nickovchinnikov commited on
Commit
9d61c9b
·
1 Parent(s): b1879c0
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +183 -0
  2. config/__init__.py +0 -0
  3. config/best_speakers_list.py +968 -0
  4. config/latest_selection.txt +331 -0
  5. config/phone2idx.json +65 -0
  6. config/speaker2idx.json +2442 -0
  7. config/speaker_id_mapping_libri.json +1 -0
  8. config/speakers.json +1 -0
  9. config/speakers.tsv +2485 -0
  10. config/vocab.txt +0 -0
  11. config/vocab_phonemes.txt +63 -0
  12. demo/__init__.py +0 -0
  13. demo/config.py +109 -0
  14. en_us_cmudict_ipa_forward.pt +3 -0
  15. epoch=5816-step=390418.ckpt +3 -0
  16. mocks/audio_example.wav +0 -0
  17. mocks/data/Alice/0001.pt +3 -0
  18. mocks/data/Bob/0002.pt +3 -0
  19. mocks/data/Charlie/0003.pt +3 -0
  20. mocks/metadata.txt +3 -0
  21. mocks/speakers.json +5 -0
  22. mocks/test_compute_yin.npy +3 -0
  23. models/__init__.py +1 -0
  24. models/config/__init__.py +3 -0
  25. models/config/configs.py +438 -0
  26. models/config/experimental_configs.py +100 -0
  27. models/config/langs.py +65 -0
  28. models/config/speakers.py +451 -0
  29. models/config/stats.json +3 -0
  30. models/config/symbols.py +98 -0
  31. models/delightful_hifi.py +59 -0
  32. models/delightful_univnet.py +60 -0
  33. models/generators/__init__.py +0 -0
  34. models/generators/delightful_univnet.py +547 -0
  35. models/generators/tests/__init__.py +0 -0
  36. models/generators/tests/test_delightful_univnet.py +30 -0
  37. models/helpers/__init__.py +2 -0
  38. models/helpers/acoustic.py +79 -0
  39. models/helpers/dataloaders.py +141 -0
  40. models/helpers/initializer.py +335 -0
  41. models/helpers/tests/__init__.py +0 -0
  42. models/helpers/tests/test_dataloaders.py +38 -0
  43. models/helpers/tests/test_pitch_phoneme_averaging.py +36 -0
  44. models/helpers/tests/test_position_encoding.py +30 -0
  45. models/helpers/tests/tests_tools/__init__.py +0 -0
  46. models/helpers/tests/tests_tools/test_calc_same_padding.py +34 -0
  47. models/helpers/tests/tests_tools/test_get_mask_from_lengths.py +37 -0
  48. models/helpers/tests/tests_tools/test_initialize_embeddings.py +45 -0
  49. models/helpers/tests/tests_tools/test_pad.py +36 -0
  50. models/helpers/tests/tests_tools/test_stride_lens_downsampling.py +52 -0
.gitignore ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
161
+
162
+ .lh
163
+ .history
164
+ .vscode
165
+ .idea
166
+ .trunk
167
+ lightning_logs
168
+
169
+ # Ignore generated sounds
170
+ results/*
171
+
172
+ # Mock datasets
173
+ datasets_cache/**/*
174
+
175
+ notebooks/**/*.wav
176
+ notebooks/**/*.mp3
177
+ notebooks/**/*.pth
178
+
179
+ # Mock audio
180
+ mocks/wav2vec_aligner/audio
181
+
182
+ # Ignore flagged from gradio
183
+ flagged
config/__init__.py ADDED
File without changes
config/best_speakers_list.py ADDED
@@ -0,0 +1,968 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # chunk_1
2
+ speaker_ids1 = [
3
+ 32, # US, nan M train-clean-100, min intonation, calm, timbre
4
+ 130, # BR, Peter of Buckinghamshire England M train-other-500, timbre, min intonation, calm, slow
5
+ 164, # US, Ed Good M train-other-500, timbre, intonation, warm and calm, good voice
6
+ 176, # US, Micah Sheppard M train-clean-360, intonation, calm
7
+ 68, # US, Alex Buie M train-clean-100, min intonation, energized
8
+ 15, # US, Chip M train-other-500, intonation, interesting voice
9
+ 145, # US, Mr. Baby Man M train-clean-360, timbre, intonation, interesting voice
10
+ 196, # US, Mike Kauffmann M train-clean-360, min intonation, average calm
11
+ 160, # BR, deadwhitemales M train-clean-100, intonation, energized, interesting voice
12
+ 108, # US, Kevin McAsh M train-clean-360, min intonation, energized
13
+ 99, # US, Stewart Wills M train-clean-100, min intonation, avg energy
14
+ 50, # US, Dan Threetrees M train-clean-360, min intonation, avg energy
15
+ 76, # US, ML Cohen M train-other-500, intonation, energy, timbre
16
+ 142, # US, Michael Sirois M train-other-500, intonation, energy
17
+ 95, # US, Vinny Bove M train-clean-360, intonation, energy, timbre
18
+ 169, # US, Richard Grove M train-other-500, intonation, energy
19
+ 147, # US, Eileen George F train-clean-360, intonation, calm
20
+ 92, # BR vlooi F train-other-500 teenager voice, intonation, energized
21
+ 117, # US, Caitlin Kelly F train-clean-360, intonation, energized, interesting voice
22
+ 89, # US, Paula Berinstein F train-clean-360, min intonation, energized
23
+ 182, # US Katy Preston F train-other-500, intonation, energized
24
+ 105, # US Marian Brown F train-clean-360, min intonation, energized, timbre, quality GOOD
25
+ 11, # BR Linton F train-other-500, min intonation, calm
26
+ 18, # US Sherry Crowther F train-clean-100, intonation, energized, timbre
27
+ 38, # US Kurt Copeland M train-clean-360, intonation, energized
28
+ 52, # US, Cori Samuel F train-other-500, intonation, energized, timbre
29
+ 21, # US, Kelly Bescherer F train-other-500, intonation, energized, timbre
30
+ 48, # US, Rosalind Wills F train-clean-100, intonation, timbre, poor quality, but interesting voice
31
+ 63, # US, Linda Wilcox F train-other-500, very poor quality, but VERY interesting intonation
32
+ 45, # US, Catharine Eastman F train-clean-100, very quality, interesting intonation
33
+ 193, # US, Nomenphile F train-other-500, avg quality, intonation
34
+ 207, # US Sage Tyrtle F train-other-500, avg quality, interesting intonation and timbre
35
+ 73, # US Claire Goget F train-clean-100, avg quality, intonation
36
+ 42, # US Jennifer Crispin F train-clean-360, quality, calm
37
+ 113, # US Alice Elizabeth Still F train-other-500, avg quality, intonation
38
+ 49, # US Kristen McQuillin F train-clean-100, avg quality, interesting intonation and timbre
39
+ 185, # US Kim Braun F train-clean-360, avg quality, avg intonation, but interesting timbre
40
+ 165, # US Elisabeth Shields F train-clean-100, avg quality, interesting intonation, timbre
41
+ 36, # US chriss the girl F train-other-500, interesting intonation, timbre
42
+ 96, # US Kymm Zuckert F train-other-500, avg quality, interesting intonation, timbre of middle age wooman
43
+ 102, # US Maureen S. O'Brien F train-clean-100, avg quality, interesting intonation
44
+ 64, # US Christiane Levesque F train-clean-360, young voice, calm
45
+ 30, # BR, Ophelia Darcy F train-other-500, avg quality, intonation
46
+ 0, # US Kristin LeMoine F train-clean-360, avg quality, intonation, fast-speaker
47
+ 192, # US, Nocturna F train-clean-100, avg quality, intonation
48
+ 146, # US Jim Cadwell M train-other-500, avg quality, intonation
49
+ 80, # US Fox in the Stars F train-clean-100, avg quality, intonation
50
+ 162, # BR Mike Gardom M train-other-500, avg quality, intonation, timbre
51
+ 66, # US Maddie F train-clean-360, intonation, timbre
52
+ 124, # US Steve Karafit M train-clean-100, poor quality, intonation, timbre, COOL
53
+ 123, # US Sean McGaughey M train-clean-360, poor quality, intonation, timbre
54
+ 55, # US, Patricia Oakley F train-clean-360, intonation, timbre
55
+ 91, # BR Chris Goringe M train-other-500, intonation, timbre
56
+ 171, # US Paul Harvey M train-clean-360, avg quality, intonation, timbre
57
+ 61, # US John Greenman M train-other-500, intonation, timbre
58
+ 122, # US carnright M train-clean-100, avg intonation, timbre
59
+ 82, # BR Andy Minter M train-other-500, intonation, GOOD timbre,
60
+ 118, # US Brenda Dayne F train-clean-360, timbre, calm
61
+ 106, # US Mark F. Smith M train-clean-360, GOOD timbre, interesting intonation
62
+ 187, # US Lenny Glionna Jr. M train-other-500, intonation, timbre
63
+ 158, # US Randy Phillips M train-clean-100, avg intonation, timbre
64
+ 83, # US Graham Williams M train-other-500, intonation, timbre
65
+ 181, # BR Jon Ingram M train-other-500, intonation, timbre
66
+ 8, # US Denny Sayers M train-clean-100, timbre
67
+ 205, # US Robert Garrison M train-clean-360, timbre, interesting intonation
68
+ 172, # US Harvey Chinn M train-other-500, great timbre, intonation
69
+ ]
70
+ # chunk_2
71
+ speaker_ids2 = [
72
+ 305, # US Michael Crowl M train-clean-360, timbre, intonation
73
+ 417, # US Kiki Baessell F train-clean-360, timbre, intonation
74
+ 241, # US Jean O'Sullivan F train-clean-360, timbre, intonation
75
+ 412, # US Nichole Karl F train-other-500, timbre
76
+ 294, # US Diana Kiesners F train-clean-360, timbre, intonation
77
+ 414, # US Christabel F train-clean-100, great and calm timbre
78
+ 251, # US Aaron Benedict M train-other-500, timbre, intonation
79
+ 218, # US Joy Chan F train-other-500, timbre, intonation, quality
80
+ 259, # BR miette F train-other-500, timbre, intonatio
81
+ 275, # US Zale Schafer (Rose May Chamberlin Memorial Foundat F train-clean-360, timbre, intonation
82
+ 368, # US Susie G. F train-other-500, teenage voice, timbre, intonation
83
+ 327, # BR mjd-s F train-other-500, timbre, intonation
84
+ 366, # US pattymarie F train-clean-360, calm, timbre
85
+ 399, # US entada F train-clean-360, timbre, intonation
86
+ 273, # BR Andrew Lebrun M train-other-500, timbre, intonation
87
+ 352, # US Mur Lafferty F train-clean-360, timbre, enery, young voice
88
+ 283, # US Bethany Simpson F train-clean-360, timbre, intonation
89
+ 248, # BR fieldsofgold M train-other-500, timbre, intonation
90
+ 372, # US Jim Mullins M train-clean-360, timbre, intonation, quality
91
+ 250, # US Quentin M train-clean-360, unique timbre, intonation, quality
92
+ 403, # US Igor Teaforay F train-clean-360, timbre, avg intonation
93
+ 375, # US iscatel M train-clean-360, unique timbre, avg intonation
94
+ 355, # US Lana Taylor F train-clean-100, unique timbre, intonation
95
+ 220, # US Tina Tilney F train-clean-360, unique timbre, high intonation
96
+ 392, # US Brooks Jensen M train-clean-360, timbre, avg speed, avg intonation
97
+ 255, # US Caroline Mercier F train-clean-360, timbre, avg speed, intonation
98
+ 292, # US Tamara R. Schwartz F train-clean-100, timbre, avg speed, intonation
99
+ 258, # US Russ Maxwell M train-clean-360, timbre, intonation, unique voice
100
+ 233, # US mikenkat M train-clean-360, timbre, intonation
101
+ 394, # US swroot F train-clean-360, timbre, intonation, unique voice, good quality
102
+ 382, # US Kelli Robinson F train-clean-360, timbre, intonation, avg quality
103
+ 322, # US Mitchell Dwyer M train-clean-360, timbre, intonation, avg quality, unique voice
104
+ 285, # US koijmonop M train-clean-360, timbre, intonation, avg quality, unique voice
105
+ 290, # US J. M. Smallheer F train-clean-360, timbre, intonation, avg quality
106
+ 383, # US Mike Roop M train-other-500, timbre, intonation, quality, unique voice
107
+ 263, # US Eric S. Piotrowski M train-clean-360, timbre, intonation, avg quality
108
+ 373, # BR Brooks Seveer M train-clean-360, timbre, intonation, avg quality, unique voice
109
+ 340, # US Nick Gallant M train-clean-100, unique timbre
110
+ 331, # BR Luke Venediger M train-other-500, timbre, intonation
111
+ 234, # BR Menno M train-other-500, timbre, intonation, unique voice
112
+ 398, # BR Sam Fold M train-other-500, timbre, intonation
113
+ 254, # BR Rebecca Dittman M train-other-500, timbre, intonation
114
+ 264, # US KentF M train-clean-360, timbre, intonation
115
+ 214, # US Scott Splavec M train-clean-100, timbre, intonation
116
+ 359, # BR Greg Bryant M train-clean-100, timbre, intonation
117
+ 253, # US Frank M train-other-500, timbre, intonation
118
+ 249, # US Bill Stackpole M train-clean-360, timbre, intonation
119
+ 236, # US Matthew Shepherd M train-clean-360, timbre, intonation, unique voice
120
+ 390, # US JimmyLogan M train-clean-360, avg intonation, timbre
121
+ 216, # US Dave Ranson M train-clean-100, unique voice, timbre, intonation
122
+ 215, # US Mark Bradford M train-clean-360, timbre, intonation
123
+ 212, # US Glen Hallstrom M train-other-500, timbre, intonation
124
+ 314, # US Carl Vonnoh, III M train-clean-360, unique voice, timbre, intonation
125
+ 347, # US Anadaxis_Canejia M train-other-500, unique voice, timbre, intonation, good quality
126
+ 330, # US Aaron Andradne M train-clean-360, timbre, intonation
127
+ 393, # US Tim Lundeen M train-clean-360, timbre, intonation
128
+ 40, # BR Justin Brett M train-other-500, unique voice, timbre, intonation, good quality
129
+ 386, # US Michael Kirkpatrick M train-clean-360, unique intonation, timbre
130
+ 315, # US Jean Crevier M train-other-500, unique intonation, timbre
131
+ 349, # US brenthumphries M train-other-500, unique timbre, min intonation
132
+ 242, # US J. Hall M train-other-500, unique timbre, intonation
133
+ 308, # US Eric Connover M train-other-500, timbre, intonation
134
+ 313, # BR Tim Bulkeley M train-other-500, timbre, intonation
135
+ 334, # US mawrtea M train-clean-360, unique voice, timbre, intonation
136
+ ]
137
+ # chunk_3
138
+ speaker_ids3 = [
139
+ 469, # US Christian Pecaut M train-clean-360, clear voice, min intonation
140
+ 601, # BR Jonathan Horniblow M train-other-500, clear voice, min intonation
141
+ 482, # US Estragon M train-clean-360, clear voice, min intonation
142
+ 580, # US Kyle M. M train-clean-360, clear voice, min intonation, timbre
143
+ 463, # US Chris Hughes M train-other-500, clear voice, min intonation, timbre, energized
144
+ 472, # BR Tim Makarios M train-other-500, min intonation
145
+ 536, # US Robert Flach M train-other-500, intonation, timbre, unique voice
146
+ 569, # US Arouet M train-clean-360, avg intonation, timbre
147
+ 523, # US Michael Loftus M train-clean-360, avg intonation, timbre
148
+ 454, # US Tim Gregory M train-clean-100, avg intonation
149
+ 425, # US RedToby M train-clean-360, avg intonation, timbre, unique voice
150
+ 574, # US Daniel Shorten M train-clean-100, avg intonation, timbre, clear voice
151
+ 465, # US Leonie Rose F train-clean-100, avg intonation, timbre
152
+ 481, # US Scott Sherris M train-clean-360, intonation, timbre
153
+ 531, # US Fr. Richard Zeile of Detroit M train-other-500, intonation, timbre, unique voice
154
+ 628, # US Bryan Ness M train-clean-100, intonation, timbre, unique voice
155
+ 427, # US John Lieder M train-clean-360, intonation, timbre
156
+ 527, # US Jason Isbell M or F train-clean-360, intonation, timbre
157
+ 468, # US Jenilee F train-other-500, energized, young voice, intonation
158
+ 441, # US roolynninms F train-clean-100, energized, intonation
159
+ 430, # BR Millbeach F train-other-500, intonation, timbre
160
+ 498, # US Chris Gladis M train-clean-100, intonation, timbre
161
+ 435, # US Debra Lynn F train-other-500, intonation, timbre
162
+ 499, # US Tammy Sanders F train-clean-100, intonation, timbre, unique voice
163
+ 429, # US Giles Baker M train-other-500, timbre
164
+ 495, # US Janet Friday F train-clean-360, INTONATION, timbre
165
+ 456, # US Catherine Fitz F train-clean-360, timbre
166
+ 617, # US PJ F train-other-500, timbre
167
+ 445, # US Jennette Selig F train-clean-360, intonation, timbre
168
+ 552, # US Mim Ritty F train-clean-100, intonation, timbre
169
+ 561, # US Lorelle Anderson F train-clean-100, intonation, timbre, quality
170
