File size: 23,055 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# ported from: https://github.com/neonbjb/tortoise-tts
import functools
import math
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2Config
from TTS.tts.layers.xtts.gpt_inference import GPT2InferenceModel
from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder
from TTS.tts.layers.xtts.perceiver_encoder import PerceiverResampler
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
class LearnedPositionEmbeddings(nn.Module):
def __init__(self, seq_len, model_dim, init=0.02, relative=False):
super().__init__()
# nn.Embedding
self.emb = torch.nn.Embedding(seq_len, model_dim)
# Initializing this way is standard for GPT-2
self.emb.weight.data.normal_(mean=0.0, std=init)
self.relative = relative
self.seq_len = seq_len
def forward(self, x):
sl = x.shape[1]
if self.relative:
start = random.randint(sl, self.seq_len) - sl
return self.emb(torch.arange(start, start + sl, device=x.device))
else:
return self.emb(torch.arange(0, sl, device=x.device))
def get_fixed_embedding(self, ind, dev):
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
def build_hf_gpt_transformer(
layers,
model_dim,
heads,
max_mel_seq_len,
max_text_seq_len,
max_prompt_len,
checkpointing,
):
"""
GPT-2 implemented by the HuggingFace library.
"""
from transformers import GPT2Config, GPT2Model
gpt_config = GPT2Config(
vocab_size=256, # Unused.
n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len,
n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
gradient_checkpointing=checkpointing,
use_cache=not checkpointing,
)
gpt = GPT2Model(gpt_config)
# Override the built in positional embeddings
del gpt.wpe
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
# Built-in token embeddings are unused.
del gpt.wte
mel_pos_emb = (
LearnedPositionEmbeddings(max_mel_seq_len, model_dim)
if max_mel_seq_len != -1
else functools.partial(null_position_embeddings, dim=model_dim)
)
text_pos_emb = (
LearnedPositionEmbeddings(max_text_seq_len, model_dim)
if max_mel_seq_len != -1
else functools.partial(null_position_embeddings, dim=model_dim)
)
# gpt = torch.compile(gpt, mode="reduce-overhead", fullgraph=True)
return gpt, mel_pos_emb, text_pos_emb, None, None
class GPT(nn.Module):
def __init__(
self,
start_text_token=261,
stop_text_token=0,
layers=8,
model_dim=512,
heads=8,
max_text_tokens=120,
max_mel_tokens=250,
max_prompt_tokens=70,
max_conditioning_inputs=1,
code_stride_len=1024,
number_text_tokens=256,
num_audio_tokens=8194,
start_audio_token=8192,
stop_audio_token=8193,
train_solo_embeddings=False,
checkpointing=False,
average_conditioning_embeddings=False,
label_smoothing=0.0,
use_perceiver_resampler=False,
perceiver_cond_length_compression=256,
):
"""
Args:
"""
super().__init__()
self.label_smoothing = label_smoothing
self.number_text_tokens = number_text_tokens
self.start_text_token = start_text_token
self.stop_text_token = stop_text_token
self.num_audio_tokens = num_audio_tokens
self.start_audio_token = start_audio_token
self.stop_audio_token = stop_audio_token
self.start_prompt_token = start_audio_token
self.stop_prompt_token = stop_audio_token
self.layers = layers
self.heads = heads
self.model_dim = model_dim
self.max_conditioning_inputs = max_conditioning_inputs
self.max_gen_mel_tokens = max_mel_tokens - self.max_conditioning_inputs - 2
self.max_mel_tokens = -1 if max_mel_tokens == -1 else max_mel_tokens + 2 + self.max_conditioning_inputs
self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2
self.max_prompt_tokens = max_prompt_tokens
self.code_stride_len = code_stride_len
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
self.conditioning_dropout = nn.Dropout1d(0.1)
self.average_conditioning_embeddings = average_conditioning_embeddings
self.use_perceiver_resampler = use_perceiver_resampler
self.perceiver_cond_length_compression = perceiver_cond_length_compression
self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim)
self.mel_embedding = nn.Embedding(self.num_audio_tokens, model_dim)
(
self.gpt,
self.mel_pos_embedding,
self.text_pos_embedding,
self.mel_layer_pos_embedding,
self.text_layer_pos_embedding,
) = build_hf_gpt_transformer(
layers,
model_dim,
heads,
self.max_mel_tokens,
self.max_text_tokens,
self.max_prompt_tokens,
checkpointing,
)
if train_solo_embeddings:
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True)
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True)
else:
