Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The causal continuous video tokenizer with VAE or AE formulation for 3D data..""" | |
import logging | |
import torch | |
from torch import nn | |
from enum import Enum | |
import math | |
from .cosmos_tokenizer.layers3d import ( | |
EncoderFactorized, | |
DecoderFactorized, | |
CausalConv3d, | |
) | |
class IdentityDistribution(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, parameters): | |
return parameters, (torch.tensor([0.0]), torch.tensor([0.0])) | |
class GaussianDistribution(torch.nn.Module): | |
def __init__(self, min_logvar: float = -30.0, max_logvar: float = 20.0): | |
super().__init__() | |
self.min_logvar = min_logvar | |
self.max_logvar = max_logvar | |
def sample(self, mean, logvar): | |
std = torch.exp(0.5 * logvar) | |
return mean + std * torch.randn_like(mean) | |
def forward(self, parameters): | |
mean, logvar = torch.chunk(parameters, 2, dim=1) | |
logvar = torch.clamp(logvar, self.min_logvar, self.max_logvar) | |
return self.sample(mean, logvar), (mean, logvar) | |
class ContinuousFormulation(Enum): | |
VAE = GaussianDistribution | |
AE = IdentityDistribution | |
class CausalContinuousVideoTokenizer(nn.Module): | |
def __init__( | |
self, z_channels: int, z_factor: int, latent_channels: int, **kwargs | |
) -> None: | |
super().__init__() | |
self.name = kwargs.get("name", "CausalContinuousVideoTokenizer") | |
self.latent_channels = latent_channels | |
self.sigma_data = 0.5 | |
# encoder_name = kwargs.get("encoder", Encoder3DType.BASE.name) | |
self.encoder = EncoderFactorized( | |
z_channels=z_factor * z_channels, **kwargs | |
) | |
if kwargs.get("temporal_compression", 4) == 4: | |
kwargs["channels_mult"] = [2, 4] | |
# decoder_name = kwargs.get("decoder", Decoder3DType.BASE.name) | |
self.decoder = DecoderFactorized( | |
z_channels=z_channels, **kwargs | |
) | |
self.quant_conv = CausalConv3d( | |
z_factor * z_channels, | |
z_factor * latent_channels, | |
kernel_size=1, | |
padding=0, | |
) | |
self.post_quant_conv = CausalConv3d( | |
latent_channels, z_channels, kernel_size=1, padding=0 | |
) | |
# formulation_name = kwargs.get("formulation", ContinuousFormulation.AE.name) | |
self.distribution = IdentityDistribution() # ContinuousFormulation[formulation_name].value() | |
num_parameters = sum(param.numel() for param in self.parameters()) | |
logging.debug(f"model={self.name}, num_parameters={num_parameters:,}") | |
logging.debug( | |
f"z_channels={z_channels}, latent_channels={self.latent_channels}." | |
) | |
latent_temporal_chunk = 16 | |
self.latent_mean = nn.Parameter(torch.zeros([self.latent_channels * latent_temporal_chunk], dtype=torch.float32)) | |
self.latent_std = nn.Parameter(torch.ones([self.latent_channels * latent_temporal_chunk], dtype=torch.float32)) | |
def encode(self, x): | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
z, posteriors = self.distribution(moments) | |
latent_ch = z.shape[1] | |
latent_t = z.shape[2] | |
in_dtype = z.dtype | |
mean = self.latent_mean.view(latent_ch, -1) | |
std = self.latent_std.view(latent_ch, -1) | |
mean = mean.repeat(1, math.ceil(latent_t / mean.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device) | |
std = std.repeat(1, math.ceil(latent_t / std.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device) | |
return ((z - mean) / std) * self.sigma_data | |
def decode(self, z): | |
in_dtype = z.dtype | |
latent_ch = z.shape[1] | |
latent_t = z.shape[2] | |
mean = self.latent_mean.view(latent_ch, -1) | |
std = self.latent_std.view(latent_ch, -1) | |
mean = mean.repeat(1, math.ceil(latent_t / mean.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device) | |
std = std.repeat(1, math.ceil(latent_t / std.shape[-1]))[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device) | |
z = z / self.sigma_data | |
z = z * std + mean | |
z = self.post_quant_conv(z) | |
return self.decoder(z) | |