None) | |
noise = kwargs.get("noise", None) | |
if latent_image is None: | |
latent_image = torch.zeros_like(noise) | |
if latent_image.shape[1:] != noise.shape[1:]: | |
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") | |
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) | |
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) | |
if "time_conditioning" in kwargs: | |
out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"]) | |
out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0]) | |
return out | |
class SV3D_u(SVD_img2vid): | |
def encode_adm(self, **kwargs): | |
augmentation = kwargs.get("augmentation_level", 0) | |
out = [] | |
out.append(self.embedder(torch.flatten(torch.Tensor([augmentation])))) | |
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) | |
return flat | |
class SV3D_p(SVD_img2vid): | |
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): | |
super().__init__(model_config, model_type, device=device) | |
self.embedder_512 = Timestep(512) | |
def encode_adm(self, **kwargs): | |
augmentation = kwargs.get("augmentation_level", 0) | |
elevation = kwargs.get("elevation", 0) #elevation and azimuth are in degrees here | |
azimuth = kwargs.get("azimuth", 0) | |
noise = kwargs.get("noise", None) | |
out = [] | |
out.append(self.embedder(torch.flatten(torch.Tensor([augmentation])))) | |
out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(90 - torch.Tensor([elevation])), 360.0)))) | |
out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(torch.Tensor([azimuth])), 360.0)))) | |
out = list(map(lambda a: utils.resize_to_batch_size(a, noise.shape[0]), out)) | |
return torch.cat(out, dim=1) | |
class Stable_Zero123(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None): | |
super().__init__(model_config, model_type, device=device) | |
self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device) | |
self.cc_projection.weight.copy_(cc_projection_weight) | |
self.cc_projection.bias.copy_(cc_projection_bias) | |
def extra_conds(self, **kwargs): | |
out = {} | |
latent_image = kwargs.get("concat_latent_image", None) | |
noise = kwargs.get("noise", None) | |
if latent_image is None: | |
latent_image = torch.zeros_like(noise) | |
if latent_image.shape[1:] != noise.shape[1:]: | |
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") | |
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) | |
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
if cross_attn.shape[-1] != 768: | |
cross_attn = self.cc_projection(cross_attn) | |
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) | |
return out | |
class SD_X4Upscaler(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None): | |
super().__init__(model_config, model_type, device=device) | |
self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350) | |
def extra_conds(self, **kwargs): | |
out = {} | |
image = kwargs.get("concat_image", None) | |
noise = kwargs.get("noise", None) | |
noise_augment = kwargs.get("noise_augmentation", 0.0) | |
device = kwargs["device"] | |
seed = kwargs["seed"] - 10 | |
noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment) | |
if image is None: | |
image = torch.zeros_like(noise)[:,:3] | |
if image.shape[1:] != noise.shape[1:]: | |
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") | |
noise_level = torch.tensor([noise_level], device=device) | |
if noise_augment > 0: | |
image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed) | |
image = utils.resize_to_batch_size(image, noise.shape[0]) | |
out['c_concat'] = comfy.conds.CONDNoiseShape(image) | |
out['y'] = comfy.conds.CONDRegular(noise_level) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) | |
return out | |
class IP2P: | |
def concat_cond(self, **kwargs): | |
image = kwargs.get("concat_latent_image", None) | |
noise = kwargs.get("noise", None) | |
device = kwargs["device"] | |
if image is None: | |
image = torch.zeros_like(noise) | |
if image.shape[1:] != noise.shape[1:]: | |
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") | |
image = utils.resize_to_batch_size(image, noise.shape[0]) | |
return self.process_ip2p_image_in(image) | |
class SD15_instructpix2pix(IP2P, BaseModel): | |
def __init__(self, model_config, model_type=ModelType.EPS, device=None): | |
super().__init__(model_config, model_type, device=device) | |
self.process_ip2p_image_in = lambda image: image | |
class SDXL_instructpix2pix(IP2P, SDXL): | |
def __init__(self, model_config, model_type=ModelType.EPS, device=None): | |
super().__init__(model_config, model_type, device=device) | |
if model_type == ModelType.V_PREDICTION_EDM: | |
self.process_ip2p_image_in = lambda image: comfy.latent_formats.SDXL().process_in(image) #cosxl ip2p | |
else: | |
self.process_ip2p_image_in = lambda image: image #diffusers ip2p | |
class StableCascade_C(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=StageC) | |
self.diffusion_model.eval().requires_grad_(False) | |
def extra_conds(self, **kwargs): | |
out = {} | |
clip_text_pooled = kwargs["pooled_output"] | |
if clip_text_pooled is not None: | |
out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) | |
if "unclip_conditioning" in kwargs: | |
embeds = [] | |