self.mel_solo_embedding = 0
self.text_solo_embedding = 0
self.final_norm = nn.LayerNorm(model_dim)
self.text_head = nn.Linear(model_dim, self.number_text_tokens)
self.mel_head = nn.Linear(model_dim, self.num_audio_tokens)
if self.use_perceiver_resampler:
# XTTS v2
self.conditioning_perceiver = PerceiverResampler(
dim=model_dim,
depth=2,
dim_context=model_dim,
num_latents=32,
dim_head=64,
heads=8,
ff_mult=4,
use_flash_attn=False,
)
else:
# XTTS v1
self.prompt_embedding = nn.Embedding(self.num_audio_tokens, model_dim)
self.prompt_pos_embedding = LearnedPositionEmbeddings(24 * 9, model_dim)
def get_grad_norm_parameter_groups(self):
return {
"conditioning_encoder": list(self.conditioning_encoder.parameters()),
"conditioning_perceiver": list(self.conditioning_perceiver.parameters())
if self.use_perceiver_resampler
else None,
"gpt": list(self.gpt.parameters()),
"heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()),
}
def init_gpt_for_inference(self, kv_cache=True, use_deepspeed=False):
seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1
gpt_config = GPT2Config(
vocab_size=self.max_mel_tokens,
n_positions=seq_length,
n_ctx=seq_length,
n_embd=self.model_dim,
n_layer=self.layers,
n_head=self.heads,
gradient_checkpointing=False,
use_cache=True,
)
self.gpt_inference = GPT2InferenceModel(
gpt_config,
self.gpt,
self.mel_pos_embedding,
self.mel_embedding,
self.final_norm,
self.mel_head,
kv_cache=kv_cache,
)
self.gpt.wte = self.mel_embedding
if use_deepspeed:
import deepspeed
self.ds_engine = deepspeed.init_inference(
model=self.gpt_inference.half(), # Transformers models
mp_size=1, # Number of GPU
dtype=torch.float32, # desired data type of output
replace_method="auto", # Lets DS autmatically identify the layer to replace
replace_with_kernel_inject=True, # replace the model with the kernel injector
)
self.gpt_inference = self.ds_engine.module.eval()
def set_inputs_and_targets(self, input, start_token, stop_token):
inp = F.pad(input, (1, 0), value=start_token)
tar = F.pad(input, (0, 1), value=stop_token)
return inp, tar
def set_mel_padding(self, mel_input_tokens, code_lengths):
"""
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
that audio clip, reformats the tokens with stop_audio_token in place of the zero padding. This is required
preformatting to create a working TTS model.
"""
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
for b in range(len(code_lengths)):
actual_end = code_lengths[b]
if actual_end < mel_input_tokens.shape[-1]:
mel_input_tokens[b, actual_end:] = self.stop_audio_token
return mel_input_tokens
def get_logits(
self,
first_inputs,
first_head,
second_inputs=None,
second_head=None,
prompt=None,
get_attns=False,
return_latent=False,
attn_mask_cond=None,
attn_mask_text=None,
attn_mask_mel=None,
):
if prompt is not None:
offset = prompt.shape[1]
if second_inputs is not None:
emb = torch.cat([prompt, first_inputs, second_inputs], dim=1)
else:
emb = torch.cat([prompt, first_inputs], dim=1)
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
attn_mask = None
if attn_mask_text is not None:
attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1)
if prompt is not None:
attn_mask_cond = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device)
attn_mask = torch.cat([attn_mask_cond, attn_mask], dim=1)
gpt_out = self.gpt(
inputs_embeds=emb,
return_dict=True,
output_attentions=get_attns,
attention_mask=attn_mask,
)
if get_attns:
return gpt_out.attentions
enc = gpt_out.last_hidden_state[:, offset:]
enc = self.final_norm(enc)
if return_latent:
return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :]
first_logits = enc[:, : first_inputs.shape[1]]
first_logits = first_head(first_logits)
first_logits = first_logits.permute(0, 2, 1)
if second_inputs is not None:
second_logits = enc[:, -second_inputs.shape[1] :]
second_logits = second_head(second_logits)
second_logits = second_logits.permute(0, 2, 1)
return first_logits, second_logits
else:
return first_logits
def get_conditioning(self, speech_conditioning_input):
speech_conditioning_input = (
speech_conditioning_input.unsqueeze(1)
if len(speech_conditioning_input.shape) == 3
else speech_conditioning_input
)
conds = []
for j in range(speech_conditioning_input.shape[1]):
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
conds = conds.mean(dim=1)
return conds
def get_prompts(self, prompt_codes):
"""
Create a prompt from the mel codes. This is used to condition the model on the mel codes.
