|
|
|
|
|
import functools |
|
import math |
|
import random |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import GPT2Config |
|
|
|
from TTS.tts.layers.xtts.gpt_inference import GPT2InferenceModel |
|
from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder |
|
from TTS.tts.layers.xtts.perceiver_encoder import PerceiverResampler |
|
|
|
|
|
def null_position_embeddings(range, dim): |
|
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) |
|
|
|
|
|
class LearnedPositionEmbeddings(nn.Module): |
|
def __init__(self, seq_len, model_dim, init=0.02, relative=False): |
|
super().__init__() |
|
|
|
self.emb = torch.nn.Embedding(seq_len, model_dim) |
|
|
|
self.emb.weight.data.normal_(mean=0.0, std=init) |
|
self.relative = relative |
|
self.seq_len = seq_len |
|
|
|
def forward(self, x): |
|
sl = x.shape[1] |
|
if self.relative: |
|
start = random.randint(sl, self.seq_len) - sl |
|
return self.emb(torch.arange(start, start + sl, device=x.device)) |
|
else: |
|
return self.emb(torch.arange(0, sl, device=x.device)) |
|
|
|
def get_fixed_embedding(self, ind, dev): |
|
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) |
|
|
|
|
|
def build_hf_gpt_transformer( |
|
layers, |
|
model_dim, |
|
heads, |
|
max_mel_seq_len, |
|
max_text_seq_len, |
|
max_prompt_len, |
|
checkpointing, |
|
): |
|
""" |
|
GPT-2 implemented by the HuggingFace library. |
|
""" |
|
from transformers import GPT2Config, GPT2Model |
|
|
|
gpt_config = GPT2Config( |
|
vocab_size=256, |
|
n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len, |
|
n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len, |
|
n_embd=model_dim, |
|
n_layer=layers, |
|
n_head=heads, |
|
gradient_checkpointing=checkpointing, |
|
use_cache=not checkpointing, |
|
) |
|
gpt = GPT2Model(gpt_config) |
|
|
|
del gpt.wpe |
|
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) |
|
|
|
del gpt.wte |
|
|
|
mel_pos_emb = ( |
|
LearnedPositionEmbeddings(max_mel_seq_len, model_dim) |
|
if max_mel_seq_len != -1 |
|
else functools.partial(null_position_embeddings, dim=model_dim) |
|
) |
|
text_pos_emb = ( |
|
LearnedPositionEmbeddings(max_text_seq_len, model_dim) |
|
if max_mel_seq_len != -1 |
|
else functools.partial(null_position_embeddings, dim=model_dim) |
|
) |
|
|
|
return gpt, mel_pos_emb, text_pos_emb, None, None |
|
|
|
|
|
class GPT(nn.Module): |
|
def __init__( |
|
self, |
|
start_text_token=261, |
|
stop_text_token=0, |
|
layers=8, |
|
model_dim=512, |
|
heads=8, |
|
max_text_tokens=120, |
|
max_mel_tokens=250, |
|
max_prompt_tokens=70, |
|
max_conditioning_inputs=1, |
|
code_stride_len=1024, |
|
number_text_tokens=256, |
|
num_audio_tokens=8194, |
|
start_audio_token=8192, |
|
stop_audio_token=8193, |
|
train_solo_embeddings=False, |
|
checkpointing=False, |
|
average_conditioning_embeddings=False, |
|
label_smoothing=0.0, |
|
use_perceiver_resampler=False, |
|
perceiver_cond_length_compression=256, |
|
): |
|
""" |
|
Args: |
|
|
|
""" |
|
super().__init__() |
|
|
|
self.label_smoothing = label_smoothing |
|
self.number_text_tokens = number_text_tokens |
|
self.start_text_token = start_text_token |
|
self.stop_text_token = stop_text_token |
|
self.num_audio_tokens = num_audio_tokens |
|
self.start_audio_token = start_audio_token |
|
self.stop_audio_token = stop_audio_token |
|
self.start_prompt_token = start_audio_token |
|
self.stop_prompt_token = stop_audio_token |
|
self.layers = layers |
|
self.heads = heads |
|
self.model_dim = model_dim |
|
self.max_conditioning_inputs = max_conditioning_inputs |
|
