File size: 32,728 Bytes
be40477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
import enum
import math
import torch
import numpy as np
import itertools
import logging

if TYPE_CHECKING:
    from comfy.model_patcher import ModelPatcher, PatcherInjection
    from comfy.model_base import BaseModel
    from comfy.sd import CLIP
import comfy.lora
import comfy.model_management
import comfy.patcher_extension
from node_helpers import conditioning_set_values

# #######################################################################################################
# Hooks explanation
# -------------------
# The purpose of hooks is to allow conds to influence sampling without the need for ComfyUI core code to
# make explicit special cases like it does for ControlNet and GLIGEN.
#
# This is necessary for nodes/features that are intended for use with masked or scheduled conds, or those
# that should run special code when a 'marked' cond is used in sampling.
# #######################################################################################################

class EnumHookMode(enum.Enum):
    '''
    Priority of hook memory optimization vs. speed, mostly related to WeightHooks.

    MinVram: No caching will occur for any operations related to hooks.
    MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups.
    '''
    MinVram = "minvram"
    MaxSpeed = "maxspeed"

class EnumHookType(enum.Enum):
    '''
    Hook types, each of which has different expected behavior.
    '''
    Weight = "weight"
    ObjectPatch = "object_patch"
    AdditionalModels = "add_models"
    TransformerOptions = "transformer_options"
    Injections = "add_injections"

class EnumWeightTarget(enum.Enum):
    Model = "model"
    Clip = "clip"

class EnumHookScope(enum.Enum):
    '''
    Determines if hook should be limited in its influence over sampling.

    AllConditioning: hook will affect all conds used in sampling.
    HookedOnly: hook will only affect the conds it was attached to.
    '''
    AllConditioning = "all_conditioning"
    HookedOnly = "hooked_only"


class _HookRef:
    pass


def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
    '''Example for how custom_should_register function can look like.'''
    return True


def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]:
    '''Creates base dictionary for use with Hooks' target param.'''
    d = {}
    if target is not None:
        d['target'] = target
    d.update(kwargs)
    return d


class Hook:
    def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
                 hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning):
        self.hook_type = hook_type
        '''Enum identifying the general class of this hook.'''
        self.hook_ref = hook_ref if hook_ref else _HookRef()
        '''Reference shared between hook clones that have the same value. Should NOT be modified.'''
        self.hook_id = hook_id
        '''Optional string ID to identify hook; useful if need to consolidate duplicates at registration time.'''
        self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
        '''Keyframe storage that can be referenced to get strength for current sampling step.'''
        self.hook_scope = hook_scope
        '''Scope of where this hook should apply in terms of the conds used in sampling run.'''
        self.custom_should_register = default_should_register
        '''Can be overriden with a compatible function to decide if this hook should be registered without the need to override .should_register'''

    @property
    def strength(self):
        return self.hook_keyframe.strength

    def initialize_timesteps(self, model: BaseModel):
        self.reset()
        self.hook_keyframe.initialize_timesteps(model)

    def reset(self):
        self.hook_keyframe.reset()

    def clone(self):
        c: Hook = self.__class__()
        c.hook_type = self.hook_type
        c.hook_ref = self.hook_ref
        c.hook_id = self.hook_id
        c.hook_keyframe = self.hook_keyframe
        c.hook_scope = self.hook_scope
        c.custom_should_register = self.custom_should_register
        return c

    def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
        return self.custom_should_register(self, model, model_options, target_dict, registered)

    def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
        raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")

    def __eq__(self, other: Hook):
        return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref

    def __hash__(self):
        return hash(self.hook_ref)

class WeightHook(Hook):
    '''
    Hook responsible for tracking weights to be applied to some model/clip.

    Note, value of hook_scope is ignored and is treated as HookedOnly.
    '''
    def __init__(self, strength_model=1.0, strength_clip=1.0):
        super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly)
        self.weights: dict = None
        self.weights_clip: dict = None
        self.need_weight_init = True
        self._strength_model = strength_model
        self._strength_clip = strength_clip
        self.hook_scope = EnumHookScope.HookedOnly # this value does not matter for WeightHooks, just for docs

    @property
    def strength_model(self):
        return self._strength_model * self.strength