Pad the prompt with start and stop mel tokens.
"""
prompt = prompt_codes
if self.training:
lengths = []
# Compute the real prompt length based on the first encounter with the token 83 used for padding
for i in range(prompt_codes.shape[0]):
length = 0
for j in range(prompt_codes.shape[1]):
if prompt_codes[i, j] == 83:
break
else:
length += 1
lengths.append(length)
# prompt_len = random.randint(1, 9) # in secs
prompt_len = 3
prompt_len = prompt_len * 24 # in frames
if prompt_codes.shape[-1] >= prompt_len:
for i in range(prompt_codes.shape[0]):
if lengths[i] < prompt_len:
start = 0
else:
start = random.randint(0, lengths[i] - prompt_len)
prompt = prompt_codes[:, start : start + prompt_len]
# add start and stop tokens
prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token)
prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token)
return prompt
def get_style_emb(self, cond_input, return_latent=False):
"""
cond_input: (b, 80, s) or (b, 1, 80, s)
conds: (b, 1024, s)
"""
conds = None
if not return_latent:
if cond_input.ndim == 4:
cond_input = cond_input.squeeze(1)
conds = self.conditioning_encoder(cond_input) # (b, d, s)
if self.use_perceiver_resampler:
conds = self.conditioning_perceiver(conds.permute(0, 2, 1)).transpose(1, 2) # (b, d, 32)
else:
# already computed
conds = cond_input.unsqueeze(1)
return conds
def forward(
self,
text_inputs,
text_lengths,
audio_codes,
wav_lengths,
cond_mels=None,
cond_idxs=None,
cond_lens=None,
cond_latents=None,
return_attentions=False,
return_latent=False,
):
"""
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
(actuated by `text_first`).
text_inputs: long tensor, (b,t)
text_lengths: long tensor, (b,)
mel_inputs: long tensor, (b,m)
wav_lengths: long tensor, (b,)
cond_mels: MEL float tensor, (b, 1, 80,s)
cond_idxs: cond start and end indexs, (b, 2)
If return_attentions is specified, only logits are returned.
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
"""
# ❗ FIXIT
if self.max_conditioning_inputs == 0:
assert cond_mels is None, " ❗ cond_mels is not None, but max_conditioning_inputs == 0"
max_text_len = text_lengths.max()
code_lengths = torch.ceil(wav_lengths / self.code_stride_len).long() + 3
if cond_lens is not None:
if self.use_perceiver_resampler:
cond_lens = cond_lens // self.perceiver_cond_length_compression
else:
cond_lens = cond_lens // self.code_stride_len
if cond_idxs is not None:
# recompute cond idxs for mel lengths
for idx in range(cond_idxs.size(0)):
if self.use_perceiver_resampler:
cond_idxs[idx] = cond_idxs[idx] // self.perceiver_cond_length_compression
else:
cond_idxs[idx] = cond_idxs[idx] // self.code_stride_len
# ensure that the cond_mel does not have padding
# if cond_lens is not None and cond_idxs is None:
# min_cond_len = torch.min(cond_lens)
# cond_mels = cond_mels[:, :, :, :min_cond_len]
# If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes.
max_mel_len = code_lengths.max()
if max_mel_len > audio_codes.shape[-1]:
audio_codes = F.pad(audio_codes, (0, max_mel_len - audio_codes.shape[-1]))
# 💖 Lovely assertions
assert (
max_mel_len <= audio_codes.shape[-1]
), f" ❗ max_mel_len ({max_mel_len}) > audio_codes.shape[-1] ({audio_codes.shape[-1]})"
assert (
max_text_len <= text_inputs.shape[-1]
), f" ❗ max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})"
# Append stop token to text inputs
text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token)
# Append silence token to mel codes
audio_codes = F.pad(audio_codes[:, :max_mel_len], (0, 1), value=self.stop_audio_token)
# Pad mel codes with stop_audio_token
audio_codes = self.set_mel_padding(
audio_codes, code_lengths - 3
) # -3 to get the real code lengths without consider start and stop tokens that was not added yet
# Build input and target tensors
# Prepend start token to inputs and append stop token to targets
text_inputs, text_targets = self.set_inputs_and_targets(
text_inputs, self.start_text_token, self.stop_text_token
)
audio_codes, mel_targets = self.set_inputs_and_targets(
audio_codes, self.start_audio_token, self.stop_audio_token