self.max_gen_mel_tokens = max_mel_tokens - self.max_conditioning_inputs - 2 |
|
self.max_mel_tokens = -1 if max_mel_tokens == -1 else max_mel_tokens + 2 + self.max_conditioning_inputs |
|
self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2 |
|
self.max_prompt_tokens = max_prompt_tokens |
|
self.code_stride_len = code_stride_len |
|
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads) |
|
self.conditioning_dropout = nn.Dropout1d(0.1) |
|
self.average_conditioning_embeddings = average_conditioning_embeddings |
|
self.use_perceiver_resampler = use_perceiver_resampler |
|
self.perceiver_cond_length_compression = perceiver_cond_length_compression |
|
|
|
self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim) |
|
self.mel_embedding = nn.Embedding(self.num_audio_tokens, model_dim) |
|
|
|
( |
|
self.gpt, |
|
self.mel_pos_embedding, |
|
self.text_pos_embedding, |
|
self.mel_layer_pos_embedding, |
|
self.text_layer_pos_embedding, |
|
) = build_hf_gpt_transformer( |
|
layers, |
|
model_dim, |
|
heads, |
|
self.max_mel_tokens, |
|
self.max_text_tokens, |
|
self.max_prompt_tokens, |
|
checkpointing, |
|
) |
|
if train_solo_embeddings: |
|
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) |
|
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) |
|
else: |
|
self.mel_solo_embedding = 0 |
|
self.text_solo_embedding = 0 |
|
|
|
self.final_norm = nn.LayerNorm(model_dim) |
|
self.text_head = nn.Linear(model_dim, self.number_text_tokens) |
|
self.mel_head = nn.Linear(model_dim, self.num_audio_tokens) |
|
|
|
if self.use_perceiver_resampler: |
|
|
|
self.conditioning_perceiver = PerceiverResampler( |
|
dim=model_dim, |
|
depth=2, |
|
dim_context=model_dim, |
|
num_latents=32, |
|
dim_head=64, |
|
heads=8, |
|
ff_mult=4, |
|
use_flash_attn=False, |
|
) |
|
else: |
|
|
|
self.prompt_embedding = nn.Embedding(self.num_audio_tokens, model_dim) |
|
self.prompt_pos_embedding = LearnedPositionEmbeddings(24 * 9, model_dim) |
|
|
|
def get_grad_norm_parameter_groups(self): |
|
return { |
|
"conditioning_encoder": list(self.conditioning_encoder.parameters()), |
|
"conditioning_perceiver": list(self.conditioning_perceiver.parameters()) |
|
if self.use_perceiver_resampler |
|
else None, |
|
"gpt": list(self.gpt.parameters()), |
|
"heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()), |
|
} |
|
|
|
def init_gpt_for_inference(self, kv_cache=True, use_deepspeed=False): |
|
seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1 |
|
gpt_config = GPT2Config( |
|
vocab_size=self.max_mel_tokens, |
|
n_positions=seq_length, |
|
n_ctx=seq_length, |
|
n_embd=self.model_dim, |
|
n_layer=self.layers, |
|
n_head=self.heads, |
|
gradient_checkpointing=False, |
|
use_cache=True, |
|
) |
|
self.gpt_inference = GPT2InferenceModel( |
|
gpt_config, |
|
self.gpt, |
|
self.mel_pos_embedding, |
|
self.mel_embedding, |
|
self.final_norm, |
|
self.mel_head, |
|
kv_cache=kv_cache, |
|
) |
|
self.gpt.wte = self.mel_embedding |
|
|
|
if use_deepspeed: |
|
import deepspeed |
|
|
|
self.ds_engine = deepspeed.init_inference( |
|
model=self.gpt_inference.half(), |
|
mp_size=1, |
|
dtype=torch.float32, |
|
replace_method="auto", |
|
replace_with_kernel_inject=True, |
|
) |
|
self.gpt_inference = self.ds_engine.module.eval() |
|
|
|
def set_inputs_and_targets(self, input, start_token, stop_token): |
|
inp = F.pad(input, (1, 0), value=start_token) |
|
tar = F.pad(input, (0, 1), value=stop_token) |
|
return inp, tar |
|
|
|
def set_mel_padding(self, mel_input_tokens, code_lengths): |
|
""" |
|