+ 447, # US Lee Ann Howlett F train-clean-360, intonation, timbre, quality
171
+ 604, # BR Anne-Marie F train-other-500, intonation, timbre
172
+ 450, # US Heather Duncan F train-clean-360, intonation, unique voice
173
+ 502, # US Lee Elliott F train-other-500, intonation
174
+ 517, # US Madame Tusk F train-other-500, intonation
175
+ 605, # BR Classicsfan F train-other-500, intonation, unique voice, timbre
176
+ 426, # US Megan Stemm-Wade F train-clean-100, clear voice, min intonation
177
+ 544, # US Miranda Stinson F train-clean-360, unique voice
178
+ 568, # US Michael Yourshaw M train-other-500, clear voice
179
+ 588, # US Kalynda F train-clean-360, clear voice, timbre
180
+ 477, # US Patti Brugman F train-other-500, clear voice
181
+ 607, # BR Steph F train-other-500, clear voice
182
+ 479, # US Wina Hathaway F train-other-500, intonation, timbre
183
+ 618, # US Linnea F train-other-500, timbre
184
+ 549, # US AmyAG F train-other-500, teenager voice
185
+ 596, # US Jo F train-other-500, timbre, min intonation
186
+ ]
187
+ # chunk 4
188
+ speaker_ids4 = [
189
+ 770, # US Pete Williams, Pittsburgh, PA M train-clean-360, clear, calm voice
190
+ 730, # US Nick Gisburne M train-other-500, clear, calm voice
191
+ 680, # US Kevin Kivikko M train-clean-360, min intonation, calm voice, timbre
192
+ 791, # US David Kleparek M train-clean-100, clear, calm voice
193
+ 800, # US Jack Farrell M train-clean-360, clear, calm voice, good low tone
194
+ 839, # BR Ben Dutton M train-other-500, clear, calm voice, min intonation
195
+ 661, # US James Gladwin M train-other-500, calm voice, min intonation
196
+ 648, # US Muhammad Mussnoon M train-other-500, timbre
197
+ 798, # US Wyatt M train-other-50, calm voice, timbre, avg intonation
198
+ 699, # US Michael Macedonia M train-clean-360, calm voice, timbre
199
+ 757, # US Roger Melin M train-clean-360, timbre, avg intonation, unique voice
200
+ 782, # US Alec Daitsman M train-clean-360, timbre, avg intonation
201
+ 816, # US Michael Bradford M train-clean-360, timbre, avg intonation, teenager voice
202
+ 846, # US Gayland Darnell M train-clean-360, senior voice, timbre, avg intonation
203
+ 831, # US David Federman M train-other-500, timbre, avg intonation
204
+ 817, # US texttalker M train-clean-360, timbre, avg intonation
205
+ 819, # US n8evv M train-clean-360, timbre, intonation
206
+ 672, # BR Stuart Bell M train-other-500, timbre, intonation, clear voice
207
+ 837, # US johnb M train-other-500, timbre, intonation
208
+ 775, # US Ralph Volpi M train-clean-360, senior voice, timbre, intonation
209
+ 685, # US Nikki Sullivan F train-clean-100, clear voice, avg intonation, timbre
210
+ 666, # US Kelly Dougherty M train-clean-360, clear voice, avg intonation, timbre
211
+ 809, # US Anna-Maria Viola F train-clean-360, timbre, avg intonation
212
+ 640, # US David A. Stokely M train-other-500, emotional, timbre, intonation, unique voice
213
+ 818, # US Matt Warzel F train-clean-360, timbre, intonation
214
+ 711, # US Julie Bynum F train-clean-360, senior voice, timbre, min intonation
215
+ 766, # US Clive Catterall M train-other-500, avg intonation, timbre
216
+ 649, # US Scarlett! F train-clean-360, intonation, timbre
217
+ 732, # US Tysto M/F train-clean-360, intonation, timbre
218
+ 769, # US, Alan Brown M train-other-500, avg intonation, timbre
219
+ 677, # US Allyson Hester F train-other-500, intonation, timbre, unique voice
220
+ 833, # US Alana Jordan F train-clean-360, intonation, timbre
221
+ 676, # US Jennifer F train-clean-100, intonation, timbre
222
+ 710, # US Sheila Morton F train-clean-100, intonation, timbre, unique voice
223
+ 645, # US Micah F train-other-500, intonation, timbre, unique voice, teenager voice
224
+ 771, # US Isosceles F train-clean-360, intonation, timbre
225
+ 636, # US Matthew Howell F train-other-500, timbre, avg intonation
226
+ 822, # US kristiface F train-clean-360, timbre, intonation, unique voice
227
+ 830, # US musici123 F train-other-500, timbre, intonation, unique voice
228
+ 657, # US Shannon F train-other-500, timbre, intonation
229
+ 797, # US Chris Jones F train-other-500, timbre, intonation, calm voice
230
+ 835, # BR Rachel Lintern F train-other-500, timbre, intonation
231
+ 761, # US Susan Umpleby F train-clean-100, timbre, intonation, unique voice
232
+ 653, # US cucciasv F train-other-500, timbre, avg intonation
233
+ 751, # US Ralph Snelson M train-other-500, timbre, avg intonation, unique voice
234
+ 848, # BR senshisteph F train-other-500, timbre, intonation
235
+ 808, # US M. J. Boyle F train-other-500, timbre, intonation, senior voice
236
+ 840, # US B. Grebe F train-clean-360, timbre, intonation, unique voice
237
+ 742, # US Katherine Holt F train-other-500, timbre, intonation
238
+ 834, # US Serin F train-other-500, unique voice
239
+ 668, # US Jan Baxter F train-clean-360, intoantion, timbre, calm voice
240
+ 752, # US Cat Schirf F train-other-500, intoantion, timbre
241
+ 641, # US Eliza Horne F train-other-500, intoantion, timbre
242
+ 644, # US Cynthia Zocca F train-clean-360, intoantion, timbre
243
+ 781, # US Megan Kunkel F train-other-500, intoantion, timbre, teenager voice
244
+ 727, # US Jodi Krangle F train-clean-360, timbre
245
+ 719, # US Charlene V. Smith F train-other-500, intoantion, timbre
246
+ 804, # BR FirstKnight F train-other-500, unique voice, intoantion, timbre
247
+ 675, # US inkwelldragon F train-clean-360, intoantion, timbre
248
+ 697, # US Jennie Hughes F train-other-500, timbre
249
+ 731, # IND Priya, India F train-other-500, avg intoantion, timbre
250
+ 741, # US Nick Marsh M train-other-500, intoantion, timbre, old man voice, unique voice
251
+ ]
252
+ # chunk 5
253
+ speaker_ids5 = [
254
+ 922, # ricell
255
+ 1000, # artos
256
+ 1007, # Mike Conrad
257
+ 858, # Scott Merrill
258
+ 943, # Matthew C. Heckel
259
+ 984, # woggy298
260
+ 936, # BUAES
261
+ 935, # Topaz
262
+ 977, # Logan McCamon
263
+ 946, # Cantor
264
+ 1030, # Ancient mariner
265
+ 1046, # Preston McConkie
266
+ 1022, # peac
267
+ 908, # Quentin Manuel
268
+ 924, # Andrew Coleman
269
+ 964, # Utek
270
+ 950, # davechase
271
+ 1020, # nihilist00
272
+ 1043, # B. G. Oxford
273
+ 881, # mpetranech
274
+ 852, # Steven Proctor
275
+ 995, # Parrot
276
+ 1045, # joi
277
+ 1048, # tornadogrrrl
278
+ 900, # peaceuntoyou
279
+ 932, # Raerity
280
+ 1005, # Beatrice
281
+ 851, # Jennifer Lott
282
+ 897, # Jan Dawn Doronila
283
+ 1041, # mjbrichant
284
+ 863, # K Hindall
285
+ 937, # Sarah Gutierrez
286
+ 1049, # Diana Solomon
287
+ 1001, # TriciaG
288
+ 934, # Darla
289
+ 947, # Larissa Little
290
+ 944, # Sarafina Suransky
291
+ 870, # Barbara Bulkeley
292
+ 923, # Jane Greensmith
293
+ 1047, # Hannah Dowell
294
+ 967, # Stephanie Land
295
+ 929, # Petra
296
+ 963, # MichelleHarris
297
+ 891, # anoldfashiongirl
298
+ 890, # PopularOutcast
299
+ 992, # Fran
300
+ ]
301
+ # chunk_6
302
+ speaker_ids6 = [
303
+ 1143, # Keith Henige M train-other-500
304
+ 1159, # Matt Wills M train-clean-360
305
+ 1127, # C.J. Casey M train-other-500
306
+ 1235, # Richard Kilmer M train-other-500
307
+ 1092, # BenW M train-other-500
308
+ 1270, # Brendan Tannam M train-other-500
309
+ 1214, # David Baldwin M train-clean-360
310
+ 1255, # Daniel Paashaus M train-other-500
311
+ 1152, # Brian Keith Barnes M train-clean-360
312
+ 1158, # StarrDog M train-other-500
313
+ 1256, # Graeme Dunlop M train-other-500
314
+ 1215, # Kevin Maxson M train-clean-360
315
+ 1274, # Jud Niven M train-clean-360
316
+ 1168, # Epistomolus M train-clean-100
317
+ 1089, # Bill Ruhsam M train-clean-360
318
+ 1142, # Jonathan Burchard M train-other-500
319
+ 1090, # Termin Dyan M train-other-500
320
+ 1109, # Martin Geeson M train-other-500
321
+ 1230, # Troy Bond M train-other-500
322
+ 1150, # TexasSteve M train-other-500
323
+ 1191, # Denise Lacey F train-other-500
324
+ 1259, # Megan Argo F train-other-500
325
+ 1238, # madmouth F train-other-500
326
+ 1135, # Linda Andrus F train-clean-360
327
+ 1247, # Sarah LuAnn F train-clean-100
328
+ 1115, # Rachel Gatwood F train-clean-360
329
+ 1065, # Bob Sherman M train-other-500
330
+ 1204, # Dale A. Bade F train-clean-360
331
+ 1174, # Frances Marcinkiewicz F train-
332
+ 1257, # Availle F train-other-500
333
+ 1239, # Rachell Lovett F train-clean-360
334
+ 1273, # gmiteva F train-other-500
335
+ 1242, # Richard Ellwood M train-clean-360
336
+ 1093, # Katie Riley F train-clean-360
337
+ 1063, # SuD F train-other-500
338
+ 1098, # Kerry Hiles F train-other-500
339
+ 1254, # Rosie F train-clean-100
340
+ 1157, # Bev J Stevens F train-clean-360
341
+ 1184, # Joseph Couves F train-other-500
342
+ 1253, # Caroline Shapiro F train-other-500
343
+ 1183, # Evelyn Clarke F train-other-500
344
+ 1082, # Symmie F train-clean-360
345
+ 1128, # Linda Ferguson F train-other-500
346
+ 1108, # Paul McCartan M train-other-500
347
+ 1202, # Joy Easton F train-clean-360
348
+ 1226, # serenitylee F train-clean-360
349
+ 1105, # Bridget Gaige F train-clean-360
350
+ 1229, # RoseA F train-clean-360
351
+ 1181, # J. Rebecca Franklin F train-clean-360
352
+ 1231, # Abigail Bartels F train-other-500
353
+ 1182, # tabithat F train-other-500
354
+ 1217, # JimOCR M train-other-500
355
+ 1171, # Roberta Carlisle F train-other-500
356
+ 1268, # A. Janelle Risa F train-clean-100
357
+ 1243, # Rachel P. F train-clean-360
358
+ 1071, # js392 F train-other-500
359
+ ]
360
+ # chunk_7
361
+ speaker_ids7 = [
362
+ 1428, # Gary Dzierlenga
363
+ 1315, # John Dennison
364
+ 1376, # mevans
365
+ 1330, # William Peck
366
+ 1400, # scrawl
367
+ 1314, # Michael Wolf
368
+ 1425, # Jonah Cummings
369
+ 1438, # Tom Barron
370
+ 1281, # garbageman99
371
+ 1414, # Preston Scrape
372
+ 1375, # Frank Adams
373
+ 1410, # Zachary Johnson
374
+ 1365, # Eric Leach
375
+ 1302, # davidb
376
+ 1354, # Kristen Zaza
377
+ 1346, # Jeanie
378
+ 1320, # Anita Fleming
379
+ 1370, # Savanna Herrold
380
+ 1290, # Veronica Jenkins
381
+ 1437, # Charles RUHE
382
+ 1297, # May Low
383
+ 1440, # P Moscato
384
+ 1433, # browneyedgirl32382
385
+ 1366, # cher0520
386
+ 1285, # Ric F
387
+ 1399, # Jeanne Luft
388
+ 1402, # Angel5
389
+ 1303, # kiwafruit
390
+ 1301, # Barbara Clements
391
+ 1453, # Anna-Lisa Ott
392
+ 1374, # pachayes
393
+ 1373, # Maria Therese
394
+ ]
395
+ # chunk 8
396
+ speaker_ids8 = [
397
+ 1649, # Phineas Redux
398
+ 1691, # sparks0314
399
+ 1672, # Mike Wajda
400
+ 1539, # Nathan Jordan
401
+ 1610, # jgoffena
402
+ 1512, # Matt Soar
403
+ 1526, # Mike Harris
404
+ 1647, # Patrick Reinhart
405
+ 1636, # jessecoy
406
+ 1676, # Gargoyle
407
+ 1595, # Matthew Reece
408
+ 1609, # Jacob Paul Starr
409
+ 1671, # bobbybrill
410
+ 1555, # Andrew Nelson
411
+ 1657, # alwpoe
412
+ 1592, # jerryB
413
+ 1505, # Rom Maczka
414
+ 1565, # bryan.peterson
415
+ 1644, # Christopher Maust
416
+ 1695, # Tina Nuzzi
417
+ 1702, # Sirmelja
418
+ 1697, # Lonelle Yoder
419
+ 1596, # Joyce Couch
420
+ 1660, # Jerry Romero
421
+ 1524, # Elizabeth Barr
422
+ 1643, # Linette Geisel
423
+ 1543, # Lauren McCullough
424
+ 1613, # Elsa Youngsteadt
425
+ 1662, # GabrielleC
426
+ 1587, # Claudia Wilson
427
+ 1641, # Kirsten Wever
428
+ 1614, # Jennifer Dionne
429
+ 1603, # Christine Rodriguez
430
+ 1546, # Carrie Heyes
431
+ 1579, # Linda Velwest
432
+ 1638, # Laura Victoria
433
+ 1651, # Debbie Pieterse
434
+ 1554, # Natalie Sullivan
435
+ 1656, # Sharon Omi
436
+ 1607, # Lynda Sizemore
437
+ 1670, # dmbrought
438
+ 1659, # kelleywyskiel
439
+ ]
440
+ # chunk_9
441
+ speaker_ids9 = [
442
+ 1785, # BR TRUEBRIT M train-other-500, timbre, min intonation
443
+ 1776, # US dan_h M train-other-500, avg intoantion, timbre
444
+ 1791, # US David Cummings M train-clean-360, avg intoantion, timbre
445
+ 1707, # US David Olson M train-other-500, unique voice, intoantion, timbre
446
+ 1801, # US John O M train-other-500, unique voice, min intoantion, timbre
447
+ 1903, # US stephenreader M train-other-500, velvet unique voice
448
+ 1856, # BR Craig Gulliver M train-other-500, avg intoantion, timbre
449
+ 1906, # US Tony Russell M train-clean-360, dictor voice, avg intoantion, timbre
450
+ 1806, # US Marc Pizzuti M train-other-500, avg intoantion
451
+ 1828, # US David Wales M train-clean-100, avg intoantion, timbre
452
+ 1849, # US Fred DeBerardinis M train-clean-100, avg intoantion, timbre, unique voice
453
+ 1712, # BR Steve Belleguelle M train-other-500, avg intoantion, timbre
454
+ 1853, # US Ron Altman M train-other-500, intoantion, unique voice, timbre
455
+ 1805, # US Vince Dee M train-clean-100, unique voice, timbre
456
+ 1838, # US Morey Kunin M train-clean-360, young voice, intoantion, timbre
457
+ 1862, # US Alexandre Laplante M train-clean-360, young voice, intoantion, timbre
458
+ 1915, # US T.E. McHenry M train-other-500, unique voice, dictor voice, intoantion, timbre
459
+ 1772, # US haggisreflux M train-clean-360, intoantion, timbre
460
+ 1831, # BR Nigel Boydell M train-other-500, unique voice, intoantion, timbre
461
+ 1706, # BR Deborah Knight F train-clean-100, unique voice, intoantion, timbre
462
+ 1908, # US fshort F train-other-500
463
+ 1783, # US Sarah Crampton F train-clean-360
464
+ 1781, # US humanode M train-clean-360, unique voice
465
+ 1779, # US Wendy Almeida F train-clean-360
466
+ 1839, # US James E. Carson M train-clean-360
467
+ 1724, # US Juliana M. F train-clean-360
468
+ 1728, # US Vinnie Tesla M train-clean-360
469
+ 1907, # US Snapdragon F train-other-500
470
+ 1881, # US Julienne F train-other-500
471
+ 1802, # US selway F train-other-500
472
+ 1826, # US John Hoerr M train-clean-100
473
+ 1725, # BR Ruth Kidson F train-other-500
474
+ 1764, # US ReadWriteLib F train-clean-360
475
+ 1794, # US Michelle Remington F train-clean-360
476
+ 1880, # US Christine Nendza F train-clean-360
477
+ 1848, # US Monica Knuppe F train-clean-360
478
+ 1736, # US Spike Holcomb F train-other-500
479
+ 1841, # US Elena F train-clean-360
480
+ 1836, # US Kendall Ashyby F train-other-500
481
+ 1741, # US anjieliu F train-other-500
482
+ 1803, # US Susan Hanfield F train-clean-360
483
+ 1761, # US EliMarieHK F train-other-500
484
+ 1745, # US Janet F train-clean-360
485
+ 1713, # US dobsonfly F train-clean-100
486
+ 1716, # US EyeBones F train-clean-360
487
+ 1814, # US polkadotish F train-other-500
488
+ 1709, # US CrowGirl F train-other-500
489
+ 1763, # US Gen Jones F train-clean-360
490
+ 1808, # US Rebecca King F train-clean-360
491
+ 1811, # US Michelle Day F train-clean-360
492
+ 1857, # US Amanda Friday F train-clean-360
493
+ 1893, # US KirksVoice M train-other-500
494
+ 1820, # US Feyaza F train-other-500
495
+ 1771, # US Chelsea S. F train-other-500
496
+ 1718, # US Caroline Driggs F train-other-500
497
+ 1752, # US Shana Cohen F train-clean-360
498
+ 1869, # US NastassiaS F train-other-500
499
+ 1863, # US Tika Sabu F train-other-500
500
+ 1723, # US Rachel Bossier F train-other-500
501
+ 1798, # US C. L. W. Rollins F train-other-500
502
+ 1755, # US Yvonne Smith F train-clean-360
503
+ 1738, # US Lois C. Johnson F train-clean-360
504
+ 1887, # US Jenna Lanman F train-clean-360
