Spaces:
Build error
Build error
File size: 9,856 Bytes
3719834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
index 1d2a3540..b1a9ee96 100644
--- a/ggml/include/ggml.h
+++ b/ggml/include/ggml.h
@@ -230,7 +230,7 @@
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 10
#ifndef GGML_MAX_NAME
-#define GGML_MAX_NAME 64
+#define GGML_MAX_NAME 128
#endif
#define GGML_MAX_OP_PARAMS 64
#define GGML_DEFAULT_N_THREADS 4
diff --git a/src/llama.cpp b/src/llama.cpp
index 5ab65ea9..35580d9d 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -212,6 +212,9 @@ enum llm_arch {
LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
+ LLM_ARCH_FLUX,
+ LLM_ARCH_SD1,
+ LLM_ARCH_SDXL,
LLM_ARCH_UNKNOWN,
};
@@ -259,6 +262,9 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_JAIS, "jais" },
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_EXAONE, "exaone" },
+ { LLM_ARCH_FLUX, "flux" },
+ { LLM_ARCH_SD1, "sd1" },
+ { LLM_ARCH_SDXL, "sdxl" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -1337,6 +1343,9 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ { LLM_ARCH_FLUX, {}},
+ { LLM_ARCH_SD1, {}},
+ { LLM_ARCH_SDXL, {}},
{
LLM_ARCH_UNKNOWN,
{
@@ -4629,6 +4638,12 @@ static void llm_load_hparams(
// get general kv
ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
+ // Disable LLM metadata for image models
+ if (model.arch == LLM_ARCH_FLUX || model.arch == LLM_ARCH_SD1 || model.arch == LLM_ARCH_SDXL) {
+ model.ftype = ml.ftype;
+ return;
+ }
+
// get hparams kv
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
@@ -15827,11 +15842,162 @@ static void llama_tensor_dequantize_internal(
workers.clear();
}
+static ggml_type img_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
+ // Special function for quantizing image model tensors
+ const std::string name = ggml_get_name(tensor);
+ const llm_arch arch = qs.model.arch;
+
+ // Sanity check
+ if (
+ (name.find("model.diffusion_model.") != std::string::npos) ||
+ (name.find("first_stage_model.") != std::string::npos) ||
+ (name.find("single_transformer_blocks.") != std::string::npos)
+ ) {
+ throw std::runtime_error("Invalid input GGUF file. This is not a supported UNET model");
+ }
+
+ // Unsupported quant types - exclude all IQ quants for now
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_Q4_0_4_4 ||
+ ftype == LLAMA_FTYPE_MOSTLY_Q4_0_4_8 || ftype == LLAMA_FTYPE_MOSTLY_Q4_0_8_8) {
+ throw std::runtime_error("Invalid quantization type for image model (Not supported)");
+ }
+
+ if ( // Tensors to keep in FP32 precision
+ (arch == LLM_ARCH_FLUX) && (
+ (name.find("img_in.") != std::string::npos) ||
+ (name.find("time_in.in_layer.") != std::string::npos) ||
+ (name.find("vector_in.in_layer.") != std::string::npos) ||
+ (name.find("guidance_in.in_layer.") != std::string::npos) ||
+ (name.find("final_layer.linear.") != std::string::npos)
+ ) || (arch == LLM_ARCH_SD1 || arch == LLM_ARCH_SDXL) && (
+ (name.find("conv_in.") != std::string::npos) ||
+ (name.find("conv_out.") != std::string::npos) ||
+ (name == "input_blocks.0.0.weight") ||
+ (name == "out.2.weight")
+ )) {
+ new_type = GGML_TYPE_F32;
+ } else if ( // Tensors to keep in FP16 precision
+ (arch == LLM_ARCH_FLUX) && (
+ (name.find("txt_in.") != std::string::npos) ||
+ (name.find("time_in.") != std::string::npos) ||
+ (name.find("vector_in.") != std::string::npos) ||
+ (name.find("guidance_in.") != std::string::npos) ||
+ (name.find("final_layer.") != std::string::npos)
+ ) || (arch == LLM_ARCH_SD1 || arch == LLM_ARCH_SDXL) && (
+ (name.find("class_embedding.") != std::string::npos) ||
+ (name.find("time_embedding.") != std::string::npos) ||
+ (name.find("add_embedding.") != std::string::npos) ||
+ (name.find("time_embed.") != std::string::npos) ||
+ (name.find("label_emb.") != std::string::npos) ||
+ (name.find("proj_in.") != std::string::npos) ||
+ (name.find("proj_out.") != std::string::npos)
+ // (name.find("conv_shortcut.") != std::string::npos) // marginal improvement
+ )) {
+ new_type = GGML_TYPE_F16;
+ } else if ( // Rules for to_v attention
+ (name.find("attn_v.weight") != std::string::npos) ||
+ (name.find(".to_v.weight") != std::string::npos)
+ ){
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
+ new_type = GGML_TYPE_Q3_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
+ new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) {
+ new_type = GGML_TYPE_Q6_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ ++qs.i_attention_wv;
+ } else if ( // Rules for fused qkv attention
+ (name.find("attn_qkv.weight") != std::string::npos) ||
+ (name.find("attn.qkv.weight") != std::string::npos)
+ ) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
+ new_type = GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) {
+ new_type = GGML_TYPE_Q6_K;
+ }
+ } else if ( // Rules for ffn
+ (name.find("ffn_down") != std::string::npos) ||
+ (name.find("DenseReluDense.wo") != std::string::npos)
+ ) {
+ // TODO: add back `layer_info` with some model specific logic + logic further down
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
+ new_type = GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
+ new_type = GGML_TYPE_Q6_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) {
+ new_type = GGML_TYPE_Q6_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_0) {
+ new_type = GGML_TYPE_Q4_1;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_0) {
+ new_type = GGML_TYPE_Q5_1;
+ }
+ ++qs.i_ffn_down;
+ }
+
+ // Sanity check for row shape
+ bool convert_incompatible_tensor = false;
+ if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
+ new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
+ int nx = tensor->ne[0];
+ int ny = tensor->ne[1];
+ if (nx % QK_K != 0) {
+ LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
+ convert_incompatible_tensor = true;
+ } else {
+ ++qs.n_k_quantized;
+ }
+ }
+ if (convert_incompatible_tensor) {
+ // TODO: Possibly reenable this in the future
+ // switch (new_type) {
+ // case GGML_TYPE_Q2_K:
+ // case GGML_TYPE_Q3_K:
+ // case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
+ // case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
+ // case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
+ // default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
+ // }
+ new_type = GGML_TYPE_F16;
+ LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
+ ++qs.n_fallback;
+ }
+ return new_type;
+}
+
+
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
const llm_arch arch = qs.model.arch;
+ if (arch == LLM_ARCH_FLUX || arch == LLM_ARCH_SD1 || arch == LLM_ARCH_SDXL) { return img_tensor_get_type(qs, new_type, tensor, ftype); };
const auto tn = LLM_TN(arch);
auto use_more_bits = [](int i_layer, int n_layers) -> bool {
|