PyCIL_Stanford_Car / convs /modified_represnet.py
HungNP
New single commit message
cb80c28
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
__all__ = ['ResNet', 'resnet18_rep', 'resnet34_rep' ]
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=True)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=True)
class conv_block(nn.Module):
def __init__(self, in_planes, planes, mode, stride=1):
super(conv_block, self).__init__()
self.conv = conv3x3(in_planes, planes, stride)
self.mode = mode
if mode == 'parallel_adapters':
self.adapter = conv1x1(in_planes, planes, stride)
def re_init_conv(self):
nn.init.kaiming_normal_(self.adapter.weight, mode='fan_out', nonlinearity='relu')
return
def forward(self, x):
y = self.conv(x)
if self.mode == 'parallel_adapters':
y = y + self.adapter(x)
return y
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, mode, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv_block(inplanes, planes, mode, stride)
self.norm1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv_block(planes, planes, mode)
self.norm2 = nn.BatchNorm2d(planes)
self.mode = mode
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=100, args = None):
self.inplanes = 64
super(ResNet, self).__init__()
assert args is not None
self.mode = args["mode"]
if 'cifar' in args["dataset"]:
self.conv1 = nn.Sequential(nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(self.inplanes), nn.ReLU(inplace=True))
print("use cifar")
elif 'imagenet' in args["dataset"] or 'stanfordcar' in args["dataset"]:
if args["init_cls"] == args["increment"]:
self.conv1 = nn.Sequential(
nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(self.inplanes),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
)
else:
# Following PODNET implmentation
self.conv1 = nn.Sequential(
nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(self.inplanes),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.feature = nn.AvgPool2d(4, stride=1)
self.out_dim = 512
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=True),
)
layers = []
layers.append(block(self.inplanes, planes, self.mode, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, self.mode))
return nn.Sequential(*layers)
def switch(self, mode='normal'):
for name, module in self.named_modules():
if hasattr(module, 'mode'):
module.mode = mode
def re_init_params(self):
for name, module in self.named_modules():
if hasattr(module, 're_init_conv'):
module.re_init_conv()
def forward(self, x):
x = self.conv1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
dim = x.size()[-1]
pool = nn.AvgPool2d(dim, stride=1)
x = pool(x)
x = x.view(x.size(0), -1)
return {"features": x}
def resnet18_rep(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
pretrained_state_dict = model_zoo.load_url(model_urls['resnet18'])
now_state_dict = model.state_dict()
now_state_dict.update(pretrained_state_dict)
model.load_state_dict(now_state_dict)
return model
def resnet34_rep(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
pretrained_state_dict = model_zoo.load_url(model_urls['resnet34'])
now_state_dict = model.state_dict()
now_state_dict.update(pretrained_state_dict)
model.load_state_dict(now_state_dict)
return model