File size: 12,656 Bytes
be40477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#Based on Flux code because of weird hunyuan video code license.

import torch
import comfy.ldm.flux.layers
import comfy.ldm.modules.diffusionmodules.mmdit
from comfy.ldm.modules.attention import optimized_attention


from dataclasses import dataclass
from einops import repeat

from torch import Tensor, nn

from comfy.ldm.flux.layers import (
    DoubleStreamBlock,
    EmbedND,
    LastLayer,
    MLPEmbedder,
    SingleStreamBlock,
    timestep_embedding
)

import comfy.ldm.common_dit


@dataclass
class HunyuanVideoParams:
    in_channels: int
    out_channels: int
    vec_in_dim: int
    context_in_dim: int
    hidden_size: int
    mlp_ratio: float
    num_heads: int
    depth: int
    depth_single_blocks: int
    axes_dim: list
    theta: int
    patch_size: list
    qkv_bias: bool
    guidance_embed: bool


class SelfAttentionRef(nn.Module):
    def __init__(self, dim: int, qkv_bias: bool = False, dtype=None, device=None, operations=None):
        super().__init__()
        self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
        self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)


class TokenRefinerBlock(nn.Module):
    def __init__(
        self,
        hidden_size,
        heads,
        dtype=None,
        device=None,
        operations=None
    ):
        super().__init__()
        self.heads = heads
        mlp_hidden_dim = hidden_size * 4

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device),
        )

        self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
        self.self_attn = SelfAttentionRef(hidden_size, True, dtype=dtype, device=device, operations=operations)

        self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)

        self.mlp = nn.Sequential(
            operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
        )

    def forward(self, x, c, mask):
        mod1, mod2 = self.adaLN_modulation(c).chunk(2, dim=1)

        norm_x = self.norm1(x)
        qkv = self.self_attn.qkv(norm_x)
        q, k, v = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, self.heads, -1).permute(2, 0, 3, 1, 4)
        attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True)

        x = x + self.self_attn.proj(attn) * mod1.unsqueeze(1)
        x = x + self.mlp(self.norm2(x)) * mod2.unsqueeze(1)
        return x


class IndividualTokenRefiner(nn.Module):
    def __init__(
        self,
        hidden_size,
        heads,
        num_blocks,
        dtype=None,
        device=None,
        operations=None
    ):
        super().__init__()
        self.blocks = nn.ModuleList(
            [
                TokenRefinerBlock(
                    hidden_size=hidden_size,
                    heads=heads,
                    dtype=dtype,
                    device=device,
                    operations=operations
                )
                for _ in range(num_blocks)
            ]
        )

    def forward(self, x, c, mask):
        m = None
        if mask is not None:
            m = mask.view(mask.shape[0], 1, 1, mask.shape[1]).repeat(1, 1, mask.shape[1], 1)
            m = m + m.transpose(2, 3)

        for block in self.blocks:
            x = block(x, c, m)
        return x



class TokenRefiner(nn.Module):
    def __init__(
        self,
        text_dim,
        hidden_size,
        heads,
        num_blocks,
        dtype=None,
        device=None,
        operations=None
    ):
        super().__init__()

        self.input_embedder = operations.Linear(text_dim, hidden_size, bias=True, dtype=dtype, device=device)
        self.t_embedder = MLPEmbedder(256, hidden_size, dtype=dtype, device=device, operations=operations)
        self.c_embedder = MLPEmbedder(text_dim, hidden_size, dtype=dtype, device=device, operations=operations)
        self.individual_token_refiner = IndividualTokenRefiner(hidden_size, heads, num_blocks, dtype=dtype, device=device, operations=operations)

    def forward(
        self,
        x,
        timesteps,
        mask,
    ):
        t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
        # m = mask.float().unsqueeze(-1)
        # c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise
        c = x.sum(dim=1) / x.shape[1]

        c = t + self.c_embedder(c.to(x.dtype))
        x = self.input_embedder(x)
        x = self.individual_token_refiner(x, c, mask)
        return x

class HunyuanVideo(nn.Module):
    """
    Transformer model for flow matching on sequences.
    """