505
+ ]
506
+ # chunk 10/11
507
+ speaker_ids10_11 = [
508
+ 1956, # Thomas Meaney
509
+ 2049, # AdrianBisson
510
+ 1978, # John Trevithick
511
+ 2001, # Wesseling
512
+ 2114, # Larry Beasley
513
+ 2032, # doonaboon
514
+ 2087, # James Bendall
515
+ 2011, # pekein
516
+ 2056, # acloward
517
+ 2007, # Art Leung
518
+ 2084, # Eberle Thomas
519
+ 2115, # Pete Milan
520
+ 1987, # Andrew White
521
+ 1959, # DVoice
522
+ 1954, # Szindbad
523
+ 2036, # T.K. Kirven
524
+ 1947, # Barbara Edelman
525
+ 2045, # Linda Ciano
526
+ 1979, # roeg11
527
+ 2075, # Joy S Grape
528
+ 2091, # Caroline Hemmerly Kunkle
529
+ 2023, # Vickie Ranz
530
+ 2014, # Eden Rea-Hedrick
531
+ 1965, # redhed3095
532
+ 1989, # Joannemmp
533
+ 2040, # MJ Franck
534
+ 1996, # Mary in Arkansas
535
+ 1957, # Sarika Pawar
536
+ 2100, # Katherine
537
+ 2069, # Asta1234
538
+ 2096, # Tara Dow
539
+ 2095, # Diana Dolan
540
+ 1995, # Jill Janovetz
541
+ 2017, # CaprishaPage
542
+ 2010, # Peggy
543
+ 1998, # voicebynatalie
544
+ 1952, # Katalina Watt
545
+ 2094, # Meg Cowan
546
+ 2065, # Muriel
547
+ 2312, # Jon Kerfoot
548
+ 2217, # Jesse Crisp-Sears
549
+ 2197, # Mike Nelson
550
+ 2282, # Robert Snoza
551
+ 2192, # Sammy Bean
552
+ 2268, # Greg Giordano
553
+ 2278, # Jake Woldstad
554
+ 2241, # Steven Reynolds
555
+ 2239, # amaskill
556
+ 2225, # nomorejeffs
557
+ 2283, # Tim Cote
558
+ 2230, # Sam Naishtat
559
+ 2151, # MaxSitting
560
+ 2141, # KateC
561
+ 2314, # Cheri Jordan
562
+ 2127, # Ron Lockhart
563
+ 2147, # Shawn Bayern
564
+ 2251, # Wiley Combs
565
+ 2195, # Lynne Thompson
566
+ 2272, # JamesMcAndrew
567
+ 2156, # C F de Rosset
568
+ 2292, # Arnold
569
+ 2143, # Suebee
570
+ 2333, # Anita Slusser
571
+ 2233, # Alexis Castro
572
+ 2305, # Brooke Cunningham
573
+ 2247, # Lois Browne
574
+ 2171, # Carolyne
575
+ 2172, # Demosthenes
576
+ 2291, # lewildesen
577
+ 2194, # Iridescat
578
+ 2331, # Madam Fickle
579
+ 2317, # helengraves
580
+ 2234, # Coreena
581
+ 2209, # Samantha J Gubitz
582
+ 2152, # Kristel Tretter
583
+ 2267, # Frances Brown
584
+ 2275, # NatalieOram
585
+ 2298, # Sheila Wood
586
+ 2138, # Jeannie Tirado
587
+ 2220, # Loveday
588
+ ]
589
+ # chunk_12
590
+ speaker_ids12 = [
591
+ 2403, # Ian Quinlan M train-clean-360
592
+ 2436, # IND josembi M train-other-500
593
+ 2387, # Brett G. Hirsch M train-other-500
594
+ 2444, # dsilber01 M train-clean-360
595
+ 2419, # Gary Dana M train-clean-100
596
+ 2453, # Krzysztof Rowinski M train-clean-360
597
+ 2451, # DeanOBuchanan M train-clean-100
598
+ 2473, # Eric Metzler M train-clean-360
599
+ 2415, # Patrick Eaton M train-other-500
600
+ 2379, # pjhoury M train-other-500
601
+ 2377, # Jon Kissack M train-clean-100
602
+ 2355, # yeknod M train-other-500
603
+ 2452, # Walt Allan M train-other-500
604
+ 2401, # Matt Parker M train-clean-360
605
+ 2359, # Doug Reed M train-other-500
606
+ 2425, # noblesavage M train-clean-100
607
+ 2390, # sdaeley17 M train-clean-360
608
+ 2461, # ScottReyonoldsVoice M train-clean-360
609
+ 2371, # Alexander Hatton M train-clean-360
610
+ 2479, # Daisy Flaim F train-clean-100
611
+ 2483, # Tammy Porter F train-clean-360
612
+ 2372, # Lynne Ray F train-clean-360
613
+ 2422, # Jude Somers F train-clean-360
614
+ 2357, # William Gavula M train-other-500
615
+ 2439, # KHand F train-clean-360
616
+ 2441, # Alison Stewart F train-clean-360
617
+ 2413, # Joanne Rochon F train-clean-360
618
+ 2383, # Emma Joyce F train-other-500
619
+ 2378, # Jackie Drown F train-clean-360
620
+ 2352, # Jaimie Noy F train-clean-100
621
+ 2397, # Rebecca Braunert-Plunkett F train-other-500
622
+ 2394, # TinaNygard2 F train-clean-100
623
+ 2447, # Deena Rhoads F train-clean-360
624
+ 2358, # Betty Perry F train-clean-360
625
+ 2471, # MariaS F train-other-500
626
+ 2468, # Erin Schellhase F train-clean-360
627
+ 2370, # gloriousjob M train-clean-360
628
+ 2341, # Haili F train-other-500
629
+ 2469, # Kevin Owens M train-clean-100
630
+ 2448, # Emily Maynard F train-clean-360
631
+ 2351, # Nick Bulka M train-other-500
632
+ ]
633
+
634
+ speaker_ids = speaker_ids1 + speaker_ids2 + speaker_ids3 + speaker_ids4 + speaker_ids5 + speaker_ids6 + speaker_ids7 + speaker_ids8 + speaker_ids9 + speaker_ids10_11 + speaker_ids12
635
+
636
+ # Selected for the fine-tuning
637
+ selected_speakers = [
638
+ 574, # Daniel Shorten M train-clean-100
639
+ 242, # J. Hall M train-other-500
640
+ 536, # Robert Flach M train-other-500
641
+ 82, # Andy Minter M train-other-500
642
+ 672, # Stuart Bell M train-other-500
643
+ 315, # Jean Crevier M train-other-500
644
+ 628, # Bryan Ness M train-clean-100
645
+ 61, # John Greenman M train-other-500
646
+ 649, # Scarlett! F train-clean-360
647
+ 105, # Marian Brown F train-clean-360
648
+ 399, # entada F train-clean-360
649
+ 89, # Paula Berinstein F train-clean-360
650
+ 502, # Lee Elliott F train-other-500
651
+ 102, # Maureen S. O'Brien F train-clean-100
652
+ 544, # Miranda Stinson F train-clean-360
653
+ 653, # cucciasv F train-other-500
654
+ 465, # Leonie Rose F train-clean-100
655
+ 96, # Kymm Zuckert F train-other-500
656
+ 447, # Lee Ann Howlett F train-clean-360
657
+ 165, # Elisabeth Shields F train-clean-100
658
+ 430, # Millbeach F train-other-500
659
+ 214, # Scott Splavec M train-clean-100
660
+ 666, # Kelly Dougherty M train-clean-360
661
+ 481, # Scott Sherris M train-clean-360
662
+ 463, # Chris Hughes M train-other-500
663
+ 273, # Andrew Lebrun M train-other-500
664
+ 172, # Harvey Chinn M train-other-500
665
+ 83, # Graham Williams M train-other-500
666
+ 523, # Michael Loftus M train-clean-360
667
+ 38, # Kurt Copeland M train-clean-360
668
+ 248, # fieldsofgold M train-other-500
669
+ 234, # Menno M train-other-500
670
+ 145, # Mr. Baby Man M train-clean-360
671
+ 250, # Quentin M train-clean-360
672
+ 498, # Chris Gladis M train-clean-100
673
+ 123, # Sean McGaughey M train-clean-360
674
+ 171, # Paul Harvey M train-clean-360
675
+ 49, # Kristen McQuillin F train-clean-100
676
+ 588, # Kalynda F train-clean-360
677
+ 117, # Caitlin Kelly F train-clean-360
678
+ 657, # Shannon F train-other-500
679
+ 275, # Zale Schafer (Rose May Chamberlin Memorial Foundat F train-clean-360
680
+ 604, # Anne-Marie F train-other-500
681
+ 64, # Christiane Levesque F train-clean-360
682
+ 685, # Nikki Sullivan F train-clean-100
683
+ 355, # Lana Taylor F train-clean-100
684
+ 185, # Kim Braun F train-clean-360
685
+ 52, # Cori Samuel F train-other-500
686
+ 218, # Joy Chan F train-other-500
687
+ 549, # AmyAG F train-other-500
688
+ 617, # PJ F train-other-500
689
+ 414, # Christabel F train-clean-100
690
+ 382, # Kelli Robinson F train-clean-360
691
+ 76, # ML Cohen M train-other-500
692
+ 176, # Micah Sheppard M train-clean-360
693
+ 233, # mikenkat M train-clean-360
694
+ 390, # JimmyLogan M train-clean-360
695
+ 393, # Tim Lundeen M train-clean-360
696
+ 425, # RedToby M train-clean-360
697
+ 398, # Sam Fold M train-other-500
698
+ 372, # Jim Mullins M train-clean-360
699
+ 99, # Stewart Wills M train-clean-100
700
+ 340, # Nick Gallant M train-clean-100
701
+ 40, # JemmaBlythe F train-other-500
702
+ 118, # Brenda Dayne F train-clean-360
703
+ 640, # David A. Stokely M train-other-500
704
+ 50, # Dan Threetrees M train-clean-360
705
+ 373, # Brooks Seveer M train-clean-360
706
+ 124, # Steve Karafit M train-clean-100
707
+ 314, # Carl Vonnoh, III M train-clean-360
708
+ 531, # Fr. Richard Zeile of Detroit M train-other-500
709
+ 383, # Mike Roop M train-other-500
710
+ 710, # Sheila Morton F train-clean-100
711
+ 450, # Heather Duncan F train-clean-360
712
+ 645, # Micah M train-other-500
713
+ 517, # Madame Tusk F train-other-500
714
+ 479, # Wina Hathaway F train-other-500
715
+ 30, # Ophelia Darcy F train-other-500
716
+ 220, # Tina Tilney F train-clean-360
717
+ 63, # Linda Wilcox F train-other-500
718
+ 283, # Bethany Simpson F train-clean-360
719
+ 644, # Cynthia Zocca F train-clean-360
720
+ 677, # Allyson Hester F train-other-500
721
+ 21, # Kelly Bescherer F train-other-500
722
+ 552, # Mim Ritty F train-clean-100
723
+ 80, # Fox in the Stars F train-clean-100
724
+ 394, # swroot F train-clean-360
725
+ 426, # Megan Stemm-Wade F train-clean-100
726
+ 91, # Chris Goringe M train-other-500
727
+ 108, # Kevin McAsh M train-clean-360
728
+ 130, # Peter of Buckinghamshire England M train-other-500
729
+ 661, # James Gladwin M train-other-500
730
+ 216, # Dave Ranson M train-clean-100
731
+ 164, # Ed Good M train-other-500
732
+ 308, # Eric Connover M train-other-500
733
+ 569, # Arouet M train-clean-360
734
+ 313, # Tim Bulkeley M train-other-500
735
+ 212, # Glen Hallstrom M train-other-500
736
+ 15, # Chip M train-other-500
737
+ 469, # Christian Pecaut M train-clean-360
738
+ 294, # Diana Kiesners F train-clean-360
739
+ 192, # Nocturna F train-clean-100
740
+ 73, # Claire Goget F train-clean-100
741
+ 417, # Kiki Baessell F train-clean-360
742
+ 636, # Matthew Howell F train-other-500
743
+ 36, # chriss the girl F train-other-500
744
+ 668, # Jan Baxter F train-clean-360
745
+ 403, # Igor Teaforay F train-clean-360
746
+ 618, # Linnea F train-other-500
747
+ 596, # Jo F train-other-500
748
+ 499, # Tammy Sanders F train-clean-100
749
+ 207, # Sage Tyrtle F train-other-500
750
+ 1346, # Jeanie F train-other-500
751
+ 1109, # Martin Geeson M train-other-500
752
+ 770, # Pete Williams, Pittsburgh, PA M train-clean-360
753
+ 1247, # Sarah LuAnn F train-clean-100
754
+ 1526, # Mike Harris M train-other-500
755
+ 908, # Quentin Manuel M train-clean-360
756
+ 1183, # Evelyn Clarke F train-other-500
757
+ 1438, # Tom Barron M train-other-500
758
+ 1022, # peac M train-clean-100
759
+ 1603, # Christine Rodriguez F train-clean-360
760
+ 1425, # Jonah Cummings M train-clean-360
761
+ 731, # Priya, India F train-other-500
762
+ 782, # Alec Daitsman M train-clean-360
763
+ 1090, # Termin Dyan M train-other-500
764
+ 995, # Parrot M train-other-500
765
+ 923, # Jane Greensmith F train-clean-360
766
+ 766, # Clive Catterall M train-other-500
767
+ 822, # kristiface F train-clean-360
768
+ 897, # Jan Dawn Doronila F train-clean-360
769
+ 1579, # Linda Velwest F train-clean-360
770
+ 964, # Utek M train-clean-360
771
+ 1414, # Preston Scrape M train-other-500
772
+ 834, # Serin F train-other-500
773
+ 1302, # davidb M train-clean-360
774
+ 1135, # Linda Andrus F train-clean-360
775
+ 1440, # P Moscato F train-clean-360
776
+ 870, # Barbara Bulkeley F train-clean-360
777
+ 1256, # Graeme Dunlop M train-other-500
778
+ 1255, # Daniel Paashaus M train-other-500
779
+ 1157, # Bev J Stevens F train-clean-360
780
+ 934, # Darla F train-other-500
781
+ 1281, # garbageman99 M train-clean-360
782
+ 819, # n8evv M train-clean-360
783
+ 1041, # mjbrichant F train-other-500
784
+ 863, # K Hindall F train-clean-360
785
+ 1303, # kiwafruit F train-clean-100
786
+ 1115, # Rachel Gatwood F train-clean-360
787
+ 1539, # Nathan Jordan M train-other-500
788
+ 1428, # Gary Dzierlenga M train-other-500
789
+ 1049, # Diana Solomon F train-other-500
790
+ 1546, # Carrie Heyes F train-other-500
791
+ 1089, # Bill Ruhsam M train-clean-360
792
+ 1142, # Jonathan Burchard M train-other-500
793
+ 1375, # Frank Adams M train-clean-360
794
+ 881, # mpetranech M train-other-500
795
+ 798, # Wyatt M train-other-500
796
+ 1647, # Patrick Reinhart M train-clean-360
797
+ 1587, # Claudia Wilson F train-clean-360
798
+ 830, # musici123 F train-other-500
799
+ 1592, # jerryB M train-other-500
800
+ 839, # Ben Dutton M train-other-500
801
+ 835, # Rachel Lintern F train-other-500
802
+ 1273, # gmiteva F train-other-500
803
+ 932, # Raerity F train-other-500
804
+ 1108, # Paul McCartan M train-other-500
805
+ 732, # Tysto M train-clean-360
806
+ 781, # Megan Kunkel F train-other-500
807
+ 1555, # Andrew Nelson M train-clean-360
808
+ 1437, # Charles RUHE M train-clean-360
809
+ 1402, # Angel5 F train-other-500
810
+ 963, # MichelleHarris F train-clean-360
811
+ 1181, # J. Rebecca Franklin F train-clean-360
812
+ 818, # Matt Warzel F train-clean-360
813
+ 1285, # Ric F M train-clean-100
814
+ 797, # Chris Jones F train-other-500
815
+ 1505, # Rom Maczka M train-clean-360
816
+ 1214, # David Baldwin M train-clean-360
817
+ 1636, # jessecoy M train-other-500
818
+ 929, # Petra F train-other-500
819
+ 1171, # Roberta Carlisle F train-other-500
820
+ 817, # texttalker M train-clean-360
821
+ 1433, # browneyedgirl32382 F train-clean-360
822
+ 1158, # StarrDog M train-other-500
823
+ 1000, # artos M train-other-500
824
+ 848, # senshisteph F train-other-500
825
+ 1596, # Joyce Couch F train-other-500
826
+ 757, # Roger Melin M train-clean-360
827
+ 1168, # Epistomolus M train-clean-100
828
+ 741, # Nick Marsh M train-other-500
829
+ 1649, # Phineas Redux M train-other-500
830
+ 851, # Jennifer Lott F train-clean-360
831
+ 808, # M. J. Boyle F train-other-500
832
+ 1595, # Matthew Reece M train-clean-360
833
+ 1370, # Savanna Herrold F train-other-500
834
+ 1565, # bryan.peterson M train-other-500
835
+ 944, # Sarafina Suransky F train-other-500
836
+ 1268, # A. Janelle Risa F train-clean-100
837
+ 771, # Isosceles F train-clean-360
838
+ 752, # Cat Schirf F train-other-500
839
+ 800, # Jack Farrell M train-clean-360
840
+ 1005, # Beatrice F train-other-500
841
+ 1229, # RoseA F train-clean-360
842
+ 943, # Matthew C. Heckel M train-clean-360
843
+ 891, # anoldfashiongirl F train-other-500
844
+ 1226, # serenitylee F train-clean-360
845
+ 1253, # Caroline Shapiro F train-other-500
846
+ 1204, # Dale A. Bade F train-clean-360
847
+ 1230, # Troy Bond M train-other-500
848
+ 791, # David Kleparek M train-clean-100
849
+ 1184, # Joseph Couves F train-other-500
850
+ 1001, # TriciaG F train-clean-360
851
+ 804, # FirstKnight F train-other-500
852
+ 1641, # Kirsten Wever F train-clean-100
853
+ 1259, # Megan Argo F train-other-500
854
+ 1231, # Abigail Bartels F train-other-500
855
+ 1410, # Zachary Johnson M train-other-500
856
+ 1030, # Ancient mariner M train-other-500
857
+ 1093, # Katie Riley F train-clean-360
858
+ 1254, # Rosie F train-clean-100
859
+ 1365, # Eric Leach M train-clean-360
860
+ 831, # David Federman M train-other-500
861
+ 1989, # Joannemmp F train-clean-100
862
+ 1707, # David Olson M train-other-500
863
+ 1849, # Fred DeBerardinis M train-clean-100
864
+ 1808, # Rebecca King F train-clean-360
865
+ 2292, # Arnold M train-clean-100
866
+ 2415, # Patrick Eaton M train-other-500
867
+ 1656, # Sharon Omi F train-clean-100
868
+ 1676, # Gargoyle M train-clean-360
869
+ 1881, # Julienne F train-other-500
870
+ 2036, # T.K. Kirven F train-other-500
871
+ 1761, # EliMarieHK F train-other-500
872
+ 2115, # Pete Milan M train-other-500
873
+ 1803, # Susan Hanfield F train-clean-360
874
+ 1798, # C. L. W. Rollins F train-other-500
875
+ 1723, # Rachel Bossier F train-other-500
876
+ 2341, # Haili F train-other-500
877
+ 2468, # Erin Schellhase F train-clean-360
878
+ 1725, # Ruth Kidson F train-other-500
879
+ 2010, # Peggy F train-other-500
880
+ 1853, # Ron Altman M train-other-500
881
+ 2359, # Doug Reed M train-other-500
882
+ 2422, # Jude Somers F train-clean-360
