File size: 6,290 Bytes
cb80c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F

__all__ = ['ResNet', 'resnet18_rep', 'resnet34_rep' ]


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=True)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=True)

class conv_block(nn.Module):

    def __init__(self, in_planes, planes, mode, stride=1):
        super(conv_block, self).__init__()
        self.conv = conv3x3(in_planes, planes, stride)
        self.mode = mode
        if mode == 'parallel_adapters':
            self.adapter = conv1x1(in_planes, planes, stride)

    
    def re_init_conv(self):
        nn.init.kaiming_normal_(self.adapter.weight, mode='fan_out', nonlinearity='relu')
        return 
    def forward(self, x):
        y = self.conv(x)
        if self.mode == 'parallel_adapters':
            y = y + self.adapter(x)

        return y


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, mode, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv_block(inplanes, planes, mode, stride)
        self.norm1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv_block(planes, planes, mode)
        self.norm2 = nn.BatchNorm2d(planes)
        self.mode = mode

        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.norm1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.norm2(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out


class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=100, args = None):
        self.inplanes = 64
        super(ResNet, self).__init__()
        assert args is not None
        self.mode = args["mode"]
        
        if 'cifar' in args["dataset"]:
            self.conv1 = nn.Sequential(nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False),
                                       nn.BatchNorm2d(self.inplanes), nn.ReLU(inplace=True))
            print("use cifar")
        elif 'imagenet' in args["dataset"] or 'stanfordcar' in args["dataset"]:
            if args["init_cls"] == args["increment"]:
                self.conv1 = nn.Sequential(
                    nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False),
                    nn.BatchNorm2d(self.inplanes),
                    nn.ReLU(inplace=True),
                    nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
                )
            else:
                # Following PODNET implmentation
                self.conv1 = nn.Sequential(
                    nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False),
                    nn.BatchNorm2d(self.inplanes),
                    nn.ReLU(inplace=True),
                    nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
                )


        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.feature = nn.AvgPool2d(4, stride=1)
        self.out_dim = 512


        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=True),
            )
        layers = []
        layers.append(block(self.inplanes, planes, self.mode, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, self.mode))

        return nn.Sequential(*layers)

    def switch(self, mode='normal'):
        for name, module in self.named_modules():
            if hasattr(module, 'mode'):
                module.mode = mode
    def re_init_params(self):
        for name, module in self.named_modules():
            if hasattr(module, 're_init_conv'):
                module.re_init_conv()
    def forward(self, x):
        x = self.conv1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        dim = x.size()[-1]
        pool = nn.AvgPool2d(dim, stride=1)
        x = pool(x)
        x = x.view(x.size(0), -1)
        return {"features": x}


def resnet18_rep(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained:
        pretrained_state_dict = model_zoo.load_url(model_urls['resnet18'])
        now_state_dict        = model.state_dict()
        now_state_dict.update(pretrained_state_dict)
        model.load_state_dict(now_state_dict)
    return model


def resnet34_rep(pretrained=False, **kwargs):
    """Constructs a ResNet-34 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        pretrained_state_dict = model_zoo.load_url(model_urls['resnet34'])
        now_state_dict        = model.state_dict()
        now_state_dict.update(pretrained_state_dict)
        model.load_state_dict(now_state_dict)
    return model