File size: 11,286 Bytes
89f45ea
 
 
 
 
 
 
 
201f11b
 
89f45ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8e6a19
89f45ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a66a74
201f11b
0a66a74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4b90e4
0a66a74
 
 
 
c4b90e4
0a66a74
 
c4b90e4
 
0a66a74
 
 
 
 
 
 
 
 
 
 
 
201f11b
 
c4b90e4
 
0a66a74
 
 
 
 
201f11b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a66a74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import streamlit as st
import requests
import os
import sqlite3
import time
import uuid
import datetime
import hashlib
import json
import pandas as pd

# FastAPI base URL
#BASE_URL = "http://localhost:8000"

import os

API_URL=os.getenv("API_URL")
API_TOKEN=os.getenv("API_TOKEN")

BASE_URL=API_URL

#API_URL = "https://api-inference.huggingface.co/models/your-username/your-private-model"
headers = {"Authorization":f"Bearer {API_TOKEN}"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

#data = query({"inputs": "Hello, how are you?"})
#print(data)

st.title("Generative AI Demos")

def generate_unique_hash(filename: str, uuid: str) -> str:
    # Generate a UUID for the session or device
    device_uuid = uuid

    # Get the current date and time
    current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    # Combine filename, current time, and UUID into a single string
    combined_string = f"{filename}-{current_time}-{device_uuid}"

    # Generate a hash using SHA256
    unique_hash = hashlib.sha256(combined_string.encode()).hexdigest()

    return unique_hash

# Function to generate or retrieve a UUID from local storage
uuid_script = """
<script>
    if (!localStorage.getItem('uuid')) {
        localStorage.setItem('uuid', '""" + str(uuid.uuid4()) + """');
    }
    const uuid = localStorage.getItem('uuid');
    const streamlitUUIDInput = window.parent.document.querySelector('input[data-testid="stTextInput"][aria-label="UUID"]');
    if (streamlitUUIDInput) {
        streamlitUUIDInput.value = uuid;
    }
</script>
"""

ga_script = """
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PWP4PRW5G5"></script>
<script>
  window.dataLayer = window.dataLayer || [];
  function gtag(){dataLayer.push(arguments);}
  gtag('js', new Date());

  gtag('config', 'G-PWP4PRW5G5');
</script>
"""

# Add Google Analytics to the Streamlit app
st.components.v1.html(ga_script, height=0, width=0)

# Execute the JavaScript in the Streamlit app
st.components.v1.html(uuid_script, height=0, width=0)

# Store and display UUID in a non-editable text field using session state
if 'uuid' not in st.session_state:
    st.session_state['uuid'] = str(uuid.uuid4())

uuid_from_js = st.session_state['uuid']

# Retrieve UUID from DOM
if uuid_from_js is None:
    st.error("Unable to retrieve UUID from the browser.")
else:
    # Display UUID in a non-editable text field
    st.text_input("Your UUID", value=uuid_from_js, disabled=True)

# Define tabs
tab1, tab2,tab3 = st.tabs(["Review Analyzer", "Presentation Creator","Semantic Search"])

with tab1:
    st.header("Review Analyzer")
    
    uploaded_file = st.file_uploader("Upload your reviews CSV file", type=["csv"],key=2)

    if uploaded_file is not None:
        en1 = generate_unique_hash(uploaded_file.name, uuid_from_js)
        files = {"file": (en1, uploaded_file.getvalue(), "text/csv")}
        st.info("Calling model inference. Please wait...")
        response = requests.post(f"{BASE_URL}/upload/", files=files, headers=headers)

        if response.status_code == 200:
            st.info("Processing started. Please wait...")

            # Poll for completion
            while True:
                status_response = requests.get(f"{BASE_URL}/status/{en1}", headers=headers)
                if status_response.status_code == 200 and (status_response.json()["status"] == "complete" or status_response.json()["status"] == "error"):
                    if status_response.json()["status"] == "complete":
                        st.success("File processed successfully.")
                        download_response = requests.get(f"{BASE_URL}/download/{en1}", headers=headers)

                        if download_response.status_code == 200:
                            st.download_button(
                                label="Download Processed File",
                                data=download_response.content,
                                file_name=f"processed_{en1}",
                                mime="text/csv"
                            )
                    break
                time.sleep(10)
        else:
            st.error("Failed to upload file for processing.")

with tab2:
    st.header("Presentation Creator")

    # Input URL for presentation creation
    presentation_url = st.text_input("Enter the URL for the presentation content")

    if presentation_url:
        #unique_id = generate_unique_hash(presentation_url, str(uuid.uuid4()))
        st.info("Creating presentation. Please wait...")
        
