File size: 4,775 Bytes
9d61c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import math
import unittest

import numpy as np
import torch

from training.preprocess.audio import (
    normalize_loudness,
    preprocess_audio,
    resample,
    stereo_to_mono,
)


# Create a class to test the ComputePitch class
class TestAudio(unittest.TestCase):
    def setUp(self):
        np.random.seed(0)

    def test_stereo_to_mono(self):
        # Test the stereo_to_mono function with a simple example
        audio = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
        expected_output = torch.tensor([[2.5, 3.5, 4.5]])
        actual_output = stereo_to_mono(audio)

        self.assertTrue(torch.allclose(actual_output, expected_output))

        # Test the stereo_to_mono function with a larger example
        audio = torch.randn(2, 44100)
        expected_output = torch.mean(audio, 0, True)
        actual_output = stereo_to_mono(audio)
        self.assertTrue(torch.allclose(actual_output, expected_output))

        # Test the stereo_to_mono function with a zero-dimensional tensor
        audio = torch.tensor(1.0)
        expected_output = torch.tensor([[1.0]])
        actual_output = stereo_to_mono(audio)
        self.assertTrue(torch.allclose(actual_output, expected_output))

        # Test the stereo_to_mono function with a one-dimensional tensor
        audio = torch.tensor([1.0, 2.0, 3.0])
        expected_output = torch.tensor([2.0])
        actual_output = stereo_to_mono(audio)
        self.assertTrue(torch.allclose(actual_output, expected_output))

        # Test the stereo_to_mono function with a three-dimensional tensor
        audio = torch.randn(2, 3, 44100)
        expected_output = torch.mean(audio, 0, True)
        actual_output = stereo_to_mono(audio)
        self.assertTrue(torch.allclose(actual_output, expected_output))

    def test_resample(self):
        # Test the resample function with a simple example
        wav = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
        orig_sr = 44100
        target_sr = 22050

        # Test the output shape
        expected_shape = math.ceil(
            len(wav) / 2,
        )
        actual_output = resample(wav, orig_sr, target_sr)
        self.assertEqual(actual_output.shape, (expected_shape,))

    def test_preprocess_audio(self):
        # Test the preprocess_audio function with a simple example
        audio = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
        sr_actual = 44100
        sr = 22050

        # Test the output shape
        expected_shape = torch.Size([2])
        actual_output, actual_sr = preprocess_audio(audio, sr_actual, sr)
        self.assertEqual(actual_output.shape, expected_shape)

        # Test the output values
        self.assertEqual(actual_sr, sr)

        # Test the preprocess_audio function with a three-dimensional tensor
        audio = torch.randn(2, 3, 44100)
        sr_actual = 44100
        sr = 22050

        # Test the output shape
        expected_shape = torch.Size([3, len(audio[0][0]) // 2])
        actual_output, actual_sr = preprocess_audio(audio, sr_actual, sr)

        self.assertEqual(actual_output.shape, expected_shape)
        self.assertEqual(actual_sr, sr)

    def test_normalize_loudness(self):
        # Test the normalize_loudness function with a simple example
        wav = torch.tensor([1.0, 2.0, 3.0])
        expected_output = torch.tensor([0.33333333, 0.66666667, 1.0])
        actual_output = normalize_loudness(wav)
        np.testing.assert_allclose(actual_output, expected_output, rtol=1e-6, atol=1e-6)

        # Test the normalize_loudness function with a larger example
        wav = torch.randn(44100)
        expected_output = wav / torch.max(torch.abs(wav))
        actual_output = normalize_loudness(wav)
        np.testing.assert_allclose(actual_output, expected_output, rtol=1e-6, atol=1e-6)

        # Test the normalize_loudness function with a zero-dimensional array
        wav = torch.tensor(1.0)
        expected_output = torch.tensor(1.0)
        actual_output = normalize_loudness(wav)
        np.testing.assert_allclose(actual_output, expected_output, rtol=1e-6, atol=1e-6)

        # Test the normalize_loudness function with a one-dimensional array
        wav = torch.tensor([1.0, 2.0, 3.0])
        expected_output = torch.tensor([0.33333333, 0.66666667, 1.0])
        actual_output = normalize_loudness(wav)
        np.testing.assert_allclose(actual_output, expected_output, rtol=1e-6, atol=1e-6)

        # Test the normalize_loudness function with a three-dimensional array
        wav = torch.randn(2, 3, 44100)
        expected_output = wav / torch.max(torch.abs(wav))
        actual_output = normalize_loudness(wav)
        np.testing.assert_allclose(actual_output, expected_output, rtol=1e-6, atol=1e-6)


if __name__ == "__main__":
    unittest.main()