for unclip_cond in kwargs["unclip_conditioning"]: | |
weight = unclip_cond["strength"] | |
embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight) | |
clip_img = torch.cat(embeds, dim=1) | |
else: | |
clip_img = torch.zeros((1, 1, 768)) | |
out["clip_img"] = comfy.conds.CONDRegular(clip_img) | |
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,))) | |
out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,))) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn) | |
return out | |
class StableCascade_B(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=StageB) | |
self.diffusion_model.eval().requires_grad_(False) | |
def extra_conds(self, **kwargs): | |
out = {} | |
noise = kwargs.get("noise", None) | |
clip_text_pooled = kwargs["pooled_output"] | |
if clip_text_pooled is not None: | |
out['clip'] = comfy.conds.CONDRegular(clip_text_pooled) | |
#size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched | |
prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device)) | |
out["effnet"] = comfy.conds.CONDRegular(prior) | |
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,))) | |
return out | |
class SD3(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.FLOW, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=OpenAISignatureMMDITWrapper) | |
def encode_adm(self, **kwargs): | |
return kwargs["pooled_output"] | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
return out | |
class AuraFlow(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.FLOW, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.aura.mmdit.MMDiT) | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
return out | |
class StableAudio1(BaseModel): | |
def __init__(self, model_config, seconds_start_embedder_weights, seconds_total_embedder_weights, model_type=ModelType.V_PREDICTION_CONTINUOUS, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.audio.dit.AudioDiffusionTransformer) | |
self.seconds_start_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512) | |
self.seconds_total_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512) | |
self.seconds_start_embedder.load_state_dict(seconds_start_embedder_weights) | |
self.seconds_total_embedder.load_state_dict(seconds_total_embedder_weights) | |
def extra_conds(self, **kwargs): | |
out = {} | |
noise = kwargs.get("noise", None) | |
device = kwargs["device"] | |
seconds_start = kwargs.get("seconds_start", 0) | |
seconds_total = kwargs.get("seconds_total", int(noise.shape[-1] / 21.53)) | |
seconds_start_embed = self.seconds_start_embedder([seconds_start])[0].to(device) | |
seconds_total_embed = self.seconds_total_embedder([seconds_total])[0].to(device) | |
global_embed = torch.cat([seconds_start_embed, seconds_total_embed], dim=-1).reshape((1, -1)) | |
out['global_embed'] = comfy.conds.CONDRegular(global_embed) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
cross_attn = torch.cat([cross_attn.to(device), seconds_start_embed.repeat((cross_attn.shape[0], 1, 1)), seconds_total_embed.repeat((cross_attn.shape[0], 1, 1))], dim=1) | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
return out | |
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): | |
sd = super().state_dict_for_saving(clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict) | |
d = {"conditioner.conditioners.seconds_start.": self.seconds_start_embedder.state_dict(), "conditioner.conditioners.seconds_total.": self.seconds_total_embedder.state_dict()} | |
for k in d: | |
s = d[k] | |
for l in s: | |
sd["{}{}".format(k, l)] = s[l] | |
return sd | |
class HunyuanDiT(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hydit.models.HunYuanDiT) | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
attention_mask = kwargs.get("attention_mask", None) | |
if attention_mask is not None: | |
out['text_embedding_mask'] = comfy.conds.CONDRegular(attention_mask) | |
conditioning_mt5xl = kwargs.get("conditioning_mt5xl", None) | |
if conditioning_mt5xl is not None: | |
out['encoder_hidden_states_t5'] = comfy.conds.CONDRegular(conditioning_mt5xl) | |
attention_mask_mt5xl = kwargs.get("attention_mask_mt5xl", None) | |
if attention_mask_mt5xl is not None: | |
out['text_embedding_mask_t5'] = comfy.conds.CONDRegular(attention_mask_mt5xl) | |
width = kwargs.get("width", 768) | |
height = kwargs.get("height", 768) | |
target_width = kwargs.get("target_width", width) | |
target_height = kwargs.get("target_height", height) | |
out['image_meta_size'] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]])) | |
return out | |
class PixArt(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.EPS, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.pixart.pixartms.PixArtMS) | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
width = kwargs.get("width", None) | |
height = kwargs.get("height", None) | |
if width is not None and height is not None: | |
out["c_size"] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width]])) | |
out["c_ar"] = comfy.conds.CONDRegular(torch.FloatTensor([[kwargs.get("aspect_ratio", height/width)]])) | |
return out | |
class Flux(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.FLUX, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux) | |