    @property
    def strength_clip(self):
        return self._strength_clip * self.strength

    def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
        if not self.should_register(model, model_options, target_dict, registered):
            return False
        weights = None

        target = target_dict.get('target', None)
        if target == EnumWeightTarget.Clip:
            strength = self._strength_clip
        else:
            strength = self._strength_model

        if self.need_weight_init:
            key_map = {}
            if target == EnumWeightTarget.Clip:
                key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
            else:
                key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
            weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
        else:
            if target == EnumWeightTarget.Clip:
                weights = self.weights_clip
            else:
                weights = self.weights
        model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
        registered.add(self)
        return True
        # TODO: add logs about any keys that were not applied

    def clone(self):
        c: WeightHook = super().clone()
        c.weights = self.weights
        c.weights_clip = self.weights_clip
        c.need_weight_init = self.need_weight_init
        c._strength_model = self._strength_model
        c._strength_clip = self._strength_clip
        return c

class ObjectPatchHook(Hook):
    def __init__(self, object_patches: dict[str]=None,
                 hook_scope=EnumHookScope.AllConditioning):
        super().__init__(hook_type=EnumHookType.ObjectPatch)
        self.object_patches = object_patches
        self.hook_scope = hook_scope

    def clone(self):
        c: ObjectPatchHook = super().clone()
        c.object_patches = self.object_patches
        return c

    def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
        raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.")

class AdditionalModelsHook(Hook):
    '''
    Hook responsible for telling model management any additional models that should be loaded.

    Note, value of hook_scope is ignored and is treated as AllConditioning.
    '''
    def __init__(self, models: list[ModelPatcher]=None, key: str=None):
        super().__init__(hook_type=EnumHookType.AdditionalModels)
        self.models = models
        self.key = key

    def clone(self):
        c: AdditionalModelsHook = super().clone()
        c.models = self.models.copy() if self.models else self.models
        c.key = self.key
        return c

    def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
        if not self.should_register(model, model_options, target_dict, registered):
            return False
        registered.add(self)
        return True

class TransformerOptionsHook(Hook):
    '''
    Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options.
    '''
    def __init__(self, transformers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None,
                 hook_scope=EnumHookScope.AllConditioning):
        super().__init__(hook_type=EnumHookType.TransformerOptions)
        self.transformers_dict = transformers_dict
        self.hook_scope = hook_scope
        self._skip_adding = False
        '''Internal value used to avoid double load of transformer_options when hook_scope is AllConditioning.'''

    def clone(self):
        c: TransformerOptionsHook = super().clone()
        c.transformers_dict = self.transformers_dict
        c._skip_adding = self._skip_adding
        return c

    def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
        if not self.should_register(model, model_options, target_dict, registered):
            return False
        # NOTE: to_load_options will be used to manually load patches/wrappers/callbacks from hooks
        self._skip_adding = False
        if self.hook_scope == EnumHookScope.AllConditioning:
            add_model_options = {"transformer_options": self.transformers_dict,
                                 "to_load_options": self.transformers_dict}
            # skip_adding if included in AllConditioning to avoid double loading
            self._skip_adding = True
        else:
            add_model_options = {"to_load_options": self.transformers_dict}
        registered.add(self)
        comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
        return True

    def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]):
        if not self._skip_adding:
            comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False)

WrapperHook = TransformerOptionsHook
'''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.'''

class InjectionsHook(Hook):
    def __init__(self, key: str=None, injections: list[PatcherInjection]=None,
                 hook_scope=EnumHookScope.AllConditioning):
        super().__init__(hook_type=EnumHookType.Injections)
        self.key = key
        self.injections = injections
        self.hook_scope = hook_scope

    def clone(self):
        c: InjectionsHook = super().clone()
        c.key = self.key
        c.injections = self.injections.copy() if self.injections else self.injections
        return c

    def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
        raise NotImplementedError("InjectionsHook is not supported yet in ComfyUI.")

class HookGroup:
    '''
    Stores groups of hooks, and allows them to be queried by type.

    To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly;
    always use the provided functions on HookGroup.
    '''
    def __init__(self):
        self.hooks: list[Hook] = []
        self._hook_dict: dict[EnumHookType, list[Hook]] = {}

    def __len__(self):
        return len(self.hooks)

    def add(self, hook: Hook):
        if hook not in self.hooks:
            self.hooks.append(hook)
            self._hook_dict.setdefault(hook.hook_type, []).append(hook)

    def remove(self, hook: Hook):
        if hook in self.hooks:
            self.hooks.remove(hook)
            self._hook_dict[hook.hook_type].remove(hook)

    def get_type(self, hook_type: EnumHookType):
        return self._hook_dict.get(hook_type, [])

    def contains(self, hook: Hook):
        return hook in self.hooks

    def is_subset_of(self, other: HookGroup):
        self_hooks = set(self.hooks)
        other_hooks = set(other.hooks)
        return self_hooks.issubset(other_hooks)

