Spaces:
Build error
Build error
#taken from: https://github.com/lllyasviel/ControlNet | |
#and modified | |
import torch | |
import torch.nn as nn | |
from ..ldm.modules.diffusionmodules.util import ( | |
timestep_embedding, | |
) | |
from ..ldm.modules.attention import SpatialTransformer | |
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample | |
from ..ldm.util import exists | |
from .control_types import UNION_CONTROLNET_TYPES | |
from collections import OrderedDict | |
import comfy.ops | |
from comfy.ldm.modules.attention import optimized_attention | |
class OptimizedAttention(nn.Module): | |
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.heads = nhead | |
self.c = c | |
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device) | |
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device) | |
def forward(self, x): | |
x = self.in_proj(x) | |
q, k, v = x.split(self.c, dim=2) | |
out = optimized_attention(q, k, v, self.heads) | |
return self.out_proj(out) | |
class QuickGELU(nn.Module): | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class ResBlockUnionControlnet(nn.Module): | |
def __init__(self, dim, nhead, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations) | |
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device) | |
self.mlp = nn.Sequential( | |
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()), | |
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))])) | |
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device) | |
def attention(self, x: torch.Tensor): | |
return self.attn(x) | |
def forward(self, x: torch.Tensor): | |
x = x + self.attention(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class ControlledUnetModel(UNetModel): | |
#implemented in the ldm unet | |
pass | |
class ControlNet(nn.Module): | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
hint_channels, | |
num_res_blocks, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
num_classes=None, | |
use_checkpoint=False, | |
dtype=torch.float32, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
adm_in_channels=None, | |
transformer_depth_middle=None, | |
transformer_depth_output=None, | |
attn_precision=None, | |
union_controlnet_num_control_type=None, | |
device=None, | |
operations=comfy.ops.disable_weight_init, | |
**kwargs, | |
): | |
super().__init__() | |
assert use_spatial_transformer == True, "use_spatial_transformer has to be true" | |
if use_spatial_transformer: | |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
# from omegaconf.listconfig import ListConfig | |
# if type(context_dim) == ListConfig: | |
# context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.dims = dims | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
transformer_depth = transformer_depth[:] | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.dtype = dtype | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | |
) | |
if self.num_classes is not None: | |
if isinstance(self.num_classes, int): | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
elif self.num_classes == "continuous": | |
self.label_emb = nn.Linear(1, time_embed_dim) | |
elif self.num_classes == "sequential": | |
assert adm_in_channels is not None | |
self.label_emb = nn.Sequential( | |
nn.Sequential( | |
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), | |
) | |
) | |
else: | |
raise ValueError() | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) | |
) | |
] | |
) | |
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)]) | |
self.input_hint_block = TimestepEmbedSequential( | |
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device), | |
nn.SiLU(), | |
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device) | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dtype=self.dtype, | |
device=device, | |
operations=operations, | |
) | |
] | |
ch = mult * model_channels | |
num_transformers = transformer_depth.pop(0) | |
if num_transformers > 0: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
#num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append( | |
SpatialTransformer( | |
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
dtype=self.dtype, | |
device=device, | |
operations=operations | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
#num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
mid_block = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dtype=self.dtype, | |
device=device, | |
operations=operations | |
)] | |
if transformer_depth_middle >= 0: | |
mid_block += [SpatialTransformer( # always uses a self-attn | |
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dtype=self.dtype, | |
device=device, | |
operations=operations | |
)] | |
self.middle_block = TimestepEmbedSequential(*mid_block) | |
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device) | |
self._feature_size += ch | |
if union_controlnet_num_control_type is not None: | |
self.num_control_type = union_controlnet_num_control_type | |
num_trans_channel = 320 | |
num_trans_head = 8 | |
num_trans_layer = 1 | |
num_proj_channel = 320 | |
# task_scale_factor = num_trans_channel ** 0.5 | |
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device)) | |
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)]) | |
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device) | |
#----------------------------------------------------------------------------------------------------- | |
control_add_embed_dim = 256 | |
class ControlAddEmbedding(nn.Module): | |
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.num_control_type = num_control_type | |
self.in_dim = in_dim | |
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device) | |
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device) | |
def forward(self, control_type, dtype, device): | |
c_type = torch.zeros((self.num_control_type,), device=device) | |
c_type[control_type] = 1.0 | |
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim)) | |
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type))) | |
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations) | |
else: | |
self.task_embedding = None | |
self.control_add_embedding = None | |
def union_controlnet_merge(self, hint, control_type, emb, context): | |
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main | |
inputs = [] | |
condition_list = [] | |
for idx in range(min(1, len(control_type))): | |
controlnet_cond = self.input_hint_block(hint[idx], emb, context) | |
feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) | |
if idx < len(control_type): | |
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device) | |
inputs.append(feat_seq.unsqueeze(1)) | |
condition_list.append(controlnet_cond) | |
x = torch.cat(inputs, dim=1) | |
x = self.transformer_layes(x) | |
controlnet_cond_fuser = None | |
for idx in range(len(control_type)): | |
alpha = self.spatial_ch_projs(x[:, idx]) | |
alpha = alpha.unsqueeze(-1).unsqueeze(-1) | |
o = condition_list[idx] + alpha | |
if controlnet_cond_fuser is None: | |
controlnet_cond_fuser = o | |
else: | |
controlnet_cond_fuser += o | |
return controlnet_cond_fuser | |
def make_zero_conv(self, channels, operations=None, dtype=None, device=None): | |
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device)) | |
def forward(self, x, hint, timesteps, context, y=None, **kwargs): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
emb = self.time_embed(t_emb) | |
guided_hint = None | |
if self.control_add_embedding is not None: #Union Controlnet | |
control_type = kwargs.get("control_type", []) | |
if any([c >= self.num_control_type for c in control_type]): | |
max_type = max(control_type) | |
max_type_name = { | |
v: k for k, v in UNION_CONTROLNET_TYPES.items() | |
}[max_type] | |
raise ValueError( | |
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" + | |
f"({self.num_control_type}) supported.\n" + | |
"Please consider using the ProMax ControlNet Union model.\n" + | |
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main" | |
) | |
emb += self.control_add_embedding(control_type, emb.dtype, emb.device) | |
if len(control_type) > 0: | |
if len(hint.shape) < 5: | |
hint = hint.unsqueeze(dim=0) | |
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context) | |
if guided_hint is None: | |
guided_hint = self.input_hint_block(hint, emb, context) | |
out_output = [] | |
out_middle = [] | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
out_output.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
out_middle.append(self.middle_block_out(h, emb, context)) | |
return {"middle": out_middle, "output": out_output} | |