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in |
|
that audio clip, reformats the tokens with stop_audio_token in place of the zero padding. This is required |
|
preformatting to create a working TTS model. |
|
""" |
|
|
|
for b in range(len(code_lengths)): |
|
actual_end = code_lengths[b] |
|
if actual_end < mel_input_tokens.shape[-1]: |
|
mel_input_tokens[b, actual_end:] = self.stop_audio_token |
|
return mel_input_tokens |
|
|
|
def get_logits( |
|
self, |
|
first_inputs, |
|
first_head, |
|
second_inputs=None, |
|
second_head=None, |
|
prompt=None, |
|
get_attns=False, |
|
return_latent=False, |
|
attn_mask_cond=None, |
|
attn_mask_text=None, |
|
attn_mask_mel=None, |
|
): |
|
if prompt is not None: |
|
offset = prompt.shape[1] |
|
if second_inputs is not None: |
|
emb = torch.cat([prompt, first_inputs, second_inputs], dim=1) |
|
else: |
|
emb = torch.cat([prompt, first_inputs], dim=1) |
|
|
|
|
|
attn_mask = None |
|
if attn_mask_text is not None: |
|
attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1) |
|
if prompt is not None: |
|
attn_mask_cond = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device) |
|
attn_mask = torch.cat([attn_mask_cond, attn_mask], dim=1) |
|
|
|
gpt_out = self.gpt( |
|
inputs_embeds=emb, |
|
return_dict=True, |
|
output_attentions=get_attns, |
|
attention_mask=attn_mask, |
|
) |
|
|
|
if get_attns: |
|
return gpt_out.attentions |
|
|
|
enc = gpt_out.last_hidden_state[:, offset:] |
|
enc = self.final_norm(enc) |
|
|
|
if return_latent: |
|
return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :] |
|
|
|
first_logits = enc[:, : first_inputs.shape[1]] |
|
first_logits = first_head(first_logits) |
|
first_logits = first_logits.permute(0, 2, 1) |
|
if second_inputs is not None: |
|
second_logits = enc[:, -second_inputs.shape[1] :] |
|
second_logits = second_head(second_logits) |
|
second_logits = second_logits.permute(0, 2, 1) |
|
return first_logits, second_logits |
|
else: |
|
return first_logits |
|
|
|
def get_conditioning(self, speech_conditioning_input): |
|
speech_conditioning_input = ( |
|
speech_conditioning_input.unsqueeze(1) |
|
if len(speech_conditioning_input.shape) == 3 |
|
else speech_conditioning_input |
|
) |
|
conds = [] |
|
for j in range(speech_conditioning_input.shape[1]): |
|
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) |
|
conds = torch.stack(conds, dim=1) |
|
conds = conds.mean(dim=1) |
|
return conds |
|
|
|
def get_prompts(self, prompt_codes): |
|
""" |
|
Create a prompt from the mel codes. This is used to condition the model on the mel codes. |
|
Pad the prompt with start and stop mel tokens. |
|
""" |
|
prompt = prompt_codes |
|
if self.training: |
|
lengths = [] |
|
|
|
for i in range(prompt_codes.shape[0]): |
|
length = 0 |
|
for j in range(prompt_codes.shape[1]): |
|
if prompt_codes[i, j] == 83: |
|
break |
|
else: |
|
length += 1 |
|
lengths.append(length) |
|
|
|
|
|
prompt_len = 3 |
|
prompt_len = prompt_len * 24 |
|
if prompt_codes.shape[-1] >= prompt_len: |
|
for i in range(prompt_codes.shape[0]): |
|
if lengths[i] < prompt_len: |
|
start = 0 |
|
else: |
|
start = random.randint(0, lengths[i] - prompt_len) |
|
prompt = prompt_codes[:, start : start + prompt_len] |
|
|
|
|
|
prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token) |
|
prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token) |
|
return prompt |
|
|
|
def get_style_emb(self, cond_input, return_latent=False): |
|
""" |
|
cond_input: (b, 80, s) or (b, 1, 80, s) |
|
conds: (b, 1024, s) |
|
""" |
|