    def new_with_common_hooks(self, other: HookGroup):
        c = HookGroup()
        for hook in self.hooks:
            if other.contains(hook):
                c.add(hook.clone())
        return c

    def clone(self):
        c = HookGroup()
        for hook in self.hooks:
            c.add(hook.clone())
        return c

    def clone_and_combine(self, other: HookGroup):
        c = self.clone()
        if other is not None:
            for hook in other.hooks:
                c.add(hook.clone())
        return c

    def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup):
        if hook_kf is None:
            hook_kf = HookKeyframeGroup()
        else:
            hook_kf = hook_kf.clone()
        for hook in self.hooks:
            hook.hook_keyframe = hook_kf

    def get_hooks_for_clip_schedule(self):
        scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
        # only care about WeightHooks, for now
        for hook in self.get_type(EnumHookType.Weight):
            hook: WeightHook
            hook_schedule = []
            # if no hook keyframes, assign default value
            if len(hook.hook_keyframe.keyframes) == 0:
                hook_schedule.append(((0.0, 1.0), None))
                scheduled_hooks[hook] = hook_schedule
                continue
            # find ranges of values
            prev_keyframe = hook.hook_keyframe.keyframes[0]
            for keyframe in hook.hook_keyframe.keyframes:
                if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
                    hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
                    prev_keyframe = keyframe
                elif keyframe.start_percent == prev_keyframe.start_percent:
                    prev_keyframe = keyframe
            # create final range, assuming last start_percent was not 1.0
            if not math.isclose(prev_keyframe.start_percent, 1.0):
                hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
            scheduled_hooks[hook] = hook_schedule
        # hooks should not have their schedules in a list of tuples
        all_ranges: list[tuple[float, float]] = []
        for range_kfs in scheduled_hooks.values():
            for t_range, keyframe in range_kfs:
                all_ranges.append(t_range)
        # turn list of ranges into boundaries
        boundaries_set = set(itertools.chain.from_iterable(all_ranges))
        boundaries_set.add(0.0)
        boundaries = sorted(boundaries_set)
        real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
        # with real ranges defined, give appropriate hooks w/ keyframes for each range
        scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
        for t_range in real_ranges:
            hooks_schedule = []
            for hook, val in scheduled_hooks.items():
                keyframe = None
                # check if is a keyframe that works for the current t_range
                for stored_range, stored_kf in val:
                    # if stored start is less than current end, then fits - give it assigned keyframe
                    if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
                        keyframe = stored_kf
                        break
                hooks_schedule.append((hook, keyframe))
            scheduled_keyframes.append((t_range, hooks_schedule))
        return scheduled_keyframes

    def reset(self):
        for hook in self.hooks:
            hook.reset()

    @staticmethod
    def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup:
        actual: list[HookGroup] = []
        for group in hooks_list:
            if group is not None:
                actual.append(group)
        if len(actual) < require_count:
            raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
        # if no hooks, then return None
        if len(actual) == 0:
            return None
        # if only 1 hook, just return itself without cloning
        elif len(actual) == 1:
            return actual[0]
        final_hook: HookGroup = None
        for hook in actual:
            if final_hook is None:
                final_hook = hook.clone()
            else:
                final_hook = final_hook.clone_and_combine(hook)
        return final_hook


class HookKeyframe:
    def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
        self.strength = strength
        # scheduling
        self.start_percent = float(start_percent)
        self.start_t = 999999999.9
        self.guarantee_steps = guarantee_steps

    def get_effective_guarantee_steps(self, max_sigma: torch.Tensor):
        '''If keyframe starts before current sampling range (max_sigma), treat as 0.'''
        if self.start_t > max_sigma:
            return 0
        return self.guarantee_steps

    def clone(self):
        c = HookKeyframe(strength=self.strength,
                         start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
        c.start_t = self.start_t
        return c

class HookKeyframeGroup:
    def __init__(self):
        self.keyframes: list[HookKeyframe] = []
        self._current_keyframe: HookKeyframe = None
        self._current_used_steps = 0
        self._current_index = 0
        self._current_strength = None
        self._curr_t = -1.