883
+ 2234, # Coreena F train-other-500
884
+ 2156, # C F de Rosset F train-other-500
885
+ 2483, # Tammy Porter F train-clean-360
886
+ 1781, # humanode M train-clean-360
887
+ 2275, # NatalieOram F train-other-500
888
+ 2390, # sdaeley17 M train-clean-360
889
+ 2314, # Cheri Jordan F train-clean-360
890
+ 2413, # Joanne Rochon F train-clean-360
891
+ 1697, # Lonelle Yoder F train-other-500
892
+ 1718, # Caroline Driggs F train-other-500
893
+ 2387, # Brett G. Hirsch M train-other-500
894
+ 2331, # Madam Fickle F train-clean-100
895
+ 1783, # Sarah Crampton F train-clean-360
896
+ 2397, # Rebecca Braunert-Plunkett F train-other-500
897
+ 2357, # William Gavula M train-other-500
898
+ 1670, # dmbrought M train-other-500
899
+ 1987, # Andrew White M train-clean-360
900
+ 1755, # Yvonne Smith F train-clean-360
901
+ 2192, # Sammy Bean M train-other-500
902
+ 1716, # EyeBones F train-clean-360
903
+ 1828, # David Wales M train-clean-100
904
+ 2251, # Wiley Combs M train-clean-360
905
+ 2065, # Muriel F train-clean-360
906
+ 2017, # CaprishaPage F train-other-500
907
+ 1947, # Barbara Edelman F train-other-500
908
+ 1738, # Lois C. Johnson F train-clean-360
909
+ 1791, # David Cummings M train-clean-360
910
+ 2045, # Linda Ciano F train-clean-360
911
+ 2452, # Walt Allan M train-other-500
912
+ 2040, # MJ Franck F train-other-500
913
+ 1831, # Nigel Boydell M train-other-500
914
+ 2371, # Alexander Hatton M train-clean-360
915
+ 1954, # Szindbad M train-other-500
916
+ 1836, # Kendall Ashyby F train-other-500
917
+ 2436, # josembi M train-other-500
918
+ 2383, # Emma Joyce F train-other-500
919
+ 2278, # Jake Woldstad M train-clean-360
920
+ 1741, # anjieliu F train-other-500
921
+ 1857, # Amanda Friday F train-clean-360
922
+ 2370, # gloriousjob M train-clean-360
923
+ 1907, # Snapdragon F train-other-500
924
+ 2225, # nomorejeffs M train-clean-360
925
+ 2439, # KHand F train-clean-360
926
+ 2239, # amaskill M train-other-500
927
+ 2007, # Art Leung F train-clean-360
928
+ 2283, # Tim Cote M train-clean-360
929
+ 1712, # Steve Belleguelle M train-other-500
930
+ 2094, # Meg Cowan F train-clean-360
931
+ 1772, # haggisreflux M train-clean-360
932
+ 2317, # helengraves F train-clean-360
933
+ 2241, # Steven Reynolds M train-clean-360
934
+ 2011, # pekein M train-clean-360
935
+ 1826, # John Hoerr M train-clean-100
936
+ 1695, # Tina Nuzzi F train-clean-360
937
+ 2451, # DeanOBuchanan M train-clean-100
938
+ 1771, # Chelsea S. F train-other-500
939
+ 2441, # Alison Stewart F train-clean-360
940
+ 1745, # Janet F train-clean-360
941
+ 2358, # Betty Perry F train-clean-360
942
+ 2197, # Mike Nelson M train-other-500
943
+ 2014, # Eden Rea-Hedrick F train-other-500
944
+ 1672, # Mike Wajda M train-clean-360
945
+ 2394, # TinaNygard2 F train-clean-100
946
+ 1657, # alwpoe M train-clean-360
947
+ 1728, # Vinnie Tesla M train-clean-360
948
+ 1805, # Vince Dee M train-clean-100
949
+ 2143, # Suebee F train-clean-360
950
+ 2084, # Eberle Thomas M train-other-500
951
+ 2479, # Daisy Flaim F train-clean-100
952
+ 2152, # Kristel Tretter F train-clean-360
953
+ 2268, # Greg Giordano M train-clean-360
954
+ 1839, # James E. Carson M train-clean-360
955
+ 2056, # acloward M train-clean-360
956
+ 1814, # polkadotish F train-other-500
957
+ 2127, # Ron Lockhart M train-clean-100
958
+ 2114, # Larry Beasley M train-clean-360
959
+ 2469, # Kevin Owens M train-clean-100
960
+ 2447, # Deena Rhoads F train-clean-360
961
+ 1724, # Juliana M. F train-clean-360
962
+ 1869, # NastassiaS F train-other-500
963
+ 2209, # Samantha J Gubitz F train-clean-360
964
+ 2171, # Carolyne F train-other-500
965
+ 2403, # Ian Quinlan M train-clean-360
966
+ 2032, # doonaboon M train-other-500
967
+ 2075, # Joy S Grape F train-clean-360
968
+ ]
config/latest_selection.txt ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ id name Nikita Andrey Alexey Result OR Result AND Count Yes > 1
2
+ 574 Daniel Shorten Yes No Yes TRUE FALSE TRUE
3
+ 242 J. Hall No No No FALSE FALSE FALSE
4
+ 536 Robert Flach Yes No No TRUE FALSE FALSE
5
+ 82 Andy Minter No No No FALSE FALSE FALSE
6
+ 672 Stuart Bell Yes No No TRUE FALSE FALSE
7
+ 315 Jean Crevier Yes No No TRUE FALSE FALSE
8
+ 628 Bryan Ness Yes No No TRUE FALSE FALSE
9
+ 61 John Greenman No No No FALSE FALSE FALSE
10
+ 649 Scarlett! Yes Yes Yes TRUE TRUE TRUE
11
+ 105 Marian Brown No No No FALSE FALSE FALSE
12
+ 399 entada No No No FALSE FALSE FALSE
13
+ 89 Paula Berinstein No No Yes TRUE FALSE FALSE
14
+ 502 Lee Elliott No No No FALSE FALSE FALSE
15
+ 102 Maureen S. O'Brien Yes Yes No TRUE FALSE TRUE
16
+ 544 Miranda Stinson Yes Yes Yes TRUE TRUE TRUE
17
+ 653 cucciasv Yes Yes Yes TRUE TRUE TRUE
18
+ 465 Leonie Rose No No No FALSE FALSE FALSE
19
+ 96 Kymm Zuckert Yes No No TRUE FALSE FALSE
20
+ 447 Lee Ann Howlett No No No FALSE FALSE FALSE
21
+ 165 Elisabeth Shields Yes No No TRUE FALSE FALSE
22
+ 430 Millbeach No No No FALSE FALSE FALSE
23
+ 214 Scott Splavec No Yes No TRUE FALSE FALSE
24
+ 666 Kelly Dougherty Yes Yes No TRUE FALSE TRUE
25
+ 481 Scott Sherris Yes No Yes TRUE FALSE TRUE
26
+ 463 Chris Hughes No No No FALSE FALSE FALSE
27
+ 273 Andrew Lebrun Yes No No TRUE FALSE FALSE
28
+ 172 Harvey Chinn Yes No No TRUE FALSE FALSE
29
+ 83 Graham Williams No No No FALSE FALSE FALSE
30
+ 523 Michael Loftus No No No FALSE FALSE FALSE
31
+ 38 Kurt Copeland No No No FALSE FALSE FALSE
32
+ 248 fieldsofgold Yes Yes No TRUE FALSE TRUE
33
+ 234 Menno No No No FALSE FALSE FALSE
34
+ 145 Mr. Baby Man Yes No No TRUE FALSE FALSE
35
+ 250 Quentin No No No FALSE FALSE FALSE
36
+ 498 Chris Gladis No No No FALSE FALSE FALSE
37
+ 123 Sean McGaughey Yes Yes No TRUE FALSE TRUE
38
+ 171 Paul Harvey Yes Yes No TRUE FALSE TRUE
39
+ 49 Kristen McQuillin No No No FALSE FALSE FALSE
40
+ 588 Kalynda No No No FALSE FALSE FALSE
41
+ 117 Caitlin Kelly Yes No No TRUE FALSE FALSE
42
+ 657 Shannon No No No FALSE FALSE FALSE
43
+ 275 Zale Schafer (Rose May Chamberlin Memorial Foundat No No No FALSE FALSE FALSE
44
+ 604 Anne-Marie Yes Yes Yes TRUE TRUE TRUE
45
+ 64 Christiane Levesque Yes Yes No TRUE FALSE TRUE
46
+ 685 Nikki Sullivan Yes No Yes TRUE FALSE TRUE
47
+ 355 Lana Taylor No No No FALSE FALSE FALSE
48
+ 185 Kim Braun No No No FALSE FALSE FALSE
49
+ 52 Cori Samuel Yes No Yes TRUE FALSE TRUE
50
+ 218 Joy Chan Yes Yes Yes TRUE TRUE TRUE
51
+ 549 AmyAG No No No FALSE FALSE FALSE
52
+ 617 PJ Yes Yes Yes TRUE TRUE TRUE
53
+ 414 Christabel Yes No Yes TRUE FALSE TRUE
54
+ 382 Kelli Robinson No No No FALSE FALSE FALSE
55
+ 76 ML Cohen No No Yes TRUE FALSE FALSE
56
+ 176 Micah Sheppard Yes No No TRUE FALSE FALSE
57
+ 233 mikenkat No Yes No TRUE FALSE FALSE
58
+ 390 JimmyLogan Yes No No TRUE FALSE FALSE
59
+ 393 Tim Lundeen No No No FALSE FALSE FALSE
60
+ 425 RedToby Yes No Yes TRUE FALSE TRUE
61
+ 398 Sam Fold No No No FALSE FALSE FALSE
62
+ 372 Jim Mullins Yes No No TRUE FALSE FALSE
63
+ 99 Stewart Wills No No No FALSE FALSE FALSE
64
+ 340 Nick Gallant No No No FALSE FALSE FALSE
65
+ 40 JemmaBlythe No No No FALSE FALSE FALSE
66
+ 118 Brenda Dayne Yes Yes Yes TRUE TRUE TRUE
67
+ 640 David A. Stokely Yes No No TRUE FALSE FALSE
68
+ 50 Dan Threetrees Yes No Yes TRUE FALSE TRUE
69
+ 373 Brooks Seveer Yes Yes No TRUE FALSE TRUE
70
+ 124 Steve Karafit No No No FALSE FALSE FALSE
71
+ 314 Carl Vonnoh, III Yes Yes Yes TRUE TRUE TRUE
72
+ 531 Fr. Richard Zeile of Detroit Yes No No TRUE FALSE FALSE
73
+ 383 Mike Roop Yes No No TRUE FALSE FALSE
74
+ 710 Sheila Morton Yes No Yes TRUE FALSE TRUE
75
+ 450 Heather Duncan Yes No Yes TRUE FALSE TRUE
76
+ 645 Micah Yes Yes No TRUE FALSE TRUE
77
+ 517 Madame Tusk Yes Yes No TRUE FALSE TRUE
78
+ 479 Wina Hathaway Yes No No TRUE FALSE FALSE
79
+ 30 Ophelia Darcy No No No FALSE FALSE FALSE
80
+ 220 Tina Tilney No No No FALSE FALSE FALSE
81
+ 63 Linda Wilcox Yes Yes No TRUE FALSE TRUE
82
+ 283 Bethany Simpson Yes No No TRUE FALSE FALSE
83
+ 644 Cynthia Zocca Yes Yes No TRUE FALSE TRUE
84
+ 677 Allyson Hester No No No FALSE FALSE FALSE
85
+ 21 Kelly Bescherer Yes No No TRUE FALSE FALSE
86
+ 552 Mim Ritty No No No FALSE FALSE FALSE
87
+ 80 Fox in the Stars Yes No Yes TRUE FALSE TRUE
88
+ 394 swroot Yes Yes No TRUE FALSE TRUE
89
+ 426 Megan Stemm-Wade Yes No No TRUE FALSE FALSE
90
+ 91 Chris Goringe Yes No Yes TRUE FALSE TRUE
91
+ 108 Kevin McAsh Yes No Yes TRUE FALSE TRUE
92
+ 130 Peter of Buckinghamshire England Yes No No TRUE FALSE FALSE
93
+ 661 James Gladwin Yes Yes Yes TRUE TRUE TRUE
94
+ 216 Dave Ranson No No No FALSE FALSE FALSE
95
+ 164 Ed Good Yes Yes Yes TRUE TRUE TRUE
96
+ 308 Eric Connover Yes Yes Yes TRUE TRUE TRUE
97
+ 569 Arouet Yes No No TRUE FALSE FALSE
98
+ 313 Tim Bulkeley No No No FALSE FALSE FALSE
99
+ 212 Glen Hallstrom No No No FALSE FALSE FALSE
100
+ 15 Chip Yes No No TRUE FALSE FALSE
101
+ 469 Christian Pecaut Yes Yes No TRUE FALSE TRUE
102
+ 294 Diana Kiesners No No No FALSE FALSE FALSE
103
+ 192 Nocturna Yes Yes No TRUE FALSE TRUE
104
+ 73 Claire Goget Yes No No TRUE FALSE FALSE
105
+ 417 Kiki Baessell Yes No Yes TRUE FALSE TRUE
106
+ 636 Matthew Howell Yes No No TRUE FALSE FALSE
107
+ 36 chriss the girl Yes No No TRUE FALSE FALSE
108
+ 668 Jan Baxter Yes Yes Yes TRUE TRUE TRUE
109
+ 403 Igor Teaforay No No No FALSE FALSE FALSE
110
+ 618 Linnea No No No FALSE FALSE FALSE
111
+ 596 Jo Yes No Yes TRUE FALSE TRUE
112
+ 499 Tammy Sanders No No No FALSE FALSE FALSE
113
+ 207 Sage Tyrtle No No No FALSE FALSE FALSE
114
+ 1346 Jeanie No No No FALSE FALSE FALSE
115
+ 1109 Martin Geeson Yes No Yes TRUE FALSE TRUE
116
+ 770 Pete Williams, Pittsburgh, PA Yes No Yes TRUE FALSE TRUE
117
+ 1247 Sarah LuAnn Yes Yes No TRUE FALSE TRUE
118
+ 1526 Mike Harris No No No FALSE FALSE FALSE
119
+ 908 Quentin Manuel Yes No Yes TRUE FALSE TRUE
120
+ 1183 Evelyn Clarke Yes No No TRUE FALSE FALSE
121
+ 1438 Tom Barron Yes No No TRUE FALSE FALSE
122
+ 1022 peac No No No FALSE FALSE FALSE
123
+ 1603 Christine Rodriguez No No No FALSE FALSE FALSE
124
+ 1425 Jonah Cummings No No No FALSE FALSE FALSE
125
+ 731 Priya, India Yes No No TRUE FALSE FALSE
126
+ 782 Alec Daitsman Yes Yes No TRUE FALSE TRUE
127
+ 1090 Termin Dyan Yes No No TRUE FALSE FALSE
128
+ 995 Parrot Yes Yes No TRUE FALSE TRUE
129
+ 923 Jane Greensmith Yes No Yes TRUE FALSE TRUE
130
+ 766 Clive Catterall No No No FALSE FALSE FALSE
131
+ 822 kristiface Yes Yes Yes TRUE TRUE TRUE
132
+ 897 Jan Dawn Doronila Yes No No TRUE FALSE FALSE
133
+ 1579 Linda Velwest No No No FALSE FALSE FALSE
134
+ 964 Utek No No No FALSE FALSE FALSE
135
+ 1414 Preston Scrape Yes No Yes TRUE FALSE TRUE
136
+ 834 Serin No No No FALSE FALSE FALSE
137
+ 1302 davidb Yes No Yes TRUE FALSE TRUE
138
+ 1135 Linda Andrus Yes No Yes TRUE FALSE TRUE
139
+ 1440 P Moscato Yes Yes No TRUE FALSE TRUE
140
+ 870 Barbara Bulkeley No Yes No TRUE FALSE FALSE
141
+ 1256 Graeme Dunlop Yes No No TRUE FALSE FALSE
142
+ 1255 Daniel Paashaus No No No FALSE FALSE FALSE
143
+ 1157 Bev J Stevens No No No FALSE FALSE FALSE
144
+ 934 Darla No No Yes TRUE FALSE FALSE
145
+ 1281 garbageman99 Yes No Yes TRUE FALSE TRUE
146
+ 819 n8evv Yes No No TRUE FALSE FALSE
147
+ 1041 mjbrichant Yes No Yes TRUE FALSE TRUE
148
+ 863 K Hindall No No No FALSE FALSE FALSE
149
+ 1303 kiwafruit No No No FALSE FALSE FALSE
150
+ 1115 Rachel Gatwood No No No FALSE FALSE FALSE
151
+ 1539 Nathan Jordan No No No FALSE FALSE FALSE
152
+ 1428 Gary Dzierlenga No No No FALSE FALSE FALSE
153
+ 1049 Diana Solomon No No No FALSE FALSE FALSE
154
+ 1546 Carrie Heyes No No No FALSE FALSE FALSE
155
+ 1089 Bill Ruhsam No No No FALSE FALSE FALSE
156
+ 1142 Jonathan Burchard Yes No Yes TRUE FALSE TRUE
157
+ 1375 Frank Adams Yes No No TRUE FALSE FALSE
158
+ 881 mpetranech Yes No Yes TRUE FALSE TRUE
159
+ 798 Wyatt No No No FALSE FALSE FALSE
160
+ 1647 Patrick Reinhart No No No FALSE FALSE FALSE
161
+ 1587 Claudia Wilson Yes No No TRUE FALSE FALSE
162
+ 830 musici123 Yes No No TRUE FALSE FALSE
163
+ 1592 jerryB No No No FALSE FALSE FALSE
164
+ 839 Ben Dutton No No No FALSE FALSE FALSE
165
+ 835 Rachel Lintern Yes No Yes TRUE FALSE TRUE
166
+ 1273 gmiteva Yes No No TRUE FALSE FALSE
167
+ 932 Raerity Yes Yes No TRUE FALSE TRUE
168
+ 1108 Paul McCartan No No No FALSE FALSE FALSE
169
+ 732 Tysto Yes Yes No TRUE FALSE TRUE
170
+ 781 Megan Kunkel No No No FALSE FALSE FALSE
171
+ 1555 Andrew Nelson No No No FALSE FALSE FALSE
172
+ 1437 Charles RUHE No No No FALSE FALSE FALSE
173
+ 1402 Angel5 Yes No Yes TRUE FALSE TRUE
174
+ 963 MichelleHarris No No No FALSE FALSE FALSE
175
+ 1181 J. Rebecca Franklin No No No FALSE FALSE FALSE
176
+ 818 Matt Warzel No No No FALSE FALSE FALSE
177
+ 1285 Ric F Yes No No TRUE FALSE FALSE
178
+ 797 Chris Jones Yes No No TRUE FALSE FALSE
179
+ 1505 Rom Maczka Yes No No TRUE FALSE FALSE
180
+ 1214 David Baldwin No No No FALSE FALSE FALSE
181
+ 1636 jessecoy No No No FALSE FALSE FALSE
182
+ 929 Petra Yes Yes No TRUE FALSE TRUE
183
+ 1171 Roberta Carlisle No No No FALSE FALSE FALSE
184
+ 817 texttalker Yes Yes No TRUE FALSE TRUE
185
+ 1433 browneyedgirl32382 Yes Yes Yes TRUE TRUE TRUE
186
+ 1158 StarrDog Yes No No TRUE FALSE FALSE
187
+ 1000 artos No No No FALSE FALSE FALSE
188
+ 848 senshisteph Yes No No TRUE FALSE FALSE
189
+ 1596 Joyce Couch Yes Yes No TRUE FALSE TRUE
190
+ 757 Roger Melin Yes No No TRUE FALSE FALSE
191
+ 1168 Epistomolus Yes No No TRUE FALSE FALSE
192
+ 741 Nick Marsh Yes No No TRUE FALSE FALSE
193
+ 1649 Phineas Redux No No No FALSE FALSE FALSE
194
+ 851 Jennifer Lott Yes Yes Yes TRUE TRUE TRUE
195
+ 808 M. J. Boyle No No No FALSE FALSE FALSE
196
+ 1595 Matthew Reece No No No FALSE FALSE FALSE
197
+ 1370 Savanna Herrold Yes Yes Yes TRUE TRUE TRUE
198
+ 1565 bryan.peterson No Yes No TRUE FALSE FALSE
199
+ 944 Sarafina Suransky Yes No No TRUE FALSE FALSE
200
+ 1268 A. Janelle Risa Yes No No TRUE FALSE FALSE
201
+ 771 Isosceles No No No FALSE FALSE FALSE
202
+ 752 Cat Schirf No No No FALSE FALSE FALSE
203
+ 800 Jack Farrell No No No FALSE FALSE FALSE
204
+ 1005 Beatrice Yes No No TRUE FALSE FALSE
205
+ 1229 RoseA No No No FALSE FALSE FALSE
206
+ 943 Matthew C. Heckel No No No FALSE FALSE FALSE
207
+ 891 anoldfashiongirl Yes No No TRUE FALSE FALSE
208
+ 1226 serenitylee No No No FALSE FALSE FALSE
209
+ 1253 Caroline Shapiro Yes No No TRUE FALSE FALSE
210
+ 1204 Dale A. Bade Yes No Yes TRUE FALSE TRUE
211
+ 1230 Troy Bond Yes Yes No TRUE FALSE TRUE
212
+ 791 David Kleparek Yes Yes No TRUE FALSE TRUE
213
+ 1184 Joseph Couves No No No FALSE FALSE FALSE
214
+ 1001 TriciaG No No No FALSE FALSE FALSE
215
+ 804 FirstKnight Yes Yes No TRUE FALSE TRUE
216
+ 1641 Kirsten Wever No No No FALSE FALSE FALSE
217
+ 1259 Megan Argo No No No FALSE FALSE FALSE
218
+ 1231 Abigail Bartels No No No FALSE FALSE FALSE
219
+ 1410 Zachary Johnson Yes No No TRUE FALSE FALSE
220
+ 1030 Ancient mariner Yes No No TRUE FALSE FALSE
221
+ 1093 Katie Riley No No No FALSE FALSE FALSE
222
+ 1254 Rosie No No No FALSE FALSE FALSE
223
+ 1365 Eric Leach Yes No No TRUE FALSE FALSE
224
+ 831 David Federman No No No FALSE FALSE FALSE
225
+ 1989 Joannemmp No No No FALSE FALSE FALSE
226
+ 1707 David Olson No No No FALSE FALSE FALSE