conds = None |
|
if not return_latent: |
|
if cond_input.ndim == 4: |
|
cond_input = cond_input.squeeze(1) |
|
conds = self.conditioning_encoder(cond_input) |
|
if self.use_perceiver_resampler: |
|
conds = self.conditioning_perceiver(conds.permute(0, 2, 1)).transpose(1, 2) |
|
else: |
|
|
|
conds = cond_input.unsqueeze(1) |
|
return conds |
|
|
|
def forward( |
|
self, |
|
text_inputs, |
|
text_lengths, |
|
audio_codes, |
|
wav_lengths, |
|
cond_mels=None, |
|
cond_idxs=None, |
|
cond_lens=None, |
|
cond_latents=None, |
|
return_attentions=False, |
|
return_latent=False, |
|
): |
|
""" |
|
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode |
|
(actuated by `text_first`). |
|
|
|
text_inputs: long tensor, (b,t) |
|
text_lengths: long tensor, (b,) |
|
mel_inputs: long tensor, (b,m) |
|
wav_lengths: long tensor, (b,) |
|
cond_mels: MEL float tensor, (b, 1, 80,s) |
|
cond_idxs: cond start and end indexs, (b, 2) |
|
|
|
If return_attentions is specified, only logits are returned. |
|
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. |
|
""" |
|
|
|
if self.max_conditioning_inputs == 0: |
|
assert cond_mels is None, " ❗ cond_mels is not None, but max_conditioning_inputs == 0" |
|
|
|
max_text_len = text_lengths.max() |
|
code_lengths = torch.ceil(wav_lengths / self.code_stride_len).long() + 3 |
|
|
|
if cond_lens is not None: |
|
if self.use_perceiver_resampler: |
|
cond_lens = cond_lens // self.perceiver_cond_length_compression |
|
else: |
|
cond_lens = cond_lens // self.code_stride_len |
|
|
|
if cond_idxs is not None: |
|
|
|
for idx in range(cond_idxs.size(0)): |
|
if self.use_perceiver_resampler: |
|
cond_idxs[idx] = cond_idxs[idx] // self.perceiver_cond_length_compression |
|
else: |
|
cond_idxs[idx] = cond_idxs[idx] // self.code_stride_len |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
max_mel_len = code_lengths.max() |
|
|
|
if max_mel_len > audio_codes.shape[-1]: |
|
audio_codes = F.pad(audio_codes, (0, max_mel_len - audio_codes.shape[-1])) |
|
|
|
|
|
assert ( |
|
max_mel_len <= audio_codes.shape[-1] |
|
), f" ❗ max_mel_len ({max_mel_len}) > audio_codes.shape[-1] ({audio_codes.shape[-1]})" |
|
assert ( |
|
max_text_len <= text_inputs.shape[-1] |
|
), f" ❗ max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})" |
|
|
|
|
|
text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token) |
|
|
|
|
|
audio_codes = F.pad(audio_codes[:, :max_mel_len], (0, 1), value=self.stop_audio_token) |
|
|
|
|
|
audio_codes = self.set_mel_padding( |
|
audio_codes, code_lengths - 3 |
|
) |
|
|
|
|
|
|
|
text_inputs, text_targets = self.set_inputs_and_targets( |
|
text_inputs, self.start_text_token, self.stop_text_token |
|
) |
|
audio_codes, mel_targets = self.set_inputs_and_targets( |
|
audio_codes, self.start_audio_token, self.stop_audio_token |
|
) |
|
|
|
|
|
attn_mask_cond = None |
|
attn_mask_text = None |
|
attn_mask_mel = None |
|
if not return_latent: |
|
attn_mask_cond = torch.ones( |
|
cond_mels.shape[0], |
|
cond_mels.shape[-1], |
|
dtype=torch.bool, |
|
device=text_inputs.device, |
|
) |
|
attn_mask_text = torch.ones( |
|
text_inputs.shape[0], |
|
text_inputs.shape[1], |
|
dtype=torch.bool, |
|
device=text_inputs.device, |
|
) |
|
attn_mask_mel = torch.ones( |
|
audio_codes.shape[0], |
|
audio_codes.shape[1], |
|
dtype=torch.bool, |
|
device=audio_codes.device, |
|
) |
|
|
|
if cond_idxs is not None: |
|
|
|
for idx, r in enumerate(cond_idxs): |
|
l = r[1] - r[0] |
|
attn_mask_cond[idx, l:] = 0.0 |
|
elif cond_lens is not None: |
|