        # Mock payload for processing the URL
        payload = {"url": presentation_url, "id": uuid_from_js}
        response = requests.post(f"{BASE_URL}/presentation_creator", json=payload, headers=headers)
        print("response",response)
        if response.status_code == 200:
            st.info("Processing started. Please wait...")
            unique_id=response.json()["filename"]
            # Poll for completion
            print("unique id is ",unique_id,BASE_URL)
            while True:
                status_response = requests.get(f"{BASE_URL}/status/{unique_id}", headers=headers)

                print("status_response",status_response)
                if status_response.status_code == 200 and (status_response.json()["status"] == "complete" or status_response.json()["status"] == "error"):
                    if status_response.json()["status"] == "complete":
                        st.success("Presentation created successfully.")
                        download_response = requests.get(f"{BASE_URL}/download/{unique_id}", headers=headers)

                        if download_response.status_code == 200:
                            st.download_button(
                                label="Download Presentation File",
                                data=download_response.content,
                                file_name=f"presentation_{unique_id}.pptx",
                                mime="application/pdf"
                            )
                        else:
                            st.error("error in downloading the presentation file ")
                    else:
                        st.error("error in creating presentation")
                    break
                time.sleep(10)
        else:
            st.error("Failed to create presentation.")

with tab3:
    st.header("Semantic Search")

    # Create a form for the inputs and submit button
    with st.form(key='semantic_search_form'):
        # Input URL for presentation creation
        presentation_url = st.text_input("Enter the URL for the semantic search")
        search_query = st.text_input("Enter your query")
        
        # Submit button inside the form
        submit_button = st.form_submit_button(label="Submit")

    if submit_button:
        if presentation_url and search_query:
            #unique_id = generate_unique_hash(presentation_url, str(uuid.uuid4()))
            st.info("Performing semantic search. Please wait...")
            
            # Mock payload for processing the URL
            payload = {"url": presentation_url, "id": uuid_from_js,"search_query":search_query}
            response = requests.post(f"{BASE_URL}/semantic_search", json=payload, headers=headers)
            print("response",response.json())
            if response.status_code == 200:
                st.info("Processing started. Please wait...")
                unique_id=response.json()["filename"]
                # Poll for completion
                print("unique id is ",unique_id,BASE_URL)
                while True:
                    status_response = requests.get(f"{BASE_URL}/status/{unique_id}", headers=headers)

                    print("status_response",status_response.json())
                    if status_response.status_code == 200 and (status_response.json()["status"] == "complete" or status_response.json()["status"] == "error"):
                        if status_response.json()["status"] == "complete":
                            st.success("Presentation created successfully.")
                            
                            download_response = requests.get(f"{BASE_URL}/download/{unique_id}", headers=headers)
                            
                            if download_response.status_code == 200:
                                #print("download_response",download_response.content)
                                # Load JSON data into a Python list of dictionaries
                                data = json.loads(download_response.content)

                                # Convert the list of dictionaries to a DataFrame
                                df = pd.DataFrame(data)
                                df = df["page_content"]

                                # Display the DataFrame in Streamlit as an interactive dataframe
                                #st.dataframe(df)
                                df = df.str.split(' ##### ', 1).str[1].str.strip()

                                # Alternatively, display it as a static table
                                st.table(df)                                
                            else:
                                st.error("error in downloading the presentation file ")
                        else:
                            st.error("error in creating presentation")
                        break
                    time.sleep(2)
            else:
                st.error("Failed to create presentation.")
        else:
            st.error("Please enter both a URL and a query.")
# uploaded_file = st.file_uploader("Upload your reviews CSV file", type=["csv"],key=1)

# if uploaded_file is not None:
#     # Save uploaded file to FastAPI
#     en1 = generate_unique_hash(uploaded_file.name, uuid_from_js)
#     files = {"file": (en1, uploaded_file.getvalue(), "text/csv")}
#     st.info("Calling model inference. Please wait...")
#     response = requests.post(f"{BASE_URL}/upload/", files=files,headers=headers)
#     print("response to file upload is ",response)
#     if response.status_code == 200:
#         st.info("Processing started. Please wait...")

#         # Poll for completion
#         while True:
#             status_response = requests.get(f"{BASE_URL}/status/{en1}",headers=headers)
#             if status_response.status_code == 200 and (status_response.json()["status"] == "complete" or status_response.json()["status"]=="error"):
#                 if status_response.json()["status"] == "complete":
#                     st.success("File processed successfully.")
#                     download_response = requests.get(f"{BASE_URL}/download/{en1}",headers=headers)

#                     if download_response.status_code == 200:
#                         st.download_button(
#                             label="Download Processed File",
#                             data=download_response.content,
#                             file_name=f"processed_{en1}",
#                             mime="text/csv"
#                         )
#                 break
#             time.sleep(10)
#     else:
#         st.error("Failed to upload file for processing.")