227
+ 1849 Fred DeBerardinis Yes No No TRUE FALSE FALSE
228
+ 1808 Rebecca King Yes No Yes TRUE FALSE TRUE
229
+ 2292 Arnold No No No FALSE FALSE FALSE
230
+ 2415 Patrick Eaton No No No FALSE FALSE FALSE
231
+ 1656 Sharon Omi Yes Yes No TRUE FALSE TRUE
232
+ 1676 Gargoyle No Yes No TRUE FALSE FALSE
233
+ 1881 Julienne No No Yes TRUE FALSE FALSE
234
+ 2036 T.K. Kirven No No No FALSE FALSE FALSE
235
+ 1761 EliMarieHK Yes No No TRUE FALSE FALSE
236
+ 2115 Pete Milan Yes Yes Yes TRUE TRUE TRUE
237
+ 1803 Susan Hanfield Yes No No TRUE FALSE FALSE
238
+ 1798 C. L. W. Rollins Yes No No TRUE FALSE FALSE
239
+ 1723 Rachel Bossier Yes No No TRUE FALSE FALSE
240
+ 2341 Haili Yes No Yes TRUE FALSE TRUE
241
+ 2468 Erin Schellhase Yes Yes No TRUE FALSE TRUE
242
+ 1725 Ruth Kidson Yes No No TRUE FALSE FALSE
243
+ 2010 Peggy Yes No No TRUE FALSE FALSE
244
+ 1853 Ron Altman Yes No No TRUE FALSE FALSE
245
+ 2359 Doug Reed No No No FALSE FALSE FALSE
246
+ 2422 Jude Somers No No No FALSE FALSE FALSE
247
+ 2234 Coreena No No No FALSE FALSE FALSE
248
+ 2156 C F de Rosset No No Yes TRUE FALSE FALSE
249
+ 2483 Tammy Porter No No No FALSE FALSE FALSE
250
+ 1781 humanode No No No FALSE FALSE FALSE
251
+ 2275 NatalieOram No No No FALSE FALSE FALSE
252
+ 2390 sdaeley17 No No No FALSE FALSE FALSE
253
+ 2314 Cheri Jordan No No No FALSE FALSE FALSE
254
+ 2413 Joanne Rochon No No No FALSE FALSE FALSE
255
+ 1697 Lonelle Yoder No No No FALSE FALSE FALSE
256
+ 1718 Caroline Driggs Yes Yes No TRUE FALSE TRUE
257
+ 2387 Brett G. Hirsch No No No FALSE FALSE FALSE
258
+ 2331 Madam Fickle No No No FALSE FALSE FALSE
259
+ 1783 Sarah Crampton Yes Yes Yes TRUE TRUE TRUE
260
+ 2397 Rebecca Braunert-Plunkett No No No FALSE FALSE FALSE
261
+ 2357 William Gavula No No No FALSE FALSE FALSE
262
+ 1670 dmbrought No No No FALSE FALSE FALSE
263
+ 1987 Andrew White No No No FALSE FALSE FALSE
264
+ 1755 Yvonne Smith Yes Yes No TRUE FALSE TRUE
265
+ 2192 Sammy Bean Yes Yes No TRUE FALSE TRUE
266
+ 1716 EyeBones Yes No No TRUE FALSE FALSE
267
+ 1828 David Wales No No No FALSE FALSE FALSE
268
+ 2251 Wiley Combs No No No FALSE FALSE FALSE
269
+ 2065 Muriel No No No FALSE FALSE FALSE
270
+ 2017 CaprishaPage Yes No No TRUE FALSE FALSE
271
+ 1947 Barbara Edelman No No Yes TRUE FALSE FALSE
272
+ 1738 Lois C. Johnson No No No FALSE FALSE FALSE
273
+ 1791 David Cummings No Yes No TRUE FALSE FALSE
274
+ 2045 Linda Ciano No No No FALSE FALSE FALSE
275
+ 2452 Walt Allan No No Yes TRUE FALSE FALSE
276
+ 2040 MJ Franck No No No FALSE FALSE FALSE
277
+ 1831 Nigel Boydell Yes No No TRUE FALSE FALSE
278
+ 2371 Alexander Hatton Yes Yes No TRUE FALSE TRUE
279
+ 1954 Szindbad No No No FALSE FALSE FALSE
280
+ 1836 Kendall Ashyby Yes Yes No TRUE FALSE TRUE
281
+ 2436 josembi No No No FALSE FALSE FALSE
282
+ 2383 Emma Joyce No No No FALSE FALSE FALSE
283
+ 2278 Jake Woldstad No No No FALSE FALSE FALSE
284
+ 1741 anjieliu Yes Yes No TRUE FALSE TRUE
285
+ 1857 Amanda Friday Yes No No TRUE FALSE FALSE
286
+ 2370 gloriousjob No No No FALSE FALSE FALSE
287
+ 1907 Snapdragon No No No FALSE FALSE FALSE
288
+ 2225 nomorejeffs No Yes No TRUE FALSE FALSE
289
+ 2439 KHand Yes Yes No TRUE FALSE TRUE
290
+ 2239 amaskill No Yes No TRUE FALSE FALSE
291
+ 2007 Art Leung No No No FALSE FALSE FALSE
292
+ 2283 Tim Cote No No No FALSE FALSE FALSE
293
+ 1712 Steve Belleguelle Yes Yes Yes TRUE TRUE TRUE
294
+ 2094 Meg Cowan Yes No No TRUE FALSE FALSE
295
+ 1772 haggisreflux No No No FALSE FALSE FALSE
296
+ 2317 helengraves Yes No No TRUE FALSE FALSE
297
+ 2241 Steven Reynolds No No No FALSE FALSE FALSE
298
+ 2011 pekein Yes No No TRUE FALSE FALSE
299
+ 1826 John Hoerr Yes No No TRUE FALSE FALSE
300
+ 1695 Tina Nuzzi Yes No No TRUE FALSE FALSE
301
+ 2451 DeanOBuchanan Yes No No TRUE FALSE FALSE
302
+ 1771 Chelsea S. Yes No No TRUE FALSE FALSE
303
+ 2441 Alison Stewart No No No FALSE FALSE FALSE
304
+ 1745 Janet No No No FALSE FALSE FALSE
305
+ 2358 Betty Perry No No No FALSE FALSE FALSE
306
+ 2197 Mike Nelson Yes Yes Yes TRUE TRUE TRUE
307
+ 2014 Eden Rea-Hedrick Yes No No TRUE FALSE FALSE
308
+ 1672 Mike Wajda No No No FALSE FALSE FALSE
309
+ 2394 TinaNygard2 No Yes No TRUE FALSE FALSE
310
+ 1657 alwpoe No No No FALSE FALSE FALSE
311
+ 1728 Vinnie Tesla Yes Yes No TRUE FALSE TRUE
312
+ 1805 Vince Dee Yes No Yes TRUE FALSE TRUE
313
+ 2143 Suebee Yes Yes No TRUE FALSE TRUE
314
+ 2084 Eberle Thomas Yes No Yes TRUE FALSE TRUE
315
+ 2479 Daisy Flaim No No No FALSE FALSE FALSE
316
+ 2152 Kristel Tretter No No No FALSE FALSE FALSE
317
+ 2268 Greg Giordano No No No FALSE FALSE FALSE
318
+ 1839 James E. Carson No No No FALSE FALSE FALSE
319
+ 2056 acloward Yes Yes No TRUE FALSE TRUE
320
+ 1814 polkadotish No No No FALSE FALSE FALSE
321
+ 2127 Ron Lockhart No No No FALSE FALSE FALSE
322
+ 2114 Larry Beasley No Yes Yes TRUE FALSE TRUE
323
+ 2469 Kevin Owens Yes No No TRUE FALSE FALSE
324
+ 2447 Deena Rhoads Yes Yes No TRUE FALSE TRUE
325
+ 1724 Juliana M. Yes No No TRUE FALSE FALSE
326
+ 1869 NastassiaS Yes Yes Yes TRUE TRUE TRUE
327
+ 2209 Samantha J Gubitz Yes Yes Yes TRUE TRUE TRUE
328
+ 2171 Carolyne No Yes No TRUE FALSE FALSE
329
+ 2403 Ian Quinlan Yes No No TRUE FALSE FALSE
330
+ 2032 doonaboon Yes No No TRUE FALSE FALSE
331
+ x Joy S Grape No No No FALSE FALSE FALSE
config/phone2idx.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<mask>": 1,
3
+ "<pad>": 0,
4
+ "<unk>": 2,
5
+ "[COMMA]": 17,
6
+ "[EXCLAMATION MARK]": 50,
7
+ "[FULL STOP]": 30,
8
+ "[QUESTION MARK]": 54,
9
+ "[SEMICOLON]": 56,
10
+ "[SILENCE]": 3,
11
+ "a\u026a": 26,
12
+ "a\u028a": 46,
13
+ "b": 21,
14
+ "d": 19,
15
+ "d\u0292": 42,
16
+ "e\u026a": 4,
17
+ "f": 27,
18
+ "h": 38,
19
+ "i": 8,
20
+ "j": 31,
21
+ "k": 23,
22
+ "l": 22,
23
+ "m": 10,
24
+ "n": 15,
25
+ "o\u028a": 32,
26
+ "p": 11,
27
+ "s": 28,
28
+ "t": 13,
29
+ "t\u0283": 43,
30
+ "u": 24,
31
+ "v": 5,
32
+ "w": 29,
33
+ "z": 20,
34
+ "\u00e6": 18,
35
+ "\u00f0": 34,
36
+ "\u014b": 36,
37
+ "\u0251": 39,
38
+ "\u0254": 12,
39
+ "\u0254\u026a": 16,
40
+ "\u025b": 6,
41
+ "\u025c\u02de": 37,
42
+ "\u0261": 33,
43
+ "\u026a": 9,
44
+ "\u0279": 7,
45
+ "\u0283": 35,
46
+ "\u028a": 49,
47
+ "\u028c": 14,
48
+ "\u0292": 25,
49
+ "\u02cca\u026a": 52,
50
+ "\u02cca\u028a": 60,
51
+ "\u02cce\u026a": 58,
52
+ "\u02cci": 44,
53
+ "\u02cco\u028a": 45,
54
+ "\u02ccu": 51,
55
+ "\u02cc\u00e6": 59,
56
+ "\u02cc\u0251": 61,
57
+ "\u02cc\u0254": 57,
58
+ "\u02cc\u0254\u026a": 62,
59
+ "\u02cc\u025b": 53,
60
+ "\u02cc\u025c\u02de": 47,
61
+ "\u02cc\u026a": 40,
62
+ "\u02cc\u028a": 48,
63
+ "\u02cc\u028c": 55,
64
+ "\u03b8": 41
65
+ }
config/speaker2idx.json ADDED
@@ -0,0 +1,2442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "100": 1017,
3
+ "1006": 1635,
4
+ "101": 718,
5
+ "1012": 706,
6
+ "1018": 688,
7
+ "102": 2191,
8
+ "1025": 588,
9
+ "1027": 591,
10
+ "1028": 291,
11
+ "103": 15,
12
+ "1034": 182,
13
+ "104": 1979,
14
+ "1040": 195,
15
+ "1046": 459,
16
+ "1049": 2264,
17
+ "1050": 819,
18
+ "1051": 2174,
19
+ "1052": 374,
20
+ "1053": 878,
21
+ "1054": 864,
22
+ "1060": 1001,
23
+ "1061": 576,
24
+ "1065": 1420,
25
+ "1066": 366,
26
+ "1069": 210,
27
+ "107": 1333,
28
+ "1079": 381,
29
+ "1081": 190,
30
+ "1084": 1514,
31
+ "1085": 1288,
32
+ "1088": 107,
33
+ "1089": 2383,
34
+ "1092": 1555,
35
+ "1093": 480,
36
+ "1094": 1588,
37
+ "1096": 1339,
38
+ "1097": 1311,
39
+ "1098": 92,
40
+ "110": 1506,
41
+ "1100": 1080,
42
+ "1107": 1355,
43
+ "111": 1659,
44
+ "1110": 1540,
45
+ "1112": 489,
46
+ "1116": 54,
47
+ "112": 560,
48
+ "1121": 755,
49
+ "1124": 2160,
50
+ "1132": 1837,
51
+ "114": 1044,
52
+ "115": 1088,
53
+ "1152": 1417,
54
+ "1154": 1936,
55
+ "116": 2354,
56
+ "1160": 252,
57
+ "1161": 1405,
58
+ "1165": 694,
59
+ "1166": 2026,
60
+ "1168": 1516,
61
+ "1171": 1940,
62
+ "1179": 1547,
63
+ "118": 235,
64
+ "1182": 621,
65
+ "1183": 188,
66
+ "1184": 2107,
67
+ "1187": 1648,
68
+ "1188": 2404,
69
+ "119": 435,
70
+ "1195": 774,
71
+ "1200": 1382,
72
+ "121": 2384,
73
+ "1212": 1018,
74
+ "122": 490,
75
+ "1221": 2401,
76
+ "1222": 520,
77
+ "1224": 545,
78
+ "1225": 2065,
79
+ "1226": 396,
80
+ "123": 1319,
81
+ "1230": 1682,
82
+ "1235": 212,
83
+ "1239": 1670,
84
+ "1241": 991,
85
+ "1246": 135,
86
+ "125": 97,
87
+ "1250": 2037,
88
+ "1252": 1488,
89
+ "1255": 2342,
90
+ "1258": 2222,
91
+ "1259": 286,
92
+ "126": 712,
93
+ "1260": 1808,
94
+ "1261": 2275,
95
+ "1263": 3,
96
+ "1264": 1035,
97
+ "1265": 660,
98
+ "1266": 1235,
99
+ "127": 1182,
100
+ "1271": 812,
101
+ "1272": 2324,
102
+ "1274": 1287,
103
+ "128": 1343,
104
+ "1280": 1774,
105
+ "1283": 658,
106
+ "1284": 2377,
107
+ "1289": 1099,
108
+ "1290": 1033,
109
+ "1291": 2002,
110
+ "1296": 699,
111
+ "1298": 1560,
112
+ "1311": 734,
113
+ "1313": 323,
114
+ "1316": 1113,
115
+ "1320": 2390,
116
+ "1322": 890,
117
+ "1323": 365,
118
+ "133": 2129,
119
+ "1331": 1811,
120
+ "1334": 49,
121
+ "1335": 427,
122
+ "1336": 818,
123
+ "1337": 865,
124
+ "1341": 2082,
125
+ "1342": 1232,
126
+ "1343": 811,
127
+ "1347": 2070,
128
+ "1348": 849,
129
+ "1349": 501,
130
+ "1353": 1361,
131
+ "1355": 242,
132
+ "1363": 147,
133
+ "1365": 722,
134
+ "1367": 1415,
135
+ "1370": 1384,
136
+ "1373": 2018,
137
+ "1374": 2009,
138
+ "1379": 728,
139
+ "1382": 1066,
140
+ "1383": 1032,
141
+ "1384": 1300,
142
+ "1387": 580,
143
+ "1390": 1056,
144
+ "1392": 391,
145
+ "14": 1090,
146
+ "1401": 967,
147
+ "1403": 1735,
148
+ "1413": 894,
149
+ "1414": 1806,
150
+ "1417": 565,
151
+ "1421": 1545,
152
+ "1422": 461,
153
+ "1425": 806,
154
+ "1430": 1718,
155
+ "1444": 1934,
156
+ "1445": 413,
157
+ "1446": 907,
158
+ "1447": 130,
159
+ "1448": 333,
160
+ "1455": 216,
161
+ "1460": 715,
162
+ "1462": 2298,
163
+ "1463": 462,
164
+ "1469": 1144,
165
+ "147": 2180,
166
+ "1472": 1045,
167
+ "1473": 962,
168
+ "1474": 1308,
169
+ "1482": 1089,
170
+ "1485": 1589,
171
+ "1487": 277,
172
+ "1492": 1981,
173
+ "1494": 1641,
174
+ "1495": 1403,
175
+ "1498": 340,
176
+ "150": 207,
177
+ "1502": 56,
178
+ "1505": 1145,
179
+ "1509": 248,
180
+ "1513": 371,
181
+ "152": 1457,
182
+ "153": 1702,
183
+ "1535": 502,
184
+ "1536": 437,
185
+ "154": 402,
186
+ "1544": 2039,
187
+ "1545": 1483,
188
+ "1547": 604,
189
+ "1552": 493,
190
+ "1553": 167,
191
+ "1556": 736,
192
+ "1559": 2027,
193
+ "1563": 2050,
194
+ "1564": 1503,
195
+ "1566": 1826,
196
+ "1569": 1796,
197
+ "157": 899,
198
+ "1571": 825,
199
+ "1572": 1884,
200
+ "1578": 36,
201
+ "1579": 1360,
202
+ "1580": 2387,
203
+ "1585": 2363,
204
+ "159": 777,
205
+ "1593": 1631,
206
+ "1594": 52,
207
+ "1595": 1472,
208
+ "16": 534,
209
+ "1601": 1900,
210
+ "1603": 650,
211
+ "1607": 814,
212
+ "161": 1911,
213
+ "1614": 1777,
214
+ "1618": 1351,
215
+ "1621": 2086,
216
+ "1624": 38,
217
+ "1629": 980,
218
+ "163": 106,
219
+ "1630": 2365,
220
+ "1633": 1400,
221
+ "1636": 1548,
222
+ "1638": 884,
223
+ "1639": 341,
224
+ "1641": 257,
225
+ "1643": 1799,
226
+ "1645": 696,
227
+ "1646": 1667,
228
+ "1647": 1272,
229
+ "1648": 1684,
230
+ "1649": 929,
231
+ "1650": 2367,
232
+ "1651": 2341,
233
+ "1653": 1766,
234
+ "166": 1094,
235
+ "1664": 2153,
236
+ "1665": 1734,
237
+ "1668": 704,
238
+ "167": 2038,
239
+ "1673": 2313,
240
+ "1674": 1281,
241
+ "1678": 1125,
242
+ "1679": 1170,
243
+ "168": 1452,
244
+ "1680": 1717,
245
+ "1681": 1991,
246
+ "1685": 1204,
247
+ "1686": 2362,
248
+ "1688": 2432,
249
+ "1690": 1791,
250
+ "1691": 1871,
251
+ "1693": 1315,
252
+ "1695": 1908,
253
+ "1696": 1743,
254
+ "1699": 1500,
255
+ "17": 934,
256
+ "1701": 2345,
257
+ "1704": 1963,
258
+ "1705": 581,
259
+ "1708": 1499,
260
+ "1710": 2214,
261
+ "1714": 1539,
262
+ "1717": 1662,
263
+ "1721": 1328,
264
+ "1724": 933,
265
+ "1726": 2146,
266
+ "173": 1848,
267
+ "1731": 626,
268
+ "1733": 1931,
269
+ "1734": 867,
270
+ "1736": 1152,
271
+ "1737": 122,
272
+ "174": 2316,
273
+ "1740": 999,
274
+ "1743": 115,
275
+ "1746": 1410,
276
+ "1748": 361,
277
+ "175": 506,
278
+ "1750": 1525,
279
+ "1752": 846,
280
+ "1754": 529,
281
+ "1756": 2103,
282
+ "1757": 1825,
283
+ "176": 546,
284
+ "1760": 1285,
285
+ "1765": 1953,
286
+ "1767": 2020,
287
+ "1769": 799,
288
+ "177": 1926,
289
+ "1772": 1278,
290
+ "1773": 1397,
291
+ "1776": 904,
292
+ "1777": 563,
293
+ "1779": 403,
294
+ "1780": 1151,
295
+ "1784": 1517,
296
+ "1789": 445,
297
+ "1795": 1523,
298
+ "1801": 383,
299
+ "1804": 2063,
300
+ "1806": 926,
301
+ "1809": 1879,
302
+ "1811": 835,
303
+ "1813": 2220,
304
+ "1815": 1370,
305
+ "1819": 1439,
306
+ "1825": 264,
307
+ "1826": 772,
308
+ "1827": 1060,
309
+ "1828": 1805,
310
+ "1841": 81,
311
+ "1844": 1567,
312
+ "1845": 1110,
313
+ "1846": 1293,
314
+ "1849": 349,
315
+ "1851": 447,
316
+ "1859": 398,
317
+ "1863": 1496,
318
+ "1867": 78,
319
+ "1868": 1910,
320
+ "1870": 2029,
321
+ "1874": 372,
322
+ "1878": 1642,
323
+ "188": 679,
324
+ "1885": 615,
325
+ "1898": 153,
326
+ "19": 200,
327
+ "1901": 1873,
328
+ "1903": 465,
329
+ "1913": 515,
330
+ "1914": 1059,
331
+ "1919": 2314,
332
+ "192": 1013,
333
+ "1920": 2261,
334
+ "1923": 633,
335
+ "1924": 2081,
336
+ "1926": 133,
337
+ "1931": 1758,
338
+ "1933": 882,
339
+ "1938": 1990,
340
+ "1943": 412,
341
+ "1944": 375,
342
+ "1958": 913,
343
+ "196": 39,
344
+ "1961": 961,
345
+ "1963": 154,
346
+ "1968": 1449,
347
+ "1970": 20,
348
+ "1974": 289,
349
+ "1977": 2132,
350
+ "198": 65,
351
+ "1985": 2112,
352
+ "1987": 516,
353
+ "1988": 2325,
354
+ "1989": 1888,
355
+ "199": 1291,
356
+ "1992": 105,
357
+ "1993": 2320,
358
+ "1995": 2380,
359
+ "1998": 2434,
360
+ "20": 2145,
361
+ "200": 128,
362
+ "2001": 1719,
363
+ "2002": 120,
364
+ "2003": 1869,
365
+ "2004": 703,
366
+ "2007": 143,
367
+ "201": 124,
368
+ "2010": 671,
369
+ "2012": 321,
370
+ "2013": 1299,
371
+ "202": 1336,
372
+ "2021": 1153,
373
+ "2026": 2116,
374
+ "203": 555,
375
+ "2033": 2410,
376
+ "2035": 2335,
377
+ "204": 629,
378
+ "2042": 1951,
379
+ "2045": 1137,
380
+ "2046": 1528,
381
+ "205": 473,
382
+ "2050": 1264,
383
+ "2051": 1703,
384
+ "2053": 863,
385
+ "2056": 1046,
386
+ "2060": 355,
387
+ "2061": 397,
388
+ "2062": 1592,
389
+ "2063": 1691,
390
+ "2067": 1737,
391
+ "2068": 1373,
392
+ "207": 306,
393
+ "2074": 1079,
394
+ "2078": 2322,
395
+ "208": 550,
396
+ "2086": 2301,
397
+ "2089": 1894,
398
+ "209": 460,
399
+ "2090": 1380,
400
+ "2092": 67,
401
+ "2093": 1116,
402
+ "2096": 1332,
403
+ "210": 376,
404
+ "2100": 1950,
405
+ "2104": 1526,
406
+ "211": 234,
407
+ "2110": 702,
408
+ "2113": 441,
409
+ "2122": 1292,
410
+ "2127": 564,
411
+ "2133": 1507,
412
+ "2136": 70,
413
+ "2137": 946,
414
+ "2140": 1185,
415
+ "2143": 1720,
416
+ "2146": 930,
417
+ "2148": 2167,
418
+ "2149": 761,
419
+ "215": 1664,
420
+ "2152": 1842,
421
+ "2156": 385,
422
+ "2159": 151,
423
+ "216": 950,
424
+ "2162": 1023,
425
+ "2167": 610,
426
+ "217": 969,
427
+ "218": 1818,
428
+ "2182": 136,
429
+ "2185": 1577,
430
+ "2194": 820,
431
+ "2195": 1852,
432
+ "2196": 44,
433
+ "2198": 1176,
434
+ "22": 1036,
435
+ "2201": 853,
436
+ "2204": 1130,
437
+ "2208": 2157,
438
+ "2229": 271,
439
+ "2230": 451,
440
+ "2234": 1882,
