Spaces:
Build error
Build error
# Based on: | |
# https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license] | |
# https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license] | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, Mlp, timestep_embedding | |
from comfy.ldm.modules.attention import optimized_attention | |
# if model_management.xformers_enabled(): | |
# import xformers.ops | |
# if int((xformers.__version__).split(".")[2].split("+")[0]) >= 28: | |
# block_diagonal_mask_from_seqlens = xformers.ops.fmha.attn_bias.BlockDiagonalMask.from_seqlens | |
# else: | |
# block_diagonal_mask_from_seqlens = xformers.ops.fmha.BlockDiagonalMask.from_seqlens | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
def t2i_modulate(x, shift, scale): | |
return x * (1 + scale) + shift | |
class MultiHeadCrossAttention(nn.Module): | |
def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., dtype=None, device=None, operations=None, **kwargs): | |
super(MultiHeadCrossAttention, self).__init__() | |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" | |
self.d_model = d_model | |
self.num_heads = num_heads | |
self.head_dim = d_model // num_heads | |
self.q_linear = operations.Linear(d_model, d_model, dtype=dtype, device=device) | |
self.kv_linear = operations.Linear(d_model, d_model*2, dtype=dtype, device=device) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = operations.Linear(d_model, d_model, dtype=dtype, device=device) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, cond, mask=None): | |
# query/value: img tokens; key: condition; mask: if padding tokens | |
B, N, C = x.shape | |
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) | |
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) | |
k, v = kv.unbind(2) | |
assert mask is None # TODO? | |
# # TODO: xformers needs separate mask logic here | |
# if model_management.xformers_enabled(): | |
# attn_bias = None | |
# if mask is not None: | |
# attn_bias = block_diagonal_mask_from_seqlens([N] * B, mask) | |
# x = xformers.ops.memory_efficient_attention(q, k, v, p=0, attn_bias=attn_bias) | |
# else: | |
# q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),) | |
# attn_mask = None | |
# mask = torch.ones(()) | |
# if mask is not None and len(mask) > 1: | |
# # Create equivalent of xformer diagonal block mask, still only correct for square masks | |
# # But depth doesn't matter as tensors can expand in that dimension | |
# attn_mask_template = torch.ones( | |
# [q.shape[2] // B, mask[0]], | |
# dtype=torch.bool, | |
# device=q.device | |
# ) | |
# attn_mask = torch.block_diag(attn_mask_template) | |
# | |
# # create a mask on the diagonal for each mask in the batch | |
# for _ in range(B - 1): | |
# attn_mask = torch.block_diag(attn_mask, attn_mask_template) | |
# x = optimized_attention(q, k, v, self.num_heads, mask=attn_mask, skip_reshape=True) | |
x = optimized_attention(q.view(B, -1, C), k.view(B, -1, C), v.view(B, -1, C), self.num_heads, mask=None) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class AttentionKVCompress(nn.Module): | |
"""Multi-head Attention block with KV token compression and qk norm.""" | |
def __init__(self, dim, num_heads=8, qkv_bias=True, sampling='conv', sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **kwargs): | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool: If True, add a learnable bias to query, key, value. | |
""" | |
super().__init__() | |
assert dim % num_heads == 0, 'dim should be divisible by num_heads' | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim ** -0.5 | |
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) | |
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) | |
self.sampling=sampling # ['conv', 'ave', 'uniform', 'uniform_every'] | |
self.sr_ratio = sr_ratio | |
if sr_ratio > 1 and sampling == 'conv': | |
# Avg Conv Init. | |
self.sr = operations.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio, dtype=dtype, device=device) | |
# self.sr.weight.data.fill_(1/sr_ratio**2) | |
# self.sr.bias.data.zero_() | |
self.norm = operations.LayerNorm(dim, dtype=dtype, device=device) | |
if qk_norm: | |
self.q_norm = operations.LayerNorm(dim, dtype=dtype, device=device) | |
self.k_norm = operations.LayerNorm(dim, dtype=dtype, device=device) | |
else: | |
self.q_norm = nn.Identity() | |
self.k_norm = nn.Identity() | |
def downsample_2d(self, tensor, H, W, scale_factor, sampling=None): | |
if sampling is None or scale_factor == 1: | |
return tensor | |
B, N, C = tensor.shape | |
if sampling == 'uniform_every': | |
return tensor[:, ::scale_factor], int(N // scale_factor) | |
tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2) | |
new_H, new_W = int(H / scale_factor), int(W / scale_factor) | |
new_N = new_H * new_W | |
if sampling == 'ave': | |
tensor = F.interpolate( | |
tensor, scale_factor=1 / scale_factor, mode='nearest' | |
).permute(0, 2, 3, 1) | |
elif sampling == 'uniform': | |
tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1) | |
elif sampling == 'conv': | |
tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1) | |
tensor = self.norm(tensor) | |
else: | |
raise ValueError | |
return tensor.reshape(B, new_N, C).contiguous(), new_N | |
def forward(self, x, mask=None, HW=None, block_id=None): | |
B, N, C = x.shape # 2 4096 1152 | |
new_N = N | |
if HW is None: | |
H = W = int(N ** 0.5) | |
else: | |
H, W = HW | |