def concat_cond(self, **kwargs): | |
try: | |
#Handle Flux control loras dynamically changing the img_in weight. | |
num_channels = self.diffusion_model.img_in.weight.shape[1] // (self.diffusion_model.patch_size * self.diffusion_model.patch_size) | |
except: | |
#Some cases like tensorrt might not have the weights accessible | |
num_channels = self.model_config.unet_config["in_channels"] | |
out_channels = self.model_config.unet_config["out_channels"] | |
if num_channels <= out_channels: | |
return None | |
image = kwargs.get("concat_latent_image", None) | |
noise = kwargs.get("noise", None) | |
device = kwargs["device"] | |
if image is None: | |
image = torch.zeros_like(noise) | |
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") | |
image = utils.resize_to_batch_size(image, noise.shape[0]) | |
image = self.process_latent_in(image) | |
if num_channels <= out_channels * 2: | |
return image | |
#inpaint model | |
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) | |
if mask is None: | |
mask = torch.ones_like(noise)[:, :1] | |
mask = torch.mean(mask, dim=1, keepdim=True) | |
mask = utils.common_upscale(mask.to(device), noise.shape[-1] * 8, noise.shape[-2] * 8, "bilinear", "center") | |
mask = mask.view(mask.shape[0], mask.shape[2] // 8, 8, mask.shape[3] // 8, 8).permute(0, 2, 4, 1, 3).reshape(mask.shape[0], -1, mask.shape[2] // 8, mask.shape[3] // 8) | |
mask = utils.resize_to_batch_size(mask, noise.shape[0]) | |
return torch.cat((image, mask), dim=1) | |
def encode_adm(self, **kwargs): | |
return kwargs["pooled_output"] | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
# upscale the attention mask, since now we | |
attention_mask = kwargs.get("attention_mask", None) | |
if attention_mask is not None: | |
shape = kwargs["noise"].shape | |
mask_ref_size = kwargs["attention_mask_img_shape"] | |
# the model will pad to the patch size, and then divide | |
# essentially dividing and rounding up | |
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size)) | |
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok)) | |
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) | |
guidance = kwargs.get("guidance", 3.5) | |
if guidance is not None: | |
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance])) | |
return out | |
class GenmoMochi(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.FLOW, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.genmo.joint_model.asymm_models_joint.AsymmDiTJoint) | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
attention_mask = kwargs.get("attention_mask", None) | |
if attention_mask is not None: | |
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) | |
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item())) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
return out | |
class LTXV(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.FLUX, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel) #TODO | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
attention_mask = kwargs.get("attention_mask", None) | |
if attention_mask is not None: | |
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
guiding_latent = kwargs.get("guiding_latent", None) | |
if guiding_latent is not None: | |
out['guiding_latent'] = comfy.conds.CONDRegular(guiding_latent) | |
guiding_latent_noise_scale = kwargs.get("guiding_latent_noise_scale", None) | |
if guiding_latent_noise_scale is not None: | |
out["guiding_latent_noise_scale"] = comfy.conds.CONDConstant(guiding_latent_noise_scale) | |
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25)) | |
return out | |
class HunyuanVideo(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.FLOW, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo) | |
def encode_adm(self, **kwargs): | |
return kwargs["pooled_output"] | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
attention_mask = kwargs.get("attention_mask", None) | |
if attention_mask is not None: | |
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
guidance = kwargs.get("guidance", 6.0) | |
if guidance is not None: | |
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance])) | |
return out | |
class CosmosVideo(BaseModel): | |
def __init__(self, model_config, model_type=ModelType.EDM, image_to_video=False, device=None): | |
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.model.GeneralDIT) | |
self.image_to_video = image_to_video | |
if self.image_to_video: | |
self.concat_keys = ("mask_inverted",) | |
def extra_conds(self, **kwargs): | |
out = super().extra_conds(**kwargs) | |
attention_mask = kwargs.get("attention_mask", None) | |
if attention_mask is not None: | |
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) | |
out['fps'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", None)) | |
return out | |
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs): | |
sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1)) | |
sigma_noise_augmentation = 0 #TODO | |
if sigma_noise_augmentation != 0: | |
latent_image = latent_image + noise | |
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image) | |
return latent_image * ((sigma ** 2 + self.model_sampling.sigma_data ** 2) ** 0.5) | |