    def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
        super().__init__()
        self.dtype = dtype
        params = HunyuanVideoParams(**kwargs)
        self.params = params
        self.patch_size = params.patch_size
        self.in_channels = params.in_channels
        self.out_channels = params.out_channels
        if params.hidden_size % params.num_heads != 0:
            raise ValueError(
                f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
            )
        pe_dim = params.hidden_size // params.num_heads
        if sum(params.axes_dim) != pe_dim:
            raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
        self.hidden_size = params.hidden_size
        self.num_heads = params.num_heads
        self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)

        self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=True, dtype=dtype, device=device, operations=operations)
        self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
        self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
        self.guidance_in = (
            MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
        )

        self.txt_in = TokenRefiner(params.context_in_dim, self.hidden_size, self.num_heads, 2, dtype=dtype, device=device, operations=operations)

        self.double_blocks = nn.ModuleList(
            [
                DoubleStreamBlock(
                    self.hidden_size,
                    self.num_heads,
                    mlp_ratio=params.mlp_ratio,
                    qkv_bias=params.qkv_bias,
                    flipped_img_txt=True,
                    dtype=dtype, device=device, operations=operations
                )
                for _ in range(params.depth)
            ]
        )

        self.single_blocks = nn.ModuleList(
            [
                SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
                for _ in range(params.depth_single_blocks)
            ]
        )

        if final_layer:
            self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)

    def forward_orig(
        self,
        img: Tensor,
        img_ids: Tensor,
        txt: Tensor,
        txt_ids: Tensor,
        txt_mask: Tensor,
        timesteps: Tensor,
        y: Tensor,
        guidance: Tensor = None,
        control=None,
        transformer_options={},
    ) -> Tensor:
        patches_replace = transformer_options.get("patches_replace", {})

        initial_shape = list(img.shape)
        # running on sequences img
        img = self.img_in(img)
        vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))

        vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])

        if self.params.guidance_embed:
            if guidance is not None:
                vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))

        if txt_mask is not None and not torch.is_floating_point(txt_mask):
            txt_mask = (txt_mask - 1).to(img.dtype) * torch.finfo(img.dtype).max

        txt = self.txt_in(txt, timesteps, txt_mask)

        ids = torch.cat((img_ids, txt_ids), dim=1)
        pe = self.pe_embedder(ids)

        img_len = img.shape[1]
        if txt_mask is not None:
            attn_mask_len = img_len + txt.shape[1]
            attn_mask = torch.zeros((1, 1, attn_mask_len), dtype=img.dtype, device=img.device)
            attn_mask[:, 0, img_len:] = txt_mask
        else:
            attn_mask = None

        blocks_replace = patches_replace.get("dit", {})
        for i, block in enumerate(self.double_blocks):
            if ("double_block", i) in blocks_replace:
                def block_wrap(args):
                    out = {}
                    out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
                    return out

                out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
                txt = out["txt"]
                img = out["img"]
            else:
                img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask)

            if control is not None: # Controlnet
                control_i = control.get("input")
                if i < len(control_i):
                    add = control_i[i]
                    if add is not None:
                        img += add

        img = torch.cat((img, txt), 1)

        for i, block in enumerate(self.single_blocks):
            if ("single_block", i) in blocks_replace:
                def block_wrap(args):
                    out = {}
                    out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
                    return out

                out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
                img = out["img"]
            else:
                img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)

            if control is not None: # Controlnet
                control_o = control.get("output")
                if i < len(control_o):
                    add = control_o[i]
                    if add is not None:
                        img[:, : img_len] += add

        img = img[:, : img_len]

        img = self.final_layer(img, vec)  # (N, T, patch_size ** 2 * out_channels)

        shape = initial_shape[-3:]
        for i in range(len(shape)):
            shape[i] = shape[i] // self.patch_size[i]
        img = img.reshape([img.shape[0]] + shape + [self.out_channels] + self.patch_size)
        img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
        img = img.reshape(initial_shape)
        return img

    def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, control=None, transformer_options={}, **kwargs):
        bs, c, t, h, w = x.shape
        patch_size = self.patch_size
        t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
        h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
        w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
        img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
        img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
        img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
        img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
        img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
        txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
        out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, control, transformer_options)
        return out