pi194046
adding semantic cache
201f11b
raw
history blame
11.3 kB
import streamlit as st
import requests
import os
import sqlite3
import time
import uuid
import datetime
import hashlib
import json
import pandas as pd
# FastAPI base URL
#BASE_URL = "http://localhost:8000"
import os
API_URL=os.getenv("API_URL")
API_TOKEN=os.getenv("API_TOKEN")
BASE_URL=API_URL
#API_URL = "https://api-inference.huggingface.co/models/your-username/your-private-model"
headers = {"Authorization":f"Bearer {API_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
#data = query({"inputs": "Hello, how are you?"})
#print(data)
st.title("Generative AI Demos")
def generate_unique_hash(filename: str, uuid: str) -> str:
# Generate a UUID for the session or device
device_uuid = uuid
# Get the current date and time
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Combine filename, current time, and UUID into a single string
combined_string = f"{filename}-{current_time}-{device_uuid}"
# Generate a hash using SHA256
unique_hash = hashlib.sha256(combined_string.encode()).hexdigest()
return unique_hash
# Function to generate or retrieve a UUID from local storage
uuid_script = """
<script>
if (!localStorage.getItem('uuid')) {
localStorage.setItem('uuid', '""" + str(uuid.uuid4()) + """');
}
const uuid = localStorage.getItem('uuid');
const streamlitUUIDInput = window.parent.document.querySelector('input[data-testid="stTextInput"][aria-label="UUID"]');
if (streamlitUUIDInput) {
streamlitUUIDInput.value = uuid;
}
</script>
"""
ga_script = """
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PWP4PRW5G5"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-PWP4PRW5G5');
</script>
"""
# Add Google Analytics to the Streamlit app
st.components.v1.html(ga_script, height=0, width=0)
# Execute the JavaScript in the Streamlit app
st.components.v1.html(uuid_script, height=0, width=0)
# Store and display UUID in a non-editable text field using session state
if 'uuid' not in st.session_state:
st.session_state['uuid'] = str(uuid.uuid4())
uuid_from_js = st.session_state['uuid']
# Retrieve UUID from DOM
if uuid_from_js is None:
st.error("Unable to retrieve UUID from the browser.")
else:
# Display UUID in a non-editable text field
st.text_input("Your UUID", value=uuid_from_js, disabled=True)
# Define tabs
tab1, tab2,tab3 = st.tabs(["Review Analyzer", "Presentation Creator","Semantic Search"])
with tab1:
st.header("Review Analyzer")
uploaded_file = st.file_uploader("Upload your reviews CSV file", type=["csv"],key=2)
if uploaded_file is not None:
en1 = generate_unique_hash(uploaded_file.name, uuid_from_js)
files = {"file": (en1, uploaded_file.getvalue(), "text/csv")}
st.info("Calling model inference. Please wait...")
response = requests.post(f"{BASE_URL}/upload/", files=files, headers=headers)
if response.status_code == 200:
st.info("Processing started. Please wait...")
# Poll for completion
while True:
status_response = requests.get(f"{BASE_URL}/status/{en1}", headers=headers)
if status_response.status_code == 200 and (status_response.json()["status"] == "complete" or status_response.json()["status"] == "error"):
if status_response.json()["status"] == "complete":
st.success("File processed successfully.")
download_response = requests.get(f"{BASE_URL}/download/{en1}", headers=headers)
if download_response.status_code == 200:
st.download_button(
label="Download Processed File",
data=download_response.content,
file_name=f"processed_{en1}",
mime="text/csv"
)
break
time.sleep(10)
else:
st.error("Failed to upload file for processing.")
with tab2:
st.header("Presentation Creator")
# Input URL for presentation creation
presentation_url = st.text_input("Enter the URL for the presentation content")
if presentation_url:
#unique_id = generate_unique_hash(presentation_url, str(uuid.uuid4()))
st.info("Creating presentation. Please wait...")