441
+ "2237": 1663,
442
+ "2238": 478,
443
+ "224": 386,
444
+ "2240": 282,
445
+ "2246": 1501,
446
+ "225": 549,
447
+ "2254": 318,
448
+ "2256": 840,
449
+ "226": 171,
450
+ "2262": 1316,
451
+ "2269": 443,
452
+ "227": 487,
453
+ "2270": 1222,
454
+ "2272": 247,
455
+ "2273": 1167,
456
+ "2275": 1922,
457
+ "2276": 1263,
458
+ "2277": 2318,
459
+ "2279": 2204,
460
+ "228": 1974,
461
+ "2284": 1344,
462
+ "2285": 931,
463
+ "2288": 2139,
464
+ "2289": 99,
465
+ "229": 95,
466
+ "2292": 2236,
467
+ "2294": 775,
468
+ "2297": 1678,
469
+ "2299": 690,
470
+ "2300": 2371,
471
+ "2301": 2102,
472
+ "2309": 2195,
473
+ "231": 698,
474
+ "2312": 1538,
475
+ "2319": 705,
476
+ "233": 232,
477
+ "2339": 1581,
478
+ "2341": 1909,
479
+ "2346": 2055,
480
+ "2351": 2189,
481
+ "2356": 2284,
482
+ "2361": 1537,
483
+ "2364": 296,
484
+ "2368": 255,
485
+ "237": 2394,
486
+ "2374": 2005,
487
+ "238": 2295,
488
+ "2380": 1794,
489
+ "2384": 90,
490
+ "2388": 940,
491
+ "2391": 184,
492
+ "2393": 611,
493
+ "2397": 841,
494
+ "240": 648,
495
+ "2401": 787,
496
+ "2404": 627,
497
+ "2405": 1513,
498
+ "2407": 1983,
499
+ "2411": 914,
500
+ "2412": 2329,
501
+ "2414": 2435,
502
+ "2416": 42,
503
+ "242": 614,
504
+ "2427": 876,
505
+ "2428": 2332,
506
+ "243": 1455,
507
+ "2436": 215,
508
+ "2437": 1699,
509
+ "2445": 2229,
510
+ "2448": 1622,
511
+ "245": 1815,
512
+ "246": 1004,
513
+ "2473": 888,
514
+ "248": 61,
515
+ "2481": 975,
516
+ "2485": 1470,
517
+ "2487": 1711,
518
+ "2488": 1790,
519
+ "249": 488,
520
+ "2491": 1729,
521
+ "2494": 517,
522
+ "2496": 2289,
523
+ "2498": 322,
524
+ "2499": 297,
525
+ "25": 2098,
526
+ "250": 214,
527
+ "2504": 2017,
528
+ "2506": 2338,
529
+ "251": 2300,
530
+ "2512": 419,
531
+ "2514": 246,
532
+ "2517": 721,
533
+ "2518": 2,
534
+ "252": 1421,
535
+ "2522": 2034,
536
+ "2526": 2054,
537
+ "253": 1377,
538
+ "2531": 431,
539
+ "2532": 997,
540
+ "254": 244,
541
+ "2541": 2119,
542
+ "2544": 2022,
543
+ "2545": 1716,
544
+ "255": 1236,
545
+ "2552": 1409,
546
+ "2553": 1792,
547
+ "2562": 938,
548
+ "2568": 1585,
549
+ "2570": 693,
550
+ "2573": 628,
551
+ "2574": 1363,
552
+ "2577": 622,
553
+ "258": 334,
554
+ "2581": 1050,
555
+ "2582": 1133,
556
+ "2587": 1143,
557
+ "2588": 1753,
558
+ "2589": 836,
559
+ "2592": 911,
560
+ "2598": 251,
561
+ "26": 66,
562
+ "260": 2369,
563
+ "2606": 2003,
564
+ "2607": 1210,
565
+ "2609": 2437,
566
+ "2618": 1078,
567
+ "2624": 1372,
568
+ "2628": 345,
569
+ "263": 1732,
570
+ "2638": 434,
571
+ "264": 2105,
572
+ "265": 2059,
573
+ "2652": 307,
574
+ "2654": 317,
575
+ "2660": 1690,
576
+ "2671": 2109,
577
+ "2673": 476,
578
+ "2674": 384,
579
+ "2676": 1401,
580
+ "2688": 996,
581
+ "2691": 76,
582
+ "2694": 1265,
583
+ "27": 155,
584
+ "2709": 1009,
585
+ "2712": 1645,
586
+ "272": 763,
587
+ "2724": 1654,
588
+ "273": 1462,
589
+ "2730": 2232,
590
+ "2733": 2200,
591
+ "2735": 2183,
592
+ "274": 508,
593
+ "2740": 2260,
594
+ "2741": 596,
595
+ "2748": 2252,
596
+ "2751": 1051,
597
+ "2754": 1741,
598
+ "2758": 881,
599
+ "2762": 2130,
600
+ "2764": 104,
601
+ "2769": 766,
602
+ "277": 1787,
603
+ "2774": 1070,
604
+ "2775": 409,
605
+ "278": 639,
606
+ "2785": 793,
607
+ "2787": 665,
608
+ "2790": 901,
609
+ "28": 503,
610
+ "2803": 2321,
611
+ "2812": 429,
612
+ "2817": 103,
613
+ "2823": 1031,
614
+ "2825": 1921,
615
+ "2827": 758,
616
+ "283": 1639,
617
+ "2830": 2405,
618
+ "2834": 1201,
619
+ "2836": 10,
620
+ "2843": 233,
621
+ "2853": 309,
622
+ "2854": 1722,
623
+ "288": 912,
624
+ "2882": 778,
625
+ "289": 12,
626
+ "2893": 86,
627
+ "2895": 1156,
628
+ "29": 2006,
629
+ "2902": 2296,
630
+ "2909": 1913,
631
+ "2910": 30,
632
+ "2911": 239,
633
+ "2919": 1608,
634
+ "2920": 582,
635
+ "2925": 1367,
636
+ "2929": 1122,
637
+ "2930": 1846,
638
+ "294": 1224,
639
+ "2943": 1630,
640
+ "2946": 2242,
641
+ "2952": 198,
642
+ "296": 916,
643
+ "2960": 353,
644
+ "2961": 2381,
645
+ "2967": 1390,
646
+ "2971": 253,
647
+ "2975": 2288,
648
+ "2979": 1851,
649
+ "298": 101,
650
+ "2985": 2101,
651
+ "2988": 1595,
652
+ "2989": 114,
653
+ "2990": 1948,
654
+ "2992": 707,
655
+ "2997": 1456,
656
+ "2998": 2048,
657
+ "2999": 740,
658
+ "30": 426,
659
+ "3000": 2305,
660
+ "3001": 1042,
661
+ "3003": 477,
662
+ "3005": 2429,
663
+ "3006": 1668,
664
+ "3008": 771,
665
+ "3009": 857,
666
+ "302": 209,
667
+ "3020": 2270,
668
+ "3021": 2172,
669
+ "3025": 654,
670
+ "303": 513,
671
+ "3032": 891,
672
+ "3033": 1723,
673
+ "3045": 1864,
674
+ "3046": 692,
675
+ "3053": 1190,
676
+ "3054": 1280,
677
+ "3060": 1554,
678
+ "3063": 1274,
679
+ "307": 134,
680
+ "3070": 1041,
681
+ "3072": 1016,
682
+ "3079": 1985,
683
+ "3080": 2423,
684
+ "3081": 2299,
685
+ "3082": 482,
686
+ "3083": 1103,
687
+ "3088": 1930,
688
+ "3090": 1441,
689
+ "3094": 292,
690
+ "3097": 1971,
691
+ "3098": 1801,
692
+ "31": 1168,
693
+ "310": 1524,
694
+ "3100": 1977,
695
+ "3105": 414,
696
+ "3109": 1282,
697
+ "311": 74,
698
+ "3112": 71,
699
+ "3114": 261,
700
+ "3118": 484,
701
+ "3119": 573,
702
+ "3125": 1958,
703
+ "313": 1165,
704
+ "3132": 2030,
705
+ "3135": 2274,
706
+ "3137": 1640,
707
+ "3138": 2033,
708
+ "3142": 1219,
709
+ "3143": 2056,
710
+ "3144": 2087,
711
+ "3148": 1789,
712
+ "3157": 764,
713
+ "3168": 8,
714
+ "317": 2278,
715
+ "3170": 2311,
716
+ "3171": 1025,
717
+ "3172": 2249,
718
+ "3179": 1875,
719
+ "318": 1054,
720
+ "3180": 592,
721
+ "3185": 951,
722
+ "3187": 1112,
723
+ "319": 2123,
724
+ "3192": 1325,
725
+ "3196": 1141,
726
+ "32": 236,
727
+ "3214": 173,
728
+ "3215": 657,
729
+ "322": 32,
730
+ "3221": 943,
731
+ "3224": 360,
732
+ "3227": 2206,
733
+ "3228": 956,
734
+ "323": 877,
735
+ "3230": 497,
736
+ "3235": 144,
737
+ "3238": 2150,
738
+ "3240": 196,
739
+ "3242": 157,
740
+ "3244": 2186,
741
+ "3245": 1189,
742
+ "3257": 1478,
743
+ "3258": 324,
744
+ "3259": 64,
745
+ "3261": 1426,
746
+ "3268": 1681,
747
+ "3271": 2053,
748
+ "3272": 1378,
749
+ "3274": 708,
750
+ "3285": 2067,
751
+ "3288": 2162,
752
+ "3289": 710,
753
+ "329": 1105,
754
+ "3290": 2043,
755
+ "3294": 1029,
756
+ "3307": 354,
757
+ "331": 2007,
758
+ "3314": 1653,
759
+ "3318": 1923,
760
+ "3319": 1530,
761
+ "332": 192,
762
+ "3328": 928,
763
+ "3330": 880,
764
+ "3331": 2421,
765
+ "3334": 1952,
766
+ "3340": 663,
767
+ "3346": 1563,
768
+ "335": 606,
769
+ "3356": 2092,
770
+ "3357": 666,
771
+ "336": 2135,
772
+ "3361": 467,
773
+ "3368": 870,
774
+ "337": 574,
775
+ "3370": 695,
776
+ "3373": 1463,
777
+ "3374": 75,
778
+ "3379": 406,
779
+ "3380": 454,
780
+ "3381": 1757,
781
+ "3389": 358,
782
+ "339": 843,
783
+ "3394": 1809,
784
+ "340": 393,
785
+ "3400": 1998,
786
+ "3409": 1171,
787
+ "3411": 1284,
788
+ "3417": 1180,
789
+ "3433": 1413,
790
+ "3436": 93,
791
+ "3440": 159,
792
+ "3446": 336,
793
+ "3448": 587,
794
+ "345": 408,
795
+ "3465": 1708,
796
+ "3467": 1686,
797
+ "3470": 2169,
798
+ "3479": 1740,
799
+ "348": 1600,
800
+ "3482": 280,
801
+ "3483": 854,
802
+ "3486": 223,
803
+ "3488": 2036,
804
+ "3490": 326,
805
+ "3493": 917,
806
+ "3500": 1419,
807
+ "3503": 1713,
808
+ "3513": 430,
809
+ "3521": 369,
810
+ "3526": 29,
811
+ "3528": 2413,
812
+ "353": 701,
813
+ "3536": 2297,
814
+ "3537": 320,
815
+ "3538": 2424,
816
+ "3540": 892,
817
+ "3541": 1479,
818
+ "3546": 608,
819
+ "3547": 1194,
820
+ "3549": 869,
821
+ "3551": 616,
822
+ "3553": 1890,
823
+ "3554": 1468,
824
+ "3557": 1350,
825
+ "3559": 1752,
826
+ "3564": 1223,
827
+ "3567": 1984,
828
+ "3570": 2373,
829
+ "3571": 1629,
830
+ "3575": 2370,
831
+ "3576": 2331,
832
+ "3584": 700,
833
+ "3587": 1725,
834
+ "3588": 1804,
835
+ "359": 982,
836
+ "3592": 1853,
837
+ "3595": 2155,
838
+ "3598": 2207,
839
+ "36": 1557,
840
+ "3606": 1982,
841
+ "3607": 73,
842
+ "3615": 848,
843
+ "3618": 1329,
844
+ "362": 267,
845
+ "3630": 494,
846
+ "3638": 714,
847
+ "3641": 1392,
848
+ "3645": 536,
849
+ "3647": 2110,
850
+ "365": 1533,
851
+ "3650": 1249,
852
+ "3654": 404,
853
+ "3656": 2061,
854
+ "3657": 2271,
855
+ "366": 1989,
856
+ "3660": 2346,
857
+ "3663": 2361,
858
+ "3664": 53,
859
+ "3665": 1784,
860
+ "367": 2431,
861
+ "3675": 2120,
862
+ "3679": 1823,
863
+ "3681": 1313,
864
+ "3686": 883,
865
+ "369": 682,
866
+ "3691": 1460,
867
+ "3698": 1795,
868
+ "3699": 46,
869
+ "37": 1996,
870
+ "3703": 523,
871
+ "3717": 900,
872
+ "3723": 161,
873
+ "3728": 357,
874
+ "3729": 2388,
875
+ "373": 781,
876
+ "3733": 535,
877
+ "3738": 674,
878
+ "374": 57,
879
+ "3744": 1267,
880
+ "3747": 2118,
881
+ "3752": 2326,
882
+ "3757": 2171,
883
+ "3764": 2414,
884
+ "377": 1317,
885
+ "3779": 1986,
886
+ "3780": 1191,
887
+ "3781": 613,
888
+ "3783": 1221,
889
+ "3790": 949,
890
+ "3792": 988,
891
+ "3793": 1978,
892
+ "3796": 2138,
893
+ "3798": 2156,
894
+ "38": 263,
895
+ "380": 584,
896
+ "3807": 185,
897
+ "3816": 858,
898
+ "3819": 1440,
899
+ "3825": 1055,
900
+ "3830": 123,
901
+ "3835": 831,
902
+ "3843": 1896,
903
+ "3845": 1146,
904
+ "3848": 2151,
905
+ "3851": 382,
906
+ "3852": 749,
907
+ "3853": 2306,
908
+ "3857": 194,
909
+ "3864": 273,
910
+ "3866": 533,
911
+ "3867": 1997,
912
+ "3869": 717,
913
+ "3871": 1955,
914
+ "3876": 496,
915
+ "3879": 60,
916
+ "3885": 1677,
917
+ "3889": 875,
918
+ "3894": 1927,
919
+ "3895": 1833,
920
+ "3896": 1939,
921
+ "39": 118,
922
+ "3905": 464,
923
+ "3906": 1279,
924
+ "3909": 2010,
925
+ "3911": 1163,
926
+ "3912": 1237,
927
+ "3914": 1097,
928
+ "3915": 2356,
929
+ "392": 2165,
930
+ "3922": 578,
931
+ "3923": 833,
932
+ "3925": 1904,
933
+ "3926": 2163,
934
+ "3927": 1052,
935
+ "3928": 1572,
936
+ "3934": 1254,
937
+ "3945": 810,
938
+ "3947": 17,
939
+ "3955": 1814,
940
+ "3959": 1824,
941
+ "3962": 2243,
942
+ "3967": 995,
943
+ "3969": 1807,
944
+ "3972": 313,
945
+ "3977": 298,
946
+ "3979": 509,
947
+ "398": 725,
948
+ "3982": 13,
949
+ "3983": 16,
950
+ "3989": 1076,
951
+ "3990": 1957,
952
+ "3992": 1812,
953
+ "3994": 519,
954
+ "3997": 2416,
955
+ "40": 146,
956
+ "4005": 1933,
957
+ "4009": 1883,
958
+ "4010": 387,
959
+ "4013": 599,
960
+ "4014": 186,
961
+ "4015": 2136,
962
+ "4017": 2246,
963
+ "4018": 229,
964
+ "4019": 1529,
965
+ "402": 2008,
966
+ "4020": 2216,
967
+ "4021": 1340,
968
+ "403": 68,
969
+ "4034": 1511,
970
+ "4039": 301,
971
+ "404": 1348,
972
+ "4042": 1969,
973
+ "4044": 567,
974
+ "405": 165,
975
+ "4051": 110,
976
+ "4054": 813,
977
+ "4057": 680,
978
+ "4059": 2104,
979
+ "4063": 1314,
980
+ "4064": 669,
981
+ "4077": 2374,
982
+ "4078": 1532,
983
+ "408": 294,
984
+ "4085": 2281,
985
+ "4088": 100,
986
+ "409": 401,
987
+ "4090": 1465,
988
+ "4098": 595,
989
+ "4104": 2244,
990
+ "4108": 797,
991
+ "4110": 741,
992
+ "4111": 356,
993
+ "4116": 893,
994
+ "412": 82,
995
+ "4122": 1212,
996
+ "413": 1251,
997
+ "4133": 942,
998
+ "4137": 193,
999
+ "4138": 344,
1000
+ "4145": 780,
1001
+ "4148": 1049,
1002
+ "4152": 711,
1003
+ "4153": 2344,
1004
+ "4156": 2077,
1005
+ "4160": 142,
1006
+ "4161": 1575,
1007
+ "4172": 1854,
1008
+ "4174": 2078,
1009
+ "4179": 1320,
1010
+ "4189": 1660,
1011
+ "4191": 1858,
1012
+ "4192": 1756,
1013
+ "4193": 1973,
1014
+ "4195": 111,
1015
+ "4196": 1423,
1016
+ "4198": 2418,
1017
+ "4205": 2256,
1018
+ "421": 1389,
1019
+ "4211": 2089,
1020
+ "4214": 206,
1021
+ "4216": 1899,
1022
+ "4217": 1173,
1023
+ "4218": 1381,
1024
+ "422": 2327,
1025
+ "4222": 919,
1026
+ "4225": 1938,
1027
+ "4226": 958,
1028
+ "4234": 1889,
1029
+ "4235": 1566,
1030
+ "4236": 927,
1031
+ "4238": 759,
1032
+ "4243": 279,
1033
+ "4246": 1100,
1034
+ "4257": 388,
1035
+ "426": 160,
1036
+ "4260": 1015,
1037
+ "4262": 1785,
1038
+ "4263": 1215,
1039
+ "4267": 222,
1040
+ "4273": 2013,
1041
+ "4277": 1840,
1042
+ "4278": 1003,
1043
+ "428": 1775,
1044
+ "4280": 1230,
1045
+ "4289": 993,
1046
+ "4290": 885,
1047
+ "4294": 2422,
1048
+ "4295": 1721,
1049
+ "4297": 112,
1050
+ "4305": 1166,
1051
+ "4310": 1672,
1052
+ "4313": 1679,
1053
+ "432": 2224,
1054
+ "4321": 1353,
1055
+ "4323": 2353,
1056
+ "4327": 1891,
1057
+ "4331": 265,
1058
+ "4335": 689,
1059
+ "4340": 183,
1060
+ "4344": 1607,
1061
+ "4345": 1368,
1062
+ "4350": 2430,
1063
+ "4352": 1779,
1064
+ "4356": 314,
1065
+ "4358": 924,
1066
+ "4362": 219,
1067
+ "4363": 619,
1068
+ "4379": 1887,
1069
+ "4381": 752,
1070
+ "439": 742,
1071
+ "4396": 1228,
1072
+ "4397": 132,
1073
+ "44": 2175,
1074
+ "4402": 1599,
1075
+ "4406": 231,
1076
+ "4407": 1327,
1077
+ "4411": 1365,
1078
+ "4415": 1583,
1079
+ "4420": 2060,
1080
+ "4422": 1932,
1081
+ "4423": 2088,
1082
+ "4425": 968,
1083
+ "4427": 303,
1084
+ "4428": 1627,
1085
+ "4434": 649,
1086
+ "4438": 1117,
1087
+ "444": 1769,
1088
+ "4441": 224,
1089
+ "4442": 1508,
1090
+ "4443": 1847,
1091
+ "4446": 2392,
1092
+ "4447": 2255,
1093
+ "4455": 1341,
1094
+ "446": 178,
1095
+ "4463": 1688,
1096
+ "4474": 1399,
1097
+ "448": 2122,
1098
+ "4480": 1820,
1099
+ "4481": 170,
1100
+ "4484": 1406,
1101
+ "4487": 1886,
1102
+ "4490": 583,
1103
+ "4492": 1243,
1104
+ "4495": 618,
1105
+ "45": 2011,
1106
+ "4507": 2403,
1107
+ "451": 652,
1108
+ "4511": 1658,
1109
+ "4513": 1632,
1110
+ "4515": 2357,
1111
+ "4519": 538,
1112
+ "4520": 2040,
1113
+ "453": 1535,
1114
+ "4535": 603,
1115
+ "454": 466,
1116
+ "4545": 1418,
1117
+ "4546": 1446,
1118
+ "4549": 1771,
1119
+ "4563": 1582,
1120
+ "4570": 2358,
1121
+ "4572": 2364,
1122
+ "4576": 1411,
1123
+ "458": 125,
1124
+ "4583": 1793,
1125
+ "4586": 274,
1126
+ "459": 329,
1127
+ "4590": 1064,
1128
+ "4591": 2094,
1129
+ "4592": 281,
1130
+ "4594": 1302,
1131
+ "4595": 1084,
1132
+ "4598": 602,
1133
+ "4599": 1917,
1134
+ "46": 1707,
1135
+ "460": 169,
1136
+ "4629": 1019,
1137
+ "4640": 129,
1138
+ "4652": 1762,
1139
+ "4659": 2205,
1140
+ "466": 2286,
1141
+ "4660": 1623,
1142
+ "4667": 2192,
1143
+ "4680": 148,
1144
+ "4687": 1187,
1145
+ "4693": 1486,
1146
+ "4697": 1800,
1147
+ "4699": 2108,
1148
+ "47": 1733,
1149
+ "470": 1676,
1150
+ "4701": 2254,
1151
+ "4703": 1261,
1152
+ "4705": 1614,
1153
+ "4706": 1786,
1154
+ "4710": 1509,
1155
+ "4712": 2001,
1156
+ "4719": 791,
1157
+ "472": 337,
1158
+ "4731": 370,
1159
+ "4733": 844,
1160
+ "4734": 1000,
1161
+ "4738": 1988,
1162
+ "474": 2028,
1163
+ "4741": 1593,
1164
+ "4742": 1636,
1165
+ "4744": 838,
1166
+ "4748": 1915,
1167
+ "475": 328,
1168
+ "4750": 2062,
1169
+ "4757": 1466,
1170
+ "476": 278,
1171
+ "4766": 1912,
1172
+ "4767": 1863,
1173
+ "4771": 1142,
1174
+ "4773": 1745,
1175
+ "4779": 1226,
1176
+ "4788": 89,
1177
+ "479": 491,
1178
+ "4791": 2161,
1179
+ "4799": 1482,
1180
+ "480": 566,
1181
+ "4800": 782,
1182
+ "4806": 394,
1183
+ "4807": 944,
1184
+ "481": 37,
1185
+ "4813": 174,
1186
+ "4821": 1437,
1187
+ "4824": 1175,
1188
+ "483": 1502,
1189
+ "4830": 18,
1190
+ "4831": 2352,
1191
+ "4836": 1767,
1192
+ "4837": 609,
1193
+ "4839": 992,
1194
+ "4841": 1995,
1195
+ "4846": 290,
1196
+ "4848": 830,
1197
+ "4852": 2420,
1198
+ "4853": 48,
1199
+ "4854": 486,
1200
+ "4856": 971,
1201
+ "4859": 131,
1202
+ "4860": 379,
1203
+ "4863": 1906,
1204
+ "487": 1119,
1205
+ "4872": 1695,
1206
+ "489": 1149,
1207
+ "4894": 1195,
1208
+ "4898": 116,