    # properties shadow those of HookWeightsKeyframe
    @property
    def strength(self):
        if self._current_keyframe is not None:
            return self._current_keyframe.strength
        return 1.0

    def reset(self):
        self._current_keyframe = None
        self._current_used_steps = 0
        self._current_index = 0
        self._current_strength = None
        self.curr_t = -1.
        self._set_first_as_current()

    def add(self, keyframe: HookKeyframe):
        # add to end of list, then sort
        self.keyframes.append(keyframe)
        self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
        self._set_first_as_current()

    def _set_first_as_current(self):
        if len(self.keyframes) > 0:
            self._current_keyframe = self.keyframes[0]
        else:
            self._current_keyframe = None

    def has_guarantee_steps(self):
        for kf in self.keyframes:
            if kf.guarantee_steps > 0:
                return True
        return False

    def has_index(self, index: int):
        return index >= 0 and index < len(self.keyframes)

    def is_empty(self):
        return len(self.keyframes) == 0

    def clone(self):
        c = HookKeyframeGroup()
        for keyframe in self.keyframes:
            c.keyframes.append(keyframe.clone())
        c._set_first_as_current()
        return c

    def initialize_timesteps(self, model: BaseModel):
        for keyframe in self.keyframes:
            keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)

    def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool:
        if self.is_empty():
            return False
        if curr_t == self._curr_t:
            return False
        max_sigma = torch.max(transformer_options["sample_sigmas"])
        prev_index = self._current_index
        prev_strength = self._current_strength
        # if met guaranteed steps, look for next keyframe in case need to switch
        if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma):
            # if has next index, loop through and see if need to switch
            if self.has_index(self._current_index+1):
                for i in range(self._current_index+1, len(self.keyframes)):
                    eval_c = self.keyframes[i]
                    # check if start_t is greater or equal to curr_t
                    # NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
                    if eval_c.start_t >= curr_t:
                        self._current_index = i
                        self._current_strength = eval_c.strength
                        self._current_keyframe = eval_c
                        self._current_used_steps = 0
                        # if guarantee_steps greater than zero, stop searching for other keyframes
                        if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
                            break
                    # if eval_c is outside the percent range, stop looking further
                    else: break
        # update steps current context is used
        self._current_used_steps += 1
        # update current timestep this was performed on
        self._curr_t = curr_t
        # return True if keyframe changed, False if no change
        return prev_index != self._current_index and prev_strength != self._current_strength


class InterpolationMethod:
    LINEAR = "linear"
    EASE_IN = "ease_in"
    EASE_OUT = "ease_out"
    EASE_IN_OUT = "ease_in_out"

    _LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]

    @classmethod
    def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
        diff = num_to - num_from
        if method == cls.LINEAR:
            weights = torch.linspace(num_from, num_to, length)
        elif method == cls.EASE_IN:
            index = torch.linspace(0, 1, length)
            weights = diff * np.power(index, 2) + num_from
        elif method == cls.EASE_OUT:
            index = torch.linspace(0, 1, length)
            weights = diff * (1 - np.power(1 - index, 2)) + num_from
        elif method == cls.EASE_IN_OUT:
            index = torch.linspace(0, 1, length)
            weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
        else:
            raise ValueError(f"Unrecognized interpolation method '{method}'.")
        if reverse:
            weights = weights.flip(dims=(0,))
        return weights

def get_sorted_list_via_attr(objects: list, attr: str) -> list:
    if not objects:
        return objects
    elif len(objects) <= 1:
        return [x for x in objects]
    # now that we know we have to sort, do it following these rules:
    # a) if objects have same value of attribute, maintain their relative order
    # b) perform sorting of the groups of objects with same attributes
    unique_attrs = {}
    for o in objects:
        val_attr = getattr(o, attr)
        attr_list: list = unique_attrs.get(val_attr, list())
        attr_list.append(o)
        if val_attr not in unique_attrs:
            unique_attrs[val_attr] = attr_list
    # now that we have the unique attr values grouped together in relative order, sort them by key
    sorted_attrs = dict(sorted(unique_attrs.items()))
    # now flatten out the dict into a list to return
    sorted_list = []
    for object_list in sorted_attrs.values():
        sorted_list.extend(object_list)
    return sorted_list

def create_transformer_options_from_hooks(model: ModelPatcher, hooks: HookGroup,  transformer_options: dict[str]=None):
    # if no hooks or is not a ModelPatcher for sampling, return empty dict
    if hooks is None or model.is_clip:
        return {}
    if transformer_options is None:
        transformer_options = {}
    for hook in hooks.get_type(EnumHookType.TransformerOptions):
        hook: TransformerOptionsHook
        hook.on_apply_hooks(model, transformer_options)
    return transformer_options

def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
    hook_group = HookGroup()
    hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
    hook_group.add(hook)
    hook.weights = lora
    return hook_group

def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
    hook_group = HookGroup()
    hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
    hook_group.add(hook)
    patches_model = None
    patches_clip = None
    if weights_model is not None:
        patches_model = {}
        for key in weights_model:
            patches_model[key] = ("model_as_lora", (weights_model[key],))
    if weights_clip is not None:
        patches_clip = {}
        for key in weights_clip:
            patches_clip[key] = ("model_as_lora", (weights_clip[key],))
    hook.weights = patches_model
    hook.weights_clip = patches_clip
    hook.need_weight_init = False
    return hook_group

def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True):
    if model is None:
        return None
    patches_model: dict[str, torch.Tensor] = model.model.state_dict()
    if discard_model_sampling:
        # do not include ANY model_sampling components of the model that should act as a patch
        for key in list(patches_model.keys()):
            if key.startswith("model_sampling"):
                patches_model.pop(key, None)
    return patches_model

