Spaces:
Build error
Build error
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h | |
index 1d2a3540..b1a9ee96 100644 | |
--- a/ggml/include/ggml.h | |
+++ b/ggml/include/ggml.h | |
#define GGML_MAX_CONTEXTS 64 | |
#define GGML_MAX_SRC 10 | |
#ifndef GGML_MAX_NAME | |
-#define GGML_MAX_NAME 64 | |
+#define GGML_MAX_NAME 128 | |
#endif | |
#define GGML_MAX_OP_PARAMS 64 | |
#define GGML_DEFAULT_N_THREADS 4 | |
diff --git a/src/llama.cpp b/src/llama.cpp | |
index 5ab65ea9..35580d9d 100644 | |
--- a/src/llama.cpp | |
+++ b/src/llama.cpp | |
enum llm_arch { | |
LLM_ARCH_JAIS, | |
LLM_ARCH_NEMOTRON, | |
LLM_ARCH_EXAONE, | |
+ LLM_ARCH_FLUX, | |
+ LLM_ARCH_SD1, | |
+ LLM_ARCH_SDXL, | |
LLM_ARCH_UNKNOWN, | |
}; | |
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { | |
{ LLM_ARCH_JAIS, "jais" }, | |
{ LLM_ARCH_NEMOTRON, "nemotron" }, | |
{ LLM_ARCH_EXAONE, "exaone" }, | |
+ { LLM_ARCH_FLUX, "flux" }, | |
+ { LLM_ARCH_SD1, "sd1" }, | |
+ { LLM_ARCH_SDXL, "sdxl" }, | |
{ LLM_ARCH_UNKNOWN, "(unknown)" }, | |
}; | |
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA | |
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, | |
}, | |
}, | |
+ { LLM_ARCH_FLUX, {}}, | |
+ { LLM_ARCH_SD1, {}}, | |
+ { LLM_ARCH_SDXL, {}}, | |
{ | |
LLM_ARCH_UNKNOWN, | |
{ | |
static void llm_load_hparams( | |
// get general kv | |
ml.get_key(LLM_KV_GENERAL_NAME, model.name, false); | |
+ // Disable LLM metadata for image models | |
+ if (model.arch == LLM_ARCH_FLUX || model.arch == LLM_ARCH_SD1 || model.arch == LLM_ARCH_SDXL) { | |
+ model.ftype = ml.ftype; | |
+ return; | |
+ } | |
+ | |
// get hparams kv | |
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); | |
static void llama_tensor_dequantize_internal( | |
workers.clear(); | |
} | |
+static ggml_type img_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { | |
+ // Special function for quantizing image model tensors | |
+ const std::string name = ggml_get_name(tensor); | |
+ const llm_arch arch = qs.model.arch; | |
+ | |
+ // Sanity check | |
+ if ( | |
+ (name.find("model.diffusion_model.") != std::string::npos) || | |
+ (name.find("first_stage_model.") != std::string::npos) || | |
+ (name.find("single_transformer_blocks.") != std::string::npos) | |
+ ) { | |
+ throw std::runtime_error("Invalid input GGUF file. This is not a supported UNET model"); | |
+ } | |
+ | |
+ // Unsupported quant types - exclude all IQ quants for now | |
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || | |
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_Q4_0_4_4 || | |
+ ftype == LLAMA_FTYPE_MOSTLY_Q4_0_4_8 || ftype == LLAMA_FTYPE_MOSTLY_Q4_0_8_8) { | |
+ throw std::runtime_error("Invalid quantization type for image model (Not supported)"); | |
+ } | |
+ | |
+ if ( // Tensors to keep in FP32 precision | |
+ (arch == LLM_ARCH_FLUX) && ( | |
+ (name.find("img_in.") != std::string::npos) || | |
+ (name.find("time_in.in_layer.") != std::string::npos) || | |
+ (name.find("vector_in.in_layer.") != std::string::npos) || | |
+ (name.find("guidance_in.in_layer.") != std::string::npos) || | |
+ (name.find("final_layer.linear.") != std::string::npos) | |
+ ) || (arch == LLM_ARCH_SD1 || arch == LLM_ARCH_SDXL) && ( | |
+ (name.find("conv_in.") != std::string::npos) || | |
+ (name.find("conv_out.") != std::string::npos) || | |
+ (name == "input_blocks.0.0.weight") || | |
+ (name == "out.2.weight") | |
+ )) { | |
+ new_type = GGML_TYPE_F32; | |
+ } else if ( // Tensors to keep in FP16 precision | |
+ (arch == LLM_ARCH_FLUX) && ( | |
+ (name.find("txt_in.") != std::string::npos) || | |
+ (name.find("time_in.") != std::string::npos) || | |
+ (name.find("vector_in.") != std::string::npos) || | |
+ (name.find("guidance_in.") != std::string::npos) || | |
+ (name.find("final_layer.") != std::string::npos) | |