1209
+ "4899": 364,
1210
+ "49": 1943,
1211
+ "4910": 1918,
1212
+ "4915": 1885,
1213
+ "492": 1038,
1214
+ "4926": 768,
1215
+ "4930": 1257,
1216
+ "4931": 1968,
1217
+ "4936": 1902,
1218
+ "4945": 1043,
1219
+ "4948": 2090,
1220
+ "4955": 1186,
1221
+ "4957": 1068,
1222
+ "4958": 2198,
1223
+ "4959": 1644,
1224
+ "4964": 1520,
1225
+ "4965": 1960,
1226
+ "4967": 1002,
1227
+ "4969": 1647,
1228
+ "497": 637,
1229
+ "4970": 2375,
1230
+ "4973": 823,
1231
+ "4979": 1866,
1232
+ "4991": 1233,
1233
+ "4992": 2382,
1234
+ "4993": 2000,
1235
+ "500": 974,
1236
+ "5000": 1174,
1237
+ "5002": 620,
1238
+ "5005": 1970,
1239
+ "5007": 288,
1240
+ "5009": 1751,
1241
+ "501": 965,
1242
+ "5012": 973,
1243
+ "5013": 1297,
1244
+ "5019": 1736,
1245
+ "5022": 245,
1246
+ "5023": 1469,
1247
+ "5029": 817,
1248
+ "5036": 1867,
1249
+ "5038": 1693,
1250
+ "5039": 547,
1251
+ "5043": 1356,
1252
+ "5044": 1665,
1253
+ "5045": 1436,
1254
+ "5049": 189,
1255
+ "505": 1239,
1256
+ "5054": 788,
1257
+ "5060": 1290,
1258
+ "5062": 532,
1259
+ "5063": 597,
1260
+ "5076": 1573,
1261
+ "5077": 1746,
1262
+ "5082": 2225,
1263
+ "5092": 348,
1264
+ "5093": 285,
1265
+ "51": 1338,
1266
+ "510": 939,
1267
+ "5101": 1865,
1268
+ "5104": 181,
1269
+ "5105": 2406,
1270
+ "511": 1128,
1271
+ "5115": 352,
1272
+ "5118": 1876,
1273
+ "512": 955,
1274
+ "5123": 589,
1275
+ "5126": 977,
1276
+ "5132": 2093,
1277
+ "5133": 636,
1278
+ "5136": 1772,
1279
+ "5139": 1106,
1280
+ "5141": 2181,
1281
+ "5142": 2396,
1282
+ "5147": 498,
1283
+ "5152": 1471,
1284
+ "5154": 450,
1285
+ "5157": 659,
1286
+ "5163": 77,
1287
+ "5164": 1578,
1288
+ "517": 2069,
1289
+ "5172": 1450,
1290
+ "5181": 2259,
1291
+ "5183": 1803,
1292
+ "5185": 1739,
1293
+ "5186": 458,
1294
+ "5189": 738,
1295
+ "5190": 504,
1296
+ "5192": 208,
1297
+ "5198": 1928,
1298
+ "5199": 2111,
1299
+ "52": 2233,
1300
+ "5206": 1065,
1301
+ "5217": 1527,
1302
+ "5220": 1443,
1303
+ "5224": 1306,
1304
+ "5230": 1712,
1305
+ "5233": 1217,
1306
+ "5239": 410,
1307
+ "5242": 600,
1308
+ "5244": 2097,
1309
+ "5245": 1868,
1310
+ "5246": 651,
1311
+ "5248": 1543,
1312
+ "5252": 2240,
1313
+ "5261": 363,
1314
+ "5266": 850,
1315
+ "5269": 1568,
1316
+ "5271": 2114,
1317
+ "5278": 2154,
1318
+ "5280": 1738,
1319
+ "5285": 1956,
1320
+ "5287": 2228,
1321
+ "5290": 724,
1322
+ "5293": 415,
1323
+ "5296": 1694,
1324
+ "5299": 2066,
1325
+ "5304": 719,
1326
+ "5319": 1124,
1327
+ "5321": 2058,
1328
+ "5322": 28,
1329
+ "5325": 1916,
1330
+ "5328": 1698,
1331
+ "533": 2438,
1332
+ "5333": 524,
1333
+ "5337": 266,
1334
+ "5338": 2310,
1335
+ "5339": 94,
1336
+ "534": 522,
1337
+ "5340": 2291,
1338
+ "5350": 2047,
1339
+ "5355": 1225,
1340
+ "5361": 1521,
1341
+ "5375": 1844,
1342
+ "5379": 1429,
1343
+ "5386": 612,
1344
+ "5389": 807,
1345
+ "5390": 50,
1346
+ "5393": 163,
1347
+ "54": 979,
1348
+ "5400": 631,
1349
+ "5401": 577,
1350
+ "5405": 1495,
1351
+ "5412": 1542,
1352
+ "542": 2227,
1353
+ "5424": 2064,
1354
+ "5429": 1687,
1355
+ "543": 1135,
1356
+ "5439": 2012,
1357
+ "544": 1330,
1358
+ "5442": 2411,
1359
+ "5445": 1248,
1360
+ "5448": 1040,
1361
+ "5456": 14,
1362
+ "5459": 2213,
1363
+ "5460": 1907,
1364
+ "5463": 150,
1365
+ "5468": 1576,
1366
+ "5471": 1451,
1367
+ "548": 842,
1368
+ "5480": 1454,
1369
+ "5484": 2408,
1370
+ "5487": 1643,
1371
+ "5489": 1024,
1372
+ "549": 970,
1373
+ "55": 425,
1374
+ "5506": 2083,
1375
+ "551": 1208,
1376
+ "5513": 667,
1377
+ "5514": 121,
1378
+ "5519": 1115,
1379
+ "5536": 2328,
1380
+ "5538": 792,
1381
+ "5543": 2337,
1382
+ "5545": 2100,
1383
+ "5561": 179,
1384
+ "5565": 1510,
1385
+ "5567": 1947,
1386
+ "5569": 1710,
1387
+ "557": 1240,
1388
+ "5570": 936,
1389
+ "5583": 568,
1390
+ "5588": 845,
1391
+ "559": 1028,
1392
+ "56": 531,
1393
+ "5604": 346,
1394
+ "5606": 751,
1395
+ "561": 902,
1396
+ "5618": 964,
1397
+ "5620": 1813,
1398
+ "5622": 1062,
1399
+ "5628": 1200,
1400
+ "5635": 675,
1401
+ "5636": 1768,
1402
+ "5639": 2391,
1403
+ "5641": 2237,
1404
+ "5649": 1250,
1405
+ "5652": 221,
1406
+ "5653": 1178,
1407
+ "5655": 1109,
1408
+ "5656": 986,
1409
+ "5660": 530,
1410
+ "5661": 1494,
1411
+ "5665": 1778,
1412
+ "567": 1750,
1413
+ "5671": 1673,
1414
+ "5672": 941,
1415
+ "5678": 238,
1416
+ "568": 1604,
1417
+ "5682": 1697,
1418
+ "5683": 2400,
1419
+ "5684": 452,
1420
+ "569": 1675,
1421
+ "5694": 2334,
1422
+ "57": 2283,
1423
+ "5700": 2277,
1424
+ "5703": 176,
1425
+ "5712": 871,
1426
+ "5717": 638,
1427
+ "5719": 1179,
1428
+ "572": 1550,
1429
+ "5720": 1198,
1430
+ "5723": 697,
1431
+ "5724": 605,
1432
+ "5725": 1685,
1433
+ "5727": 754,
1434
+ "5731": 1118,
1435
+ "5733": 1202,
1436
+ "5735": 1255,
1437
+ "5740": 832,
1438
+ "5746": 790,
1439
+ "5750": 21,
1440
+ "5756": 1628,
1441
+ "576": 416,
1442
+ "5764": 2417,
1443
+ "5765": 2127,
1444
+ "5767": 332,
1445
+ "5772": 1616,
1446
+ "5776": 553,
1447
+ "5778": 168,
1448
+ "5781": 2019,
1449
+ "5784": 2203,
1450
+ "5789": 22,
1451
+ "5791": 1967,
1452
+ "5796": 2131,
1453
+ "58": 1359,
1454
+ "580": 250,
1455
+ "5802": 367,
1456
+ "5808": 117,
1457
+ "5809": 795,
1458
+ "581": 684,
1459
+ "5810": 572,
1460
+ "5825": 2170,
1461
+ "5826": 1193,
1462
+ "583": 783,
1463
+ "5831": 1657,
1464
+ "5837": 1334,
1465
+ "584": 1819,
1466
+ "5840": 1562,
1467
+ "5849": 2351,
1468
+ "585": 1905,
1469
+ "5854": 1782,
1470
+ "5860": 1522,
1471
+ "5867": 187,
1472
+ "5868": 966,
1473
+ "587": 109,
1474
+ "5874": 1374,
1475
+ "5876": 428,
1476
+ "5883": 1014,
1477
+ "5886": 1749,
1478
+ "589": 829,
1479
+ "5890": 2280,
1480
+ "5893": 1558,
1481
+ "5894": 1214,
1482
+ "5895": 2307,
1483
+ "5906": 1897,
1484
+ "5909": 815,
1485
+ "5910": 1949,
1486
+ "5911": 1181,
1487
+ "5913": 1312,
1488
+ "5914": 632,
1489
+ "5918": 925,
1490
+ "5929": 1298,
1491
+ "593": 733,
1492
+ "5933": 1556,
1493
+ "5935": 308,
1494
+ "594": 527,
1495
+ "5940": 541,
1496
+ "5949": 1485,
1497
+ "5951": 1310,
1498
+ "5952": 2046,
1499
+ "596": 947,
1500
+ "5968": 798,
1501
+ "597": 770,
1502
+ "5970": 1870,
1503
+ "5975": 254,
1504
+ "5977": 2134,
1505
+ "5979": 2095,
1506
+ "598": 727,
1507
+ "5980": 1937,
1508
+ "5983": 1655,
1509
+ "5984": 909,
1510
+ "5985": 1008,
1511
+ "5993": 1559,
1512
+ "60": 108,
1513
+ "6000": 11,
1514
+ "6006": 753,
1515
+ "6009": 1901,
1516
+ "6010": 1689,
1517
+ "6014": 745,
1518
+ "6019": 140,
1519
+ "6025": 2190,
1520
+ "6030": 1726,
1521
+ "6032": 1111,
1522
+ "6035": 2208,
1523
+ "6037": 1092,
1524
+ "6038": 898,
1525
+ "6051": 2164,
1526
+ "6054": 855,
1527
+ "606": 983,
1528
+ "6060": 470,
1529
+ "6064": 226,
1530
+ "6065": 1386,
1531
+ "6070": 2433,
1532
+ "6072": 2219,
1533
+ "6075": 1026,
1534
+ "6076": 2035,
1535
+ "6077": 2272,
1536
+ "6078": 175,
1537
+ "608": 1925,
1538
+ "6080": 735,
1539
+ "6081": 225,
1540
+ "6082": 1071,
1541
+ "6084": 1364,
1542
+ "6087": 2265,
1543
+ "6088": 1601,
1544
+ "6097": 1724,
1545
+ "6098": 284,
1546
+ "6099": 731,
1547
+ "6102": 1414,
1548
+ "6104": 1022,
1549
+ "6106": 1427,
1550
+ "6111": 2215,
1551
+ "6115": 1034,
1552
+ "6119": 559,
1553
+ "612": 1011,
1554
+ "6120": 579,
1555
+ "6121": 1383,
1556
+ "6123": 2366,
1557
+ "6126": 1929,
1558
+ "6127": 1705,
1559
+ "6128": 2412,
1560
+ "613": 2223,
1561
+ "6131": 1394,
1562
+ "6135": 1744,
1563
+ "6138": 1296,
1564
+ "6139": 802,
1565
+ "614": 1241,
1566
+ "6145": 1855,
1567
+ "6147": 172,
1568
+ "6153": 1490,
1569
+ "6157": 908,
1570
+ "6159": 1388,
1571
+ "6160": 987,
1572
+ "6167": 1063,
1573
+ "6173": 1477,
1574
+ "6177": 1422,
1575
+ "6178": 1881,
1576
+ "6181": 119,
1577
+ "6184": 2197,
1578
+ "6188": 801,
1579
+ "6189": 1086,
1580
+ "6196": 1375,
1581
+ "6199": 2021,
1582
+ "62": 1262,
1583
+ "6206": 923,
1584
+ "6209": 149,
1585
+ "6211": 1633,
1586
+ "6215": 1077,
1587
+ "622": 1337,
1588
+ "6221": 1975,
1589
+ "6224": 2211,
1590
+ "6227": 2044,
1591
+ "6232": 1242,
1592
+ "6233": 683,
1593
+ "6235": 359,
1594
+ "6241": 2303,
1595
+ "6242": 2125,
1596
+ "6248": 1829,
1597
+ "6249": 2226,
1598
+ "625": 27,
1599
+ "6251": 1481,
1600
+ "6254": 2042,
1601
+ "6258": 1027,
1602
+ "6267": 2347,
1603
+ "6269": 1101,
1604
+ "6272": 26,
1605
+ "6276": 1162,
1606
+ "6281": 1570,
1607
+ "6284": 1461,
1608
+ "6286": 449,
1609
+ "6288": 590,
1610
+ "6294": 472,
1611
+ "6295": 2308,
1612
+ "6300": 319,
1613
+ "6308": 514,
1614
+ "6311": 1211,
1615
+ "6313": 2304,
1616
+ "6317": 351,
1617
+ "6319": 2323,
1618
+ "6323": 2245,
1619
+ "6324": 1331,
1620
+ "6330": 417,
1621
+ "6332": 1586,
1622
+ "6333": 2262,
1623
+ "6339": 746,
1624
+ "6341": 963,
1625
+ "6345": 2319,
1626
+ "6346": 1371,
1627
+ "6351": 1651,
1628
+ "6352": 518,
1629
+ "6353": 1183,
1630
+ "6356": 1318,
1631
+ "6358": 1475,
1632
+ "6359": 1053,
1633
+ "636": 325,
1634
+ "6364": 1728,
1635
+ "6367": 6,
1636
+ "6368": 2144,
1637
+ "637": 776,
1638
+ "6370": 2279,
1639
+ "6371": 998,
1640
+ "6373": 1085,
1641
+ "6377": 1650,
1642
+ "6378": 485,
1643
+ "6385": 88,
1644
+ "6388": 1102,
1645
+ "639": 598,
1646
+ "6391": 2168,
1647
+ "6395": 389,
1648
+ "6399": 2124,
1649
+ "64": 439,
1650
+ "6402": 1534,
1651
+ "6406": 670,
1652
+ "6407": 1857,
1653
+ "6411": 1624,
1654
+ "6415": 23,
1655
+ "6418": 1430,
1656
+ "6426": 1030,
1657
+ "6432": 2427,
1658
+ "6436": 2115,
1659
+ "6437": 24,
1660
+ "644": 1518,
1661
+ "6446": 260,
1662
+ "6454": 9,
1663
+ "6455": 2343,
1664
+ "6458": 558,
1665
+ "6459": 1273,
1666
+ "6467": 2340,
1667
+ "6476": 80,
1668
+ "6482": 2121,
1669
+ "6484": 1541,
1670
+ "6488": 1301,
1671
+ "6492": 400,
1672
+ "6494": 392,
1673
+ "6497": 978,
1674
+ "6499": 380,
1675
+ "65": 2247,
1676
+ "6505": 762,
1677
+ "6506": 2263,
1678
+ "6509": 862,
1679
+ "6510": 921,
1680
+ "6512": 2212,
1681
+ "6513": 1727,
1682
+ "6518": 1067,
1683
+ "6519": 1057,
1684
+ "652": 2302,
1685
+ "6529": 25,
1686
+ "6531": 79,
1687
+ "6533": 2173,
1688
+ "6534": 1621,
1689
+ "6535": 2140,
1690
+ "6538": 796,
1691
+ "6539": 1444,
1692
+ "6540": 1275,
1693
+ "6544": 1132,
1694
+ "6548": 2158,
1695
+ "6549": 1362,
1696
+ "6550": 760,
1697
+ "6553": 479,
1698
+ "6555": 1121,
1699
+ "6557": 1412,
1700
+ "6563": 91,
1701
+ "6567": 786,
1702
+ "6568": 1980,
1703
+ "6574": 395,
1704
+ "6575": 343,
1705
+ "6583": 1289,
1706
+ "6590": 1335,
1707
+ "6594": 1357,
1708
+ "6599": 2350,
1709
+ "66": 1434,
1710
+ "6609": 1619,
1711
+ "6610": 1797,
1712
+ "6614": 2293,
1713
+ "6620": 800,
1714
+ "6625": 1467,
1715
+ "6627": 1821,
1716
+ "663": 548,
1717
+ "6636": 1832,
1718
+ "6637": 335,
1719
+ "664": 483,
1720
+ "6643": 521,
1721
+ "6652": 1258,
1722
+ "666": 903,
1723
+ "6660": 2149,
1724
+ "6668": 2147,
1725
+ "667": 686,
1726
+ "6670": 1489,
1727
+ "6673": 757,
1728
+ "6674": 1487,
1729
+ "6676": 1425,
1730
+ "6683": 937,
1731
+ "6685": 1385,
1732
+ "6686": 726,
1733
+ "6687": 2014,
1734
+ "6689": 1874,
1735
+ "669": 4,
1736
+ "6690": 510,
1737
+ "6694": 827,
1738
+ "6695": 1247,
1739
+ "6696": 1091,
1740
+ "6701": 676,
1741
+ "6705": 2187,
1742
+ "6707": 1850,
1743
+ "6709": 2276,
1744
+ "6713": 1649,
1745
+ "672": 2379,
1746
+ "6724": 1942,
1747
+ "6726": 1964,
1748
+ "6727": 623,
1749
+ "6733": 2201,
1750
+ "6735": 2268,
1751
+ "6741": 1387,
1752
+ "6743": 1765,
1753
+ "6746": 1408,
1754
+ "6747": 2239,
1755
+ "6749": 1512,
1756
+ "6752": 1259,
1757
+ "6753": 1515,
1758
+ "6754": 1781,
1759
+ "6758": 2117,
1760
+ "6763": 1134,
1761
+ "6773": 1625,
1762
+ "6777": 1148,
1763
+ "6782": 847,
1764
+ "6784": 2188,
1765
+ "6788": 421,
1766
+ "679": 2143,
1767
+ "6792": 1324,
1768
+ "6794": 2024,
1769
+ "6798": 1498,
1770
+ "6804": 2178,
1771
+ "6807": 2126,
1772
+ "681": 2199,
1773
+ "6818": 227,
1774
+ "6821": 1590,
1775
+ "6828": 897,
1776
+ "6829": 2399,
1777
+ "6836": 138,
1778
+ "684": 1692,
1779
+ "6841": 2336,
1780
+ "6846": 1271,
1781
+ "6848": 158,
1782
+ "6849": 1294,
1783
+ "6853": 1398,
1784
+ "6865": 668,
1785
+ "6875": 2031,
1786
+ "6877": 784,
1787
+ "688": 868,
1788
+ "6880": 96,
1789
+ "6882": 1326,
1790
+ "6883": 1755,
1791
+ "6892": 1862,
1792
+ "6895": 601,
1793
+ "690": 1605,
1794
+ "6902": 1860,
1795
+ "6904": 953,
1796
+ "6906": 1459,
1797
+ "6912": 1484,
1798
+ "6913": 1464,
1799
+ "6914": 1783,
1800
+ "6918": 310,
1801
+ "6923": 2032,
1802
+ "6924": 569,
1803
+ "6925": 164,
1804
+ "6927": 839,
1805
+ "6930": 2385,
1806
+ "6937": 1007,
1807
+ "6938": 2425,
1808
+ "6943": 1491,
1809
+ "6945": 1140,
1810
+ "6947": 2113,
1811
+ "6950": 1309,
1812
+ "6951": 1961,
1813
+ "6954": 2269,
1814
+ "6956": 959,
1815
+ "696": 241,
1816
+ "6962": 2016,
1817
+ "6963": 1321,
1818
+ "6965": 809,
1819
+ "6967": 1715,
1820
+ "6974": 1652,
1821
+ "6978": 1919,
1822
+ "698": 935,
1823
+ "6981": 1072,
1824
+ "699": 1069,
1825
+ "6993": 874,
1826
+ "70": 456,
1827
+ "700": 2360,
1828
+ "7000": 647,
1829
+ "7001": 1342,
1830
+ "7008": 1270,
1831
+ "7009": 1216,
1832
+ "7011": 444,
1833
+ "7012": 1269,
1834
+ "7018": 2439,
1835
+ "7021": 2393,
1836
+ "7026": 2076,
1837
+ "7030": 737,
1838
+ "7046": 1197,
1839
+ "705": 1536,
1840
+ "7051": 433,
1841
+ "7055": 1754,
1842
+ "7059": 145,
1843
+ "7061": 554,
1844
+ "7062": 1474,
1845
+ "7065": 1395,
1846
+ "7067": 203,
1847
+ "7069": 804,
1848
+ "707": 952,
1849
+ "7073": 1987,
1850
+ "7078": 127,
1851
+ "7079": 1620,
1852
+ "708": 803,
1853
+ "7085": 1047,
1854
+ "7090": 258,
1855
+ "7092": 1492,
1856
+ "7095": 617,
1857
+ "7096": 1252,
1858
+ "7097": 1346,
1859
+ "7105": 2428,
1860
+ "7107": 1161,
1861
+ "711": 678,
1862
+ "7113": 204,
1863
+ "7117": 551,
1864
+ "712": 1349,
1865
+ "7120": 989,
1866
+ "7121": 1433,
1867
+ "7125": 1780,
1868
+ "7126": 895,
1869
+ "7127": 2372,
1870
+ "7128": 709,
1871
+ "713": 1849,
1872
+ "7131": 2106,
1873
+ "7134": 661,
1874
+ "7135": 1164,
1875
+ "7138": 2267,
1876
+ "7139": 275,
1877
+ "7140": 981,
1878
+ "7143": 1160,
1879
+ "7145": 1005,
1880
+ "7147": 2025,
1881
+ "7148": 84,
1882
+ "7150": 1596,
1883
+ "7155": 1546,
1884
+ "716": 474,
1885
+ "7169": 440,
1886
+ "7170": 1402,
1887
+ "7176": 2386,
1888
+ "7177": 1260,
1889
+ "7178": 102,
1890
+ "718": 561,
1891
+ "7188": 748,
1892
+ "7189": 1431,
1893
+ "7190": 1,
1894
+ "7197": 2142,
1895
+ "7198": 1432,
1896
+ "7199": 2166,
1897
+ "720": 1358,
1898
+ "7205": 1203,
1899
+ "7208": 1841,
1900
+ "7215": 1480,
1901
+ "7218": 2152,
1902
+ "7220": 1834,
1903
+ "7223": 2282,
1904
+ "7226": 152,
1905
+ "7228": 1893,
1906
+ "7229": 687,
1907
+ "7238": 2241,
1908
+ "7239": 1898,
1909
+ "724": 994,
1910
+ "7240": 422,
1911
+ "7241": 918,
1912
+ "7242": 1322,
1913
+ "7245": 453,
1914
+ "7246": 1828,
1915
+ "7247": 773,
1916
+ "7250": 2250,
1917
+ "7255": 1976,
1918
+ "7258": 1126,
1919
+ "726": 1661,
1920
+ "7263": 1379,
1921
+ "7264": 213,
1922
+ "7265": 1730,
1923
+ "727": 1972,
1924
+ "7276": 948,
1925
+ "7277": 1602,
1926
+ "7278": 240,
1927
+ "728": 1205,
1928
+ "7285": 270,
1929
+ "7286": 293,
1930
+ "7294": 1131,
1931
+ "7297": 972,
1932
+ "7299": 2234,
1933
+ "730": 137,
1934
+ "7301": 1878,
1935
+ "7302": 62,
1936
+ "7307": 2177,
1937
+ "731": 299,
1938
+ "7312": 41,
1939
+ "7313": 643,
1940
+ "7314": 860,
1941
+ "7315": 1213,
1942
+ "7316": 1010,
1943
+ "7318": 1082,
1944
+ "7320": 1617,
1945
+ "7326": 1150,