for idx, l in enumerate(cond_lens): |
|
attn_mask_cond[idx, l:] = 0.0 |
|
|
|
for idx, l in enumerate(text_lengths): |
|
attn_mask_text[idx, l + 1 :] = 0.0 |
|
|
|
for idx, l in enumerate(code_lengths): |
|
attn_mask_mel[idx, l + 1 :] = 0.0 |
|
|
|
|
|
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) |
|
|
|
|
|
mel_emb = self.mel_embedding(audio_codes) + self.mel_pos_embedding(audio_codes) |
|
|
|
|
|
if cond_latents is None: |
|
cond_latents = self.get_style_emb(cond_mels).transpose(1, 2) |
|
|
|
|
|
sub = -5 |
|
if self.training: |
|
sub = -1 |
|
|
|
text_logits, mel_logits = self.get_logits( |
|
text_emb, |
|
self.text_head, |
|
mel_emb, |
|
self.mel_head, |
|
prompt=cond_latents, |
|
get_attns=return_attentions, |
|
return_latent=return_latent, |
|
attn_mask_cond=attn_mask_cond, |
|
attn_mask_text=attn_mask_text, |
|
attn_mask_mel=attn_mask_mel, |
|
) |
|
if return_latent: |
|
return mel_logits[:, :sub] |
|
|
|
if return_attentions: |
|
return mel_logits |
|
|
|
|
|
for idx, l in enumerate(text_lengths): |
|
text_targets[idx, l + 1 :] = -1 |
|
|
|
for idx, l in enumerate(code_lengths): |
|
mel_targets[idx, l + 1 :] = -1 |
|
|
|
|
|
assert (mel_targets == self.stop_audio_token).sum() >= mel_targets.shape[ |
|
0 |
|
], f" ❗ mel_targets does not contain stop token ({self.stop_audio_token}) in every row." |
|
|
|
|
|
|
|
if cond_idxs is not None: |
|
cond_start = cond_idxs[idx, 0] |
|
cond_end = cond_idxs[idx, 1] |
|
mel_targets[idx, cond_start:cond_end] = -1 |
|
|
|
|
|
loss_text = F.cross_entropy( |
|
text_logits, text_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing |
|
) |
|
loss_mel = F.cross_entropy( |
|
mel_logits, mel_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing |
|
) |
|
return loss_text.mean(), loss_mel.mean(), mel_logits |
|
|
|
def inference(self, cond_latents, text_inputs, **hf_generate_kwargs): |
|
self.compute_embeddings(cond_latents, text_inputs) |
|
return self.generate(cond_latents, text_inputs, **hf_generate_kwargs) |
|
|
|
def compute_embeddings( |
|
self, |
|
cond_latents, |
|
text_inputs, |
|
): |
|
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) |
|
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) |
|
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) |
|
emb = torch.cat([cond_latents, emb], dim=1) |
|
self.gpt_inference.store_prefix_emb(emb) |
|
gpt_inputs = torch.full( |
|
( |
|
emb.shape[0], |
|
emb.shape[1] + 1, |
|
), |
|
fill_value=1, |
|
dtype=torch.long, |
|
device=text_inputs.device, |
|
) |
|
gpt_inputs[:, -1] = self.start_audio_token |
|
return gpt_inputs |
|
|
|
def generate( |
|
self, |
|
cond_latents, |
|
text_inputs, |
|
**hf_generate_kwargs, |
|
): |
|
gpt_inputs = self.compute_embeddings(cond_latents, text_inputs) |
|
gen = self.gpt_inference.generate( |
|
gpt_inputs, |
|
bos_token_id=self.start_audio_token, |
|
pad_token_id=self.stop_audio_token, |
|
eos_token_id=self.stop_audio_token, |
|
max_length=self.max_gen_mel_tokens + gpt_inputs.shape[-1], |
|
**hf_generate_kwargs, |
|
) |
|
if "return_dict_in_generate" in hf_generate_kwargs: |
|
return gen.sequences[:, gpt_inputs.shape[1] :], gen |
|
return gen[:, gpt_inputs.shape[1] :] |
|
|
|
def get_generator(self, fake_inputs, **hf_generate_kwargs): |
|
return self.gpt_inference.generate_stream( |
|
fake_inputs, |
|
bos_token_id=self.start_audio_token, |
|
pad_token_id=self.stop_audio_token, |
|
eos_token_id=self.stop_audio_token, |
|
max_length=self.max_gen_mel_tokens + fake_inputs.shape[-1], |
|
do_stream=True, |
|
**hf_generate_kwargs, |
|
) |
|
|