# NOTE: this function shows how to register weight hooks directly on the ModelPatchers
def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor],
                              strength_model: float, strength_clip: float):
    key_map = {}
    if model is not None:
        key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
    if clip is not None:
        key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)

    hook_group = HookGroup()
    hook = WeightHook()
    hook_group.add(hook)
    loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
    if model is not None:
        new_modelpatcher = model.clone()
        k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
    else:
        k = ()
        new_modelpatcher = None

    if clip is not None:
        new_clip = clip.clone()
        k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
    else:
        k1 = ()
        new_clip = None
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            logging.warning(f"NOT LOADED {x}")
    return (new_modelpatcher, new_clip, hook_group)

def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
    hooks_key = 'hooks'
    # if hooks only exist in one dict, do what's needed so that it ends up in c_dict
    if hooks_key not in values:
        return
    if hooks_key not in c_dict:
        hooks_value = values.get(hooks_key, None)
        if hooks_value is not None:
            c_dict[hooks_key] = hooks_value
        return
    # otherwise, need to combine with minimum duplication via cache
    hooks_tuple = (c_dict[hooks_key], values[hooks_key])
    cached_hooks = cache.get(hooks_tuple, None)
    if cached_hooks is None:
        new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
        cache[hooks_tuple] = new_hooks
        c_dict[hooks_key] = new_hooks
    else:
        c_dict[hooks_key] = cache[hooks_tuple]

def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True,
                                       cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
    c = []
    if cache is None:
        cache = {}
    for t in conditioning:
        n = [t[0], t[1].copy()]
        for k in values:
            if append_hooks and k == 'hooks':
                _combine_hooks_from_values(n[1], values, cache)
            else:
                n[1][k] = values[k]
        c.append(n)

    return c

def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
    if hooks is None:
        return cond
    return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache)

def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
    if timestep_range is None:
        return cond
    return conditioning_set_values(cond, {"start_percent": timestep_range[0],
                                          "end_percent": timestep_range[1]})

def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
    if mask is None:
        return cond
    set_area_to_bounds = False
    if set_cond_area != 'default':
        set_area_to_bounds = True
    if len(mask.shape) < 3:
        mask = mask.unsqueeze(0)
    return conditioning_set_values(cond, {'mask': mask,
                                          'set_area_to_bounds': set_area_to_bounds,
                                          'mask_strength': strength})

def combine_conditioning(conds: list):
    combined_conds = []
    for cond in conds:
        combined_conds.extend(cond)
    return combined_conds

def combine_with_new_conds(conds: list, new_conds: list):
    combined_conds = []
    for c, new_c in zip(conds, new_conds):
        combined_conds.append(combine_conditioning([c, new_c]))
    return combined_conds

def set_conds_props(conds: list, strength: float, set_cond_area: str,
                   mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
    final_conds = []
    cache = {}
    for c in conds:
        # first, apply lora_hook to conditioning, if provided
        c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache)
        # next, apply mask to conditioning
        c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
        # apply timesteps, if present
        c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
        # finally, apply mask to conditioning and store
        final_conds.append(c)
    return final_conds

def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
                               mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
    combined_conds = []
    cache = {}
    for c, masked_c in zip(conds, new_conds):
        # first, apply lora_hook to new conditioning, if provided
        masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache)
        # next, apply mask to new conditioning, if provided
        masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
        # apply timesteps, if present
        masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
        # finally, combine with existing conditioning and store
        combined_conds.append(combine_conditioning([c, masked_c]))
    return combined_conds

def set_default_conds_and_combine(conds: list, new_conds: list,
                                   hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
    combined_conds = []
    cache = {}
    for c, new_c in zip(conds, new_conds):
        # first, apply lora_hook to new conditioning, if provided
        new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache)
        # next, add default_cond key to cond so that during sampling, it can be identified
        new_c = conditioning_set_values(new_c, {'default': True})
        # apply timesteps, if present
        new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
        # finally, combine with existing conditioning and store
        combined_conds.append(combine_conditioning([c, new_c]))
    return combined_conds