# Mock payload for processing the URL
payload = {"url": presentation_url, "id": uuid_from_js}
response = requests.post(f"{BASE_URL}/presentation_creator", json=payload, headers=headers)
print("response",response)
if response.status_code == 200:
st.info("Processing started. Please wait...")
unique_id=response.json()["filename"]
# Poll for completion
print("unique id is ",unique_id,BASE_URL)
while True:
status_response = requests.get(f"{BASE_URL}/status/{unique_id}", headers=headers)
print("status_response",status_response)
if status_response.status_code == 200 and (status_response.json()["status"] == "complete" or status_response.json()["status"] == "error"):
if status_response.json()["status"] == "complete":
st.success("Presentation created successfully.")
download_response = requests.get(f"{BASE_URL}/download/{unique_id}", headers=headers)
if download_response.status_code == 200:
st.download_button(
label="Download Presentation File",
data=download_response.content,
file_name=f"presentation_{unique_id}.pptx",
mime="application/pdf"
)
else:
st.error("error in downloading the presentation file ")
else:
st.error("error in creating presentation")
break
time.sleep(10)
else:
st.error("Failed to create presentation.")
with tab3:
st.header("Semantic Search")
# Create a form for the inputs and submit button
with st.form(key='semantic_search_form'):
# Input URL for presentation creation
presentation_url = st.text_input("Enter the URL for the semantic search")
search_query = st.text_input("Enter your query")
# Submit button inside the form
submit_button = st.form_submit_button(label="Submit")
if submit_button:
if presentation_url and search_query:
#unique_id = generate_unique_hash(presentation_url, str(uuid.uuid4()))
st.info("Performing semantic search. Please wait...")
# Mock payload for processing the URL
payload = {"url": presentation_url, "id": uuid_from_js,"search_query":search_query}
response = requests.post(f"{BASE_URL}/semantic_search", json=payload, headers=headers)
print("response",response.json())
if response.status_code == 200:
st.info("Processing started. Please wait...")
unique_id=response.json()["filename"]
# Poll for completion
print("unique id is ",unique_id,BASE_URL)
while True:
status_response = requests.get(f"{BASE_URL}/status/{unique_id}", headers=headers)
print("status_response",status_response.json())
if status_response.status_code == 200 and (status_response.json()["status"] == "complete" or status_response.json()["status"] == "error"):
if status_response.json()["status"] == "complete":
st.success("Presentation created successfully.")
download_response = requests.get(f"{BASE_URL}/download/{unique_id}", headers=headers)
if download_response.status_code == 200:
#print("download_response",download_response.content)
# Load JSON data into a Python list of dictionaries
data = json.loads(download_response.content)
# Convert the list of dictionaries to a DataFrame
df = pd.DataFrame(data)
df = df["page_content"]
# Display the DataFrame in Streamlit as an interactive dataframe
#st.dataframe(df)
df = df.str.split(' ##### ', 1).str[1].str.strip()
# Alternatively, display it as a static table
st.table(df)
else:
st.error("error in downloading the presentation file ")
else:
st.error("error in creating presentation")
break
time.sleep(2)
else:
st.error("Failed to create presentation.")
else:
st.error("Please enter both a URL and a query.")
# uploaded_file = st.file_uploader("Upload your reviews CSV file", type=["csv"],key=1)
# if uploaded_file is not None:
# # Save uploaded file to FastAPI
# en1 = generate_unique_hash(uploaded_file.name, uuid_from_js)
# files = {"file": (en1, uploaded_file.getvalue(), "text/csv")}
# st.info("Calling model inference. Please wait...")
# response = requests.post(f"{BASE_URL}/upload/", files=files,headers=headers)
# print("response to file upload is ",response)
# if response.status_code == 200:
# st.info("Processing started. Please wait...")
# # Poll for completion
# while True:
# status_response = requests.get(f"{BASE_URL}/status/{en1}",headers=headers)
# if status_response.status_code == 200 and (status_response.json()["status"] == "complete" or status_response.json()["status"]=="error"):
# if status_response.json()["status"] == "complete":
# st.success("File processed successfully.")
# download_response = requests.get(f"{BASE_URL}/download/{en1}",headers=headers)
# if download_response.status_code == 200:
# st.download_button(
# label="Download Processed File",
# data=download_response.content,
# file_name=f"processed_{en1}",
# mime="text/csv"
# )
# break
# time.sleep(10)
# else:
# st.error("Failed to upload file for processing.")