+ ) || (arch == LLM_ARCH_SD1 || arch == LLM_ARCH_SDXL) && ( | |
+ (name.find("class_embedding.") != std::string::npos) || | |
+ (name.find("time_embedding.") != std::string::npos) || | |
+ (name.find("add_embedding.") != std::string::npos) || | |
+ (name.find("time_embed.") != std::string::npos) || | |
+ (name.find("label_emb.") != std::string::npos) || | |
+ (name.find("proj_in.") != std::string::npos) || | |
+ (name.find("proj_out.") != std::string::npos) | |
+ // (name.find("conv_shortcut.") != std::string::npos) // marginal improvement | |
+ )) { | |
+ new_type = GGML_TYPE_F16; | |
+ } else if ( // Rules for to_v attention | |
+ (name.find("attn_v.weight") != std::string::npos) || | |
+ (name.find(".to_v.weight") != std::string::npos) | |
+ ){ | |
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { | |
+ new_type = GGML_TYPE_Q3_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { | |
+ new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) { | |
+ new_type = GGML_TYPE_Q6_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ ++qs.i_attention_wv; | |
+ } else if ( // Rules for fused qkv attention | |
+ (name.find("attn_qkv.weight") != std::string::npos) || | |
+ (name.find("attn.qkv.weight") != std::string::npos) | |
+ ) { | |
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { | |
+ new_type = GGML_TYPE_Q4_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) { | |
+ new_type = GGML_TYPE_Q6_K; | |
+ } | |
+ } else if ( // Rules for ffn | |
+ (name.find("ffn_down") != std::string::npos) || | |
+ (name.find("DenseReluDense.wo") != std::string::npos) | |
+ ) { | |
+ // TODO: add back `layer_info` with some model specific logic + logic further down | |
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { | |
+ new_type = GGML_TYPE_Q4_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S) { | |
+ new_type = GGML_TYPE_Q5_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { | |
+ new_type = GGML_TYPE_Q6_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) { | |
+ new_type = GGML_TYPE_Q6_K; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_0) { | |
+ new_type = GGML_TYPE_Q4_1; | |
+ } | |
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_0) { | |
+ new_type = GGML_TYPE_Q5_1; | |
+ } | |
+ ++qs.i_ffn_down; | |
+ } | |
+ | |
+ // Sanity check for row shape | |
+ bool convert_incompatible_tensor = false; | |
+ if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || | |
+ new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) { | |
+ int nx = tensor->ne[0]; | |
+ int ny = tensor->ne[1]; | |
+ if (nx % QK_K != 0) { | |
+ LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type)); | |
+ convert_incompatible_tensor = true; | |
+ } else { | |
+ ++qs.n_k_quantized; | |
+ } | |
+ } | |
+ if (convert_incompatible_tensor) { | |
+ // TODO: Possibly reenable this in the future | |
+ // switch (new_type) { | |
+ // case GGML_TYPE_Q2_K: | |
+ // case GGML_TYPE_Q3_K: | |
+ // case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; | |
+ // case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; | |
+ // case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; | |
+ // default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); | |
+ // } | |
+ new_type = GGML_TYPE_F16; | |
+ LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); | |
+ ++qs.n_fallback; | |
+ } | |
+ return new_type; | |
+} | |
+ | |
+ | |
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { | |
const std::string name = ggml_get_name(tensor); | |
// TODO: avoid hardcoded tensor names - use the TN_* constants | |
const llm_arch arch = qs.model.arch; | |
+ if (arch == LLM_ARCH_FLUX || arch == LLM_ARCH_SD1 || arch == LLM_ARCH_SDXL) { return img_tensor_get_type(qs, new_type, tensor, ftype); }; | |
const auto tn = LLM_TN(arch); | |
auto use_more_bits = [](int i_layer, int n_layers) -> bool { | |