qkv = self.qkv(x).reshape(B, N, 3, C) | |
q, k, v = qkv.unbind(2) | |
q = self.q_norm(q) | |
k = self.k_norm(k) | |
# KV compression | |
if self.sr_ratio > 1: | |
k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling) | |
v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling) | |
q = q.reshape(B, N, self.num_heads, C // self.num_heads) | |
k = k.reshape(B, new_N, self.num_heads, C // self.num_heads) | |
v = v.reshape(B, new_N, self.num_heads, C // self.num_heads) | |
if mask is not None: | |
raise NotImplementedError("Attn mask logic not added for self attention") | |
# This is never called at the moment | |
# attn_bias = None | |
# if mask is not None: | |
# attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device) | |
# attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf')) | |
# attention 2 | |
q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),) | |
x = optimized_attention(q, k, v, self.num_heads, mask=None, skip_reshape=True) | |
x = x.view(B, N, C) | |
x = self.proj(x) | |
return x | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of PixArt. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class T2IFinalLayer(nn.Module): | |
""" | |
The final layer of PixArt. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5) | |
self.out_channels = out_channels | |
def forward(self, x, t): | |
shift, scale = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t[:, None]).chunk(2, dim=1) | |
x = t2i_modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class MaskFinalLayer(nn.Module): | |
""" | |
The final layer of PixArt. | |
""" | |
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device) | |
) | |
def forward(self, x, t): | |
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class DecoderLayer(nn.Module): | |
""" | |
The final layer of PixArt. | |
""" | |
def __init__(self, hidden_size, decoder_hidden_size, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.norm_decoder = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.linear = operations.Linear(hidden_size, decoder_hidden_size, bias=True, dtype=dtype, device=device) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) | |
) | |
def forward(self, x, t): | |
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) | |
x = modulate(self.norm_decoder(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class SizeEmbedder(TimestepEmbedder): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): | |
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size, operations=operations) | |
self.mlp = nn.Sequential( | |
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), | |
nn.SiLU(), | |
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
self.outdim = hidden_size | |
def forward(self, s, bs): | |
if s.ndim == 1: | |
s = s[:, None] | |
assert s.ndim == 2 | |
if s.shape[0] != bs: | |
s = s.repeat(bs//s.shape[0], 1) | |
assert s.shape[0] == bs | |
b, dims = s.shape[0], s.shape[1] | |
s = rearrange(s, "b d -> (b d)") | |
s_freq = timestep_embedding(s, self.frequency_embedding_size) | |
s_emb = self.mlp(s_freq.to(s.dtype)) | |
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) | |
return s_emb | |
class LabelEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, num_classes, hidden_size, dropout_prob, dtype=None, device=None, operations=None): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = operations.Embedding(num_classes + use_cfg_embedding, hidden_size, dtype=dtype, device=device), | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
def token_drop(self, labels, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
labels = torch.where(drop_ids, self.num_classes, labels) | |
return labels | |
def forward(self, labels, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
labels = self.token_drop(labels, force_drop_ids) | |
embeddings = self.embedding_table(labels) | |
return embeddings | |
class CaptionEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.y_proj = Mlp( | |
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, | |
dtype=dtype, device=device, operations=operations, | |
) | |
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5)) | |
self.uncond_prob = uncond_prob | |
def token_drop(self, caption, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) | |
return caption | |
def forward(self, caption, train, force_drop_ids=None): | |
if train: | |
assert caption.shape[2:] == self.y_embedding.shape | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
caption = self.token_drop(caption, force_drop_ids) | |
caption = self.y_proj(caption) | |
return caption | |
class CaptionEmbedderDoubleBr(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.proj = Mlp( | |
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, | |
dtype=dtype, device=device, operations=operations, | |
) | |
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5) | |
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5) | |
self.uncond_prob = uncond_prob | |
def token_drop(self, global_caption, caption, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption) | |
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) | |
return global_caption, caption | |
def forward(self, caption, train, force_drop_ids=None): | |
assert caption.shape[2: ] == self.y_embedding.shape | |
global_caption = caption.mean(dim=2).squeeze() | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids) | |
y_embed = self.proj(global_caption) | |
return y_embed, caption | |