)
# Set attn_mask
attn_mask_cond = None
attn_mask_text = None
attn_mask_mel = None
if not return_latent:
attn_mask_cond = torch.ones(
cond_mels.shape[0],
cond_mels.shape[-1],
dtype=torch.bool,
device=text_inputs.device,
)
attn_mask_text = torch.ones(
text_inputs.shape[0],
text_inputs.shape[1],
dtype=torch.bool,
device=text_inputs.device,
)
attn_mask_mel = torch.ones(
audio_codes.shape[0],
audio_codes.shape[1],
dtype=torch.bool,
device=audio_codes.device,
)
if cond_idxs is not None:
# use masking approach
for idx, r in enumerate(cond_idxs):
l = r[1] - r[0]
attn_mask_cond[idx, l:] = 0.0
elif cond_lens is not None:
for idx, l in enumerate(cond_lens):
attn_mask_cond[idx, l:] = 0.0
for idx, l in enumerate(text_lengths):
attn_mask_text[idx, l + 1 :] = 0.0
for idx, l in enumerate(code_lengths):
attn_mask_mel[idx, l + 1 :] = 0.0
# Compute text embeddings + positional embeddings
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
# Compute mel embeddings + positional embeddings
mel_emb = self.mel_embedding(audio_codes) + self.mel_pos_embedding(audio_codes)
# Compute speech conditioning input
if cond_latents is None:
cond_latents = self.get_style_emb(cond_mels).transpose(1, 2)
# Get logits
sub = -5 # don't ask me why 😄
if self.training:
sub = -1
text_logits, mel_logits = self.get_logits(
text_emb,
self.text_head,
mel_emb,
self.mel_head,
prompt=cond_latents,
get_attns=return_attentions,
return_latent=return_latent,
attn_mask_cond=attn_mask_cond,
attn_mask_text=attn_mask_text,
attn_mask_mel=attn_mask_mel,
)
if return_latent:
return mel_logits[:, :sub] # sub to prevent bla.
if return_attentions:
return mel_logits
# Set paddings to -1 to ignore them in loss
for idx, l in enumerate(text_lengths):
text_targets[idx, l + 1 :] = -1
for idx, l in enumerate(code_lengths):
mel_targets[idx, l + 1 :] = -1
# check if stoptoken is in every row of mel_targets
assert (mel_targets == self.stop_audio_token).sum() >= mel_targets.shape[
0
], f" ❗ mel_targets does not contain stop token ({self.stop_audio_token}) in every row."
# ignore the loss for the segment used for conditioning
# coin flip for the segment to be ignored
if cond_idxs is not None:
cond_start = cond_idxs[idx, 0]
cond_end = cond_idxs[idx, 1]
mel_targets[idx, cond_start:cond_end] = -1
# Compute losses
loss_text = F.cross_entropy(
text_logits, text_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing
)
loss_mel = F.cross_entropy(
mel_logits, mel_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing
)
return loss_text.mean(), loss_mel.mean(), mel_logits
def inference(self, cond_latents, text_inputs, **hf_generate_kwargs):
self.compute_embeddings(cond_latents, text_inputs)
return self.generate(cond_latents, text_inputs, **hf_generate_kwargs)
def compute_embeddings(
self,
cond_latents,
text_inputs,
):
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
emb = torch.cat([cond_latents, emb], dim=1)
self.gpt_inference.store_prefix_emb(emb)
gpt_inputs = torch.full(
(
emb.shape[0],
emb.shape[1] + 1, # +1 for the start_audio_token
),
fill_value=1,
dtype=torch.long,
device=text_inputs.device,
)
gpt_inputs[:, -1] = self.start_audio_token
return gpt_inputs
def generate(
self,
cond_latents,
text_inputs,
**hf_generate_kwargs,
):
gpt_inputs = self.compute_embeddings(cond_latents, text_inputs)
gen = self.gpt_inference.generate(
gpt_inputs,
bos_token_id=self.start_audio_token,
pad_token_id=self.stop_audio_token,
eos_token_id=self.stop_audio_token,
max_length=self.max_gen_mel_tokens + gpt_inputs.shape[-1],
**hf_generate_kwargs,
)
if "return_dict_in_generate" in hf_generate_kwargs:
return gen.sequences[:, gpt_inputs.shape[1] :], gen
return gen[:, gpt_inputs.shape[1] :]
def get_generator(self, fake_inputs, **hf_generate_kwargs):
return self.gpt_inference.generate_stream(
fake_inputs,
bos_token_id=self.start_audio_token,
pad_token_id=self.stop_audio_token,
eos_token_id=self.stop_audio_token,
max_length=self.max_gen_mel_tokens + fake_inputs.shape[-1],
do_stream=True,
**hf_generate_kwargs,
)
|