Spaces:
Build error
Build error
import torch | |
import torch.nn.functional as F | |
class Mahiro: | |
def INPUT_TYPES(s): | |
return {"required": {"model": ("MODEL",), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
RETURN_NAMES = ("patched_model",) | |
FUNCTION = "patch" | |
CATEGORY = "_for_testing" | |
DESCRIPTION = "Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt." | |
def patch(self, model): | |
m = model.clone() | |
def mahiro_normd(args): | |
scale: float = args['cond_scale'] | |
cond_p: torch.Tensor = args['cond_denoised'] | |
uncond_p: torch.Tensor = args['uncond_denoised'] | |
#naive leap | |
leap = cond_p * scale | |
#sim with uncond leap | |
u_leap = uncond_p * scale | |
cfg = args["denoised"] | |
merge = (leap + cfg) / 2 | |
normu = torch.sqrt(u_leap.abs()) * u_leap.sign() | |
normm = torch.sqrt(merge.abs()) * merge.sign() | |
sim = F.cosine_similarity(normu, normm).mean() | |
simsc = 2 * (sim+1) | |
wm = (simsc*cfg + (4-simsc)*leap) / 4 | |
return wm | |
m.set_model_sampler_post_cfg_function(mahiro_normd) | |
return (m, ) | |
NODE_CLASS_MAPPINGS = { | |
"Mahiro": Mahiro | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"Mahiro": "Mahiro is so cute that she deserves a better guidance function!! (γγ»Ογ»γ)", | |
} | |