1946
+ "7327": 1218,
1947
+ "7331": 1493,
1948
+ "7333": 2080,
1949
+ "7335": 985,
1950
+ "7337": 1613,
1951
+ "7338": 2079,
1952
+ "7339": 861,
1953
+ "7342": 826,
1954
+ "7346": 1747,
1955
+ "7348": 1638,
1956
+ "7354": 1920,
1957
+ "7357": 1671,
1958
+ "7360": 2179,
1959
+ "7367": 69,
1960
+ "737": 1845,
1961
+ "7376": 1773,
1962
+ "7383": 653,
1963
+ "7384": 906,
1964
+ "7387": 2258,
1965
+ "7389": 1603,
1966
+ "7391": 1549,
1967
+ "7392": 2230,
1968
+ "7395": 575,
1969
+ "7398": 552,
1970
+ "7402": 217,
1971
+ "7408": 2159,
1972
+ "7416": 729,
1973
+ "742": 1962,
1974
+ "7423": 1924,
1975
+ "7424": 1445,
1976
+ "7433": 1965,
1977
+ "7434": 1021,
1978
+ "7436": 1941,
1979
+ "7437": 1037,
1980
+ "7445": 837,
1981
+ "7447": 113,
1982
+ "7448": 1895,
1983
+ "7460": 368,
1984
+ "7463": 1238,
1985
+ "7467": 1157,
1986
+ "7475": 765,
1987
+ "7478": 571,
1988
+ "7480": 2231,
1989
+ "7481": 1020,
1990
+ "7484": 1075,
1991
+ "7491": 2072,
1992
+ "7492": 1544,
1993
+ "7495": 828,
1994
+ "7498": 390,
1995
+ "75": 1872,
1996
+ "7502": 2210,
1997
+ "7505": 31,
1998
+ "7507": 2292,
1999
+ "7510": 2176,
2000
+ "7511": 33,
2001
+ "7512": 2202,
2002
+ "7514": 1354,
2003
+ "7515": 327,
2004
+ "7517": 211,
2005
+ "7518": 420,
2006
+ "7520": 302,
2007
+ "7522": 2182,
2008
+ "7525": 730,
2009
+ "753": 1305,
2010
+ "7538": 500,
2011
+ "7540": 438,
2012
+ "7552": 2004,
2013
+ "7553": 834,
2014
+ "7555": 805,
2015
+ "7556": 1246,
2016
+ "7558": 312,
2017
+ "7559": 1827,
2018
+ "7561": 1139,
2019
+ "7565": 1199,
2020
+ "7569": 910,
2021
+ "7584": 1209,
2022
+ "7585": 1817,
2023
+ "7594": 557,
2024
+ "7597": 1903,
2025
+ "7601": 2348,
2026
+ "7603": 1245,
2027
+ "7607": 1877,
2028
+ "7608": 1286,
2029
+ "7609": 1177,
2030
+ "7618": 2235,
2031
+ "7635": 59,
2032
+ "764": 976,
2033
+ "7640": 1169,
2034
+ "7641": 2349,
2035
+ "7644": 2015,
2036
+ "7647": 645,
2037
+ "7649": 2266,
2038
+ "7654": 1945,
2039
+ "7657": 350,
2040
+ "766": 1748,
2041
+ "7665": 1061,
2042
+ "7672": 1473,
2043
+ "7679": 2141,
2044
+ "7683": 1531,
2045
+ "7687": 1307,
2046
+ "7688": 1048,
2047
+ "7691": 1612,
2048
+ "7697": 2368,
2049
+ "7699": 1396,
2050
+ "77": 2253,
2051
+ "770": 512,
2052
+ "7700": 1253,
2053
+ "7702": 1561,
2054
+ "7704": 373,
2055
+ "7705": 1095,
2056
+ "7708": 2194,
2057
+ "7713": 1188,
2058
+ "7717": 586,
2059
+ "7720": 789,
2060
+ "7729": 2376,
2061
+ "7730": 1087,
2062
+ "7732": 1107,
2063
+ "7733": 664,
2064
+ "7737": 1347,
2065
+ "7739": 295,
2066
+ "774": 1669,
2067
+ "7746": 1229,
2068
+ "7749": 1680,
2069
+ "7752": 411,
2070
+ "7754": 1074,
2071
+ "7756": 2148,
2072
+ "7762": 1770,
2073
+ "7764": 1192,
2074
+ "7766": 418,
2075
+ "7769": 1760,
2076
+ "777": 2333,
2077
+ "7777": 405,
2078
+ "778": 1519,
2079
+ "7780": 34,
2080
+ "7783": 1093,
2081
+ "7786": 2085,
2082
+ "7789": 316,
2083
+ "779": 2287,
2084
+ "7794": 218,
2085
+ "7795": 1634,
2086
+ "7796": 1701,
2087
+ "78": 243,
2088
+ "780": 1836,
2089
+ "7800": 191,
2090
+ "7802": 330,
2091
+ "7809": 879,
2092
+ "781": 691,
2093
+ "7816": 681,
2094
+ "7823": 2290,
2095
+ "7825": 634,
2096
+ "7826": 1574,
2097
+ "7828": 794,
2098
+ "783": 347,
2099
+ "7832": 1081,
2100
+ "7833": 446,
2101
+ "7835": 1571,
2102
+ "7837": 856,
2103
+ "7839": 1505,
2104
+ "7843": 1369,
2105
+ "7848": 1448,
2106
+ "7850": 2315,
2107
+ "7859": 230,
2108
+ "7867": 945,
2109
+ "7868": 1127,
2110
+ "7871": 1580,
2111
+ "7874": 915,
2112
+ "7879": 1438,
2113
+ "7881": 1104,
2114
+ "7883": 1839,
2115
+ "7886": 1551,
2116
+ "789": 1838,
2117
+ "7892": 1553,
2118
+ "7898": 2073,
2119
+ "79": 872,
2120
+ "7902": 2436,
2121
+ "7909": 505,
2122
+ "791": 1764,
2123
+ "7910": 896,
2124
+ "7912": 1822,
2125
+ "792": 1458,
2126
+ "7923": 1303,
2127
+ "7925": 1206,
2128
+ "7926": 1058,
2129
+ "7932": 562,
2130
+ "7933": 852,
2131
+ "7938": 542,
2132
+ "7939": 607,
2133
+ "7942": 1564,
2134
+ "7945": 672,
2135
+ "7946": 2096,
2136
+ "7949": 624,
2137
+ "7956": 873,
2138
+ "7957": 259,
2139
+ "7959": 539,
2140
+ "7962": 283,
2141
+ "7967": 744,
2142
+ "797": 1892,
2143
+ "7975": 2407,
2144
+ "7976": 2312,
2145
+ "7981": 481,
2146
+ "7982": 1006,
2147
+ "7988": 2023,
2148
+ "7991": 1123,
2149
+ "7994": 851,
2150
+ "7995": 957,
2151
+ "7997": 1244,
2152
+ "8005": 2057,
2153
+ "8006": 507,
2154
+ "8008": 287,
2155
+ "8009": 1831,
2156
+ "8011": 1129,
2157
+ "8012": 1696,
2158
+ "8014": 19,
2159
+ "8015": 2257,
2160
+ "8023": 2218,
2161
+ "8028": 920,
2162
+ "803": 543,
2163
+ "8033": 1428,
2164
+ "8040": 2133,
2165
+ "8042": 1227,
2166
+ "8044": 2285,
2167
+ "8050": 1096,
2168
+ "8051": 126,
2169
+ "8057": 767,
2170
+ "8058": 1352,
2171
+ "806": 1136,
2172
+ "8063": 162,
2173
+ "8066": 338,
2174
+ "807": 1606,
2175
+ "8071": 1442,
2176
+ "8072": 1584,
2177
+ "8075": 769,
2178
+ "8080": 821,
2179
+ "8087": 1830,
2180
+ "8088": 58,
2181
+ "8095": 237,
2182
+ "8097": 455,
2183
+ "8098": 205,
2184
+ "81": 272,
2185
+ "810": 1646,
2186
+ "8108": 197,
2187
+ "811": 2074,
2188
+ "8112": 1966,
2189
+ "8113": 889,
2190
+ "8118": 269,
2191
+ "8119": 377,
2192
+ "8123": 55,
2193
+ "8131": 2415,
2194
+ "8138": 471,
2195
+ "8142": 859,
2196
+ "8143": 1709,
2197
+ "8148": 1666,
2198
+ "815": 448,
2199
+ "8152": 362,
2200
+ "8156": 1714,
2201
+ "816": 677,
2202
+ "8163": 423,
2203
+ "8164": 1992,
2204
+ "8168": 1611,
2205
+ "8169": 1416,
2206
+ "8172": 1497,
2207
+ "8173": 2339,
2208
+ "8176": 331,
2209
+ "8180": 1776,
2210
+ "8183": 644,
2211
+ "8188": 2419,
2212
+ "8190": 511,
2213
+ "8193": 249,
2214
+ "8194": 262,
2215
+ "8195": 713,
2216
+ "8197": 2099,
2217
+ "8199": 2185,
2218
+ "82": 1861,
2219
+ "8200": 1552,
2220
+ "8208": 1407,
2221
+ "8215": 1159,
2222
+ "8222": 656,
2223
+ "8224": 2402,
2224
+ "8225": 305,
2225
+ "8226": 45,
2226
+ "8228": 641,
2227
+ "8230": 2389,
2228
+ "8238": 47,
2229
+ "8240": 2041,
2230
+ "8242": 1276,
2231
+ "8245": 1391,
2232
+ "8246": 1268,
2233
+ "8250": 1944,
2234
+ "8254": 2355,
2235
+ "8259": 1618,
2236
+ "826": 1476,
2237
+ "8262": 1999,
2238
+ "8266": 463,
2239
+ "8272": 1196,
2240
+ "8273": 2217,
2241
+ "8280": 2426,
2242
+ "8288": 2359,
2243
+ "829": 655,
2244
+ "8291": 2084,
2245
+ "8295": 1404,
2246
+ "8296": 1704,
2247
+ "8297": 2330,
2248
+ "83": 72,
2249
+ "830": 304,
2250
+ "8300": 739,
2251
+ "8302": 1946,
2252
+ "8307": 1683,
2253
+ "831": 5,
2254
+ "8312": 156,
2255
+ "8316": 1674,
2256
+ "8321": 2052,
2257
+ "8322": 2238,
2258
+ "8324": 177,
2259
+ "8328": 1424,
2260
+ "8329": 808,
2261
+ "8334": 1731,
2262
+ "8337": 1856,
2263
+ "8346": 1295,
2264
+ "8347": 407,
2265
+ "835": 1114,
2266
+ "8356": 2209,
2267
+ "836": 339,
2268
+ "8367": 2075,
2269
+ "8382": 1266,
2270
+ "8388": 315,
2271
+ "8389": 1598,
2272
+ "839": 220,
2273
+ "8392": 2137,
2274
+ "8394": 1880,
2275
+ "8396": 673,
2276
+ "84": 2309,
2277
+ "8401": 716,
2278
+ "8404": 1039,
2279
+ "8410": 640,
2280
+ "8413": 1231,
2281
+ "8414": 2045,
2282
+ "8415": 1447,
2283
+ "8419": 98,
2284
+ "8421": 685,
2285
+ "8422": 1366,
2286
+ "8424": 1155,
2287
+ "8425": 199,
2288
+ "8430": 1345,
2289
+ "8432": 1798,
2290
+ "844": 1504,
2291
+ "8441": 1700,
2292
+ "8443": 1158,
2293
+ "8444": 1184,
2294
+ "8445": 1763,
2295
+ "8447": 2091,
2296
+ "845": 1435,
2297
+ "8455": 2378,
2298
+ "8459": 300,
2299
+ "846": 1843,
2300
+ "8461": 2409,
2301
+ "8463": 2395,
2302
+ "8464": 1108,
2303
+ "8465": 43,
2304
+ "8466": 1954,
2305
+ "8468": 180,
2306
+ "8470": 1147,
2307
+ "8474": 756,
2308
+ "8476": 1393,
2309
+ "8479": 922,
2310
+ "8490": 399,
2311
+ "8494": 528,
2312
+ "8498": 785,
2313
+ "8499": 1569,
2314
+ "85": 1994,
2315
+ "850": 625,
2316
+ "8500": 1788,
2317
+ "8506": 630,
2318
+ "851": 2068,
2319
+ "8527": 646,
2320
+ "8531": 1597,
2321
+ "8534": 642,
2322
+ "8536": 1591,
2323
+ "8543": 2294,
2324
+ "8544": 1304,
2325
+ "8545": 816,
2326
+ "8555": 2398,
2327
+ "8565": 1220,
2328
+ "8573": 732,
2329
+ "8575": 424,
2330
+ "8576": 1453,
2331
+ "8580": 83,
2332
+ "8587": 1959,
2333
+ "8590": 1323,
2334
+ "8591": 432,
2335
+ "8592": 537,
2336
+ "8605": 905,
2337
+ "8609": 51,
2338
+ "8619": 1012,
2339
+ "8625": 1256,
2340
+ "8629": 139,
2341
+ "8630": 228,
2342
+ "8631": 1609,
2343
+ "8632": 2128,
2344
+ "8635": 436,
2345
+ "8643": 990,
2346
+ "8644": 1283,
2347
+ "8664": 1172,
2348
+ "8666": 1637,
2349
+ "8671": 1742,
2350
+ "8675": 2251,
2351
+ "8677": 540,
2352
+ "8678": 1207,
2353
+ "868": 662,
2354
+ "8684": 720,
2355
+ "8687": 824,
2356
+ "8699": 378,
2357
+ "87": 35,
2358
+ "8705": 268,
2359
+ "8710": 2273,
2360
+ "8713": 469,
2361
+ "8718": 886,
2362
+ "8722": 743,
2363
+ "8725": 468,
2364
+ "8742": 556,
2365
+ "8747": 166,
2366
+ "8753": 1706,
2367
+ "8758": 526,
2368
+ "876": 1993,
2369
+ "8765": 1935,
2370
+ "8770": 141,
2371
+ "8771": 1083,
2372
+ "8772": 442,
2373
+ "8776": 593,
2374
+ "8778": 1859,
2375
+ "8786": 747,
2376
+ "8791": 822,
2377
+ "8797": 63,
2378
+ "8799": 1579,
2379
+ "8803": 1810,
2380
+ "8808": 2051,
2381
+ "882": 276,
2382
+ "8820": 525,
2383
+ "8824": 954,
2384
+ "8825": 544,
2385
+ "8838": 87,
2386
+ "884": 1154,
2387
+ "8842": 2317,
2388
+ "8846": 1587,
2389
+ "8848": 475,
2390
+ "8855": 492,
2391
+ "886": 1610,
2392
+ "8867": 2184,
2393
+ "887": 40,
2394
+ "8875": 495,
2395
+ "8879": 984,
2396
+ "8887": 594,
2397
+ "8897": 2221,
2398
+ "89": 201,
2399
+ "895": 2248,
2400
+ "8975": 85,
2401
+ "899": 1073,
2402
+ "90": 570,
2403
+ "9000": 1656,
2404
+ "9022": 635,
2405
+ "9023": 887,
2406
+ "9026": 866,
2407
+ "908": 2397,
2408
+ "909": 7,
2409
+ "91": 1376,
2410
+ "911": 202,
2411
+ "915": 1816,
2412
+ "92": 1565,
2413
+ "920": 932,
2414
+ "921": 2193,
2415
+ "922": 457,
2416
+ "923": 2071,
2417
+ "925": 723,
2418
+ "927": 1835,
2419
+ "93": 499,
2420
+ "937": 1277,
2421
+ "94": 1759,
2422
+ "948": 1138,
2423
+ "949": 585,
2424
+ "951": 1761,
2425
+ "953": 960,
2426
+ "954": 1098,
2427
+ "956": 1615,
2428
+ "957": 256,
2429
+ "960": 1234,
2430
+ "964": 1914,
2431
+ "968": 1120,
2432
+ "969": 2196,
2433
+ "976": 1626,
2434
+ "978": 1802,
2435
+ "979": 750,
2436
+ "98": 342,
2437
+ "982": 1594,
2438
+ "984": 779,
2439
+ "985": 2049,
2440
+ "986": 311,
2441
+ "<unk>": 0
2442
+ }
config/speaker_id_mapping_libri.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"14": 0, "16": 1, "17": 2, "19": 3, "20": 4, "22": 5, "23": 6, "25": 7, "26": 8, "27": 9, "28": 10, "29": 11, "30": 12, "31": 13, "32": 14, "36": 15, "37": 16, "38": 17, "39": 18, "40": 19, "44": 20, "45": 21, "46": 22, "47": 23, "49": 24, "51": 25, "52": 26, "54": 27, "55": 28, "56": 29, "57": 30, "58": 31, "60": 32, "61": 33, "62": 34, "64": 35, "65": 36, "66": 37, "70": 38, "75": 39, "77": 40, "78": 41, "79": 42, "81": 43, "82": 44, "83": 45, "84": 46, "85": 47, "87": 48, "89": 49, "90": 50, "91": 51, "92": 52, "93": 53, "94": 54, "98": 55, "100": 56, "101": 57, "102": 58, "103": 59, "104": 60, "107": 61, "110": 62, "111": 63, "112": 64, "114": 65, "115": 66, "116": 67, "118": 68, "119": 69, "121": 70, "122": 71, "123": 72, "125": 73, "126": 74, "127": 75, "128": 76, "133": 77, "147": 78, "149": 79, "150": 80, "151": 81, "152": 82, "153": 83, "154": 84, "157": 85, "159": 86, "161": 87, "163": 88, "166": 89, "167": 90, "168": 91, "173": 92, "174": 93, "175": 94, "176": 95, "177": 96, "188": 97, "192": 98, "196": 99, "198": 100, "199": 101, "200": 102, "201": 103, "202": 104, "203": 105, "204": 106, "205": 107, "207": 108, "208": 109, "209": 110, "210": 111, "211": 112, "215": 113, "216": 114, "217": 115, "218": 116, "224": 117, "225": 118, "226": 119, "227": 120, "228": 121, "229": 122, "231": 123, "233": 124, "237": 125, "238": 126, "240": 127, "242": 128, "243": 129, "245": 130, "246": 131, "248": 132, "249": 133, "250": 134, "251": 135, "252": 136, "253": 137, "254": 138, "255": 139, "258": 140, "260": 141, "263": 142, "264": 143, "265": 144, "272": 145, "273": 146, "274": 147, "277": 148, "278": 149, "283": 150, "288": 151, "289": 152, "294": 153, "296": 154, "298": 155, "302": 156, "303": 157, "307": 158, "310": 159, "311": 160, "313": 161, "317": 162, "318": 163, "319": 164, "322": 165, "323": 166, "328": 167, "329": 168, "331": 169, "332": 170, "335": 171, "336": 172, "337": 173, "339": 174, "340": 175, "345": 176, "348": 177, "353": 178, "359": 179, "362": 180, "365": 181, "366": 182, "367": 183, "369": 184, "373": 185, "374": 186, "377": 187, "380": 188, "392": 189, "398": 190, "402": 191, "403": 192, "404": 193, "405": 194, "408": 195, "409": 196, "412": 197, "413": 198, "421": 199, "422": 200, "426": 201, "428": 202, "432": 203, "434": 204, "439": 205, "441": 206, "444": 207, "445": 208, "446": 209, "448": 210, "451": 211, "453": 212, "454": 213, "458": 214, "459": 215, "460": 216, "464": 217, "466": 218, "470": 219, "472": 220, "474": 221, "475": 222, "476": 223, "479": 224, "480": 225, "481": 226, "483": 227, "487": 228, "489": 229, "492": 230, "497": 231, "500": 232, "501": 233, "505": 234, "510": 235, "511": 236, "512": 237, "517": 238, "525": 239, "533": 240, "534": 241, "542": 242, "543": 243, "544": 244, "548": 245, "549": 246, "551": 247, "557": 248, "559": 249, "561": 250, "567": 251, "568": 252, "569": 253, "572": 254, "576": 255, "580": 256, "581": 257, "583": 258, "584": 259, "585": 260, "587": 261, "589": 262, "593": 263, "594": 264, "596": 265, "597": 266, "598": 267, "606": 268, "608": 269, "612": 270, "613": 271, "614": 272, "622": 273, "625": 274, "636": 275, "637": 276, "639": 277, "644": 278, "652": 279, "663": 280, "664": 281, "666": 282, "667": 283, "669": 284, "671": 285, "672": 286, "679": 287, "681": 288, "684": 289, "688": 290, "690": 291, "696": 292, "698": 293, "699": 294, "700": 295, "705": 296, "707": 297, "708": 298, "711": 299, "712": 300, "713": 301, "716": 302, "718": 303, "720": 304, "724": 305, "726": 306, "727": 307, "728": 308, "730": 309, "731": 310, "737": 311, "742": 312, "753": 313, "764": 314, "766": 315, "770": 316, "774": 317, "777": 318, "778": 319, "779": 320, "780": 321, "781": 322, "782": 323, "783": 324, "789": 325, "791": 326, "792": 327, "797": 328, "803": 329, "806": 330, "807": 331, "810": 332, "811": 333, "815": 334, "816": 335, "820": 336, "826": 337, "829": 338, "830": 339, "831": 340, "834": 341, "835": 342, "836": 343, "839": 344, "844": 345, "845": 346, "846": 347, "850": 348, "851": 349, "868": 350, "876": 351, "882": 352, "884": 353, "886": 354, "887": 355, "895": 356, "899": 357, "908": 358, "909": 359, "911": 360, "915": 361, "920": 362, "921": 363, "922": 364, "923": 365, "925": 366, "927": 367, "937": 368, "948": 369, "949": 370, "951": 371, "953": 372, "954": 373, "956": 374, "957": 375, "960": 376, "964": 377, "968": 378, "969": 379, "976": 380, "978": 381, "979": 382, "982": 383, "984": 384, "985": 385, "986": 386, "1001": 387, "1006": 388, "1012": 389, "1018": 390, "1025": 391, "1027": 392, "1028": 393, "1031": 394, "1034": 395, "1040": 396, "1046": 397, "1049": 398, "1050": 399, "1051": 400, "1052": 401, "1053": 402, "1054": 403, "1058": 404, "1060": 405, "1061": 406, "1065": 407, "1066": 408, "1069": 409, "1079": 410, "1081": 411, "1084": 412, "1085": 413, "1088": 414, "1089": 415, "1092": 416, "1093": 417, "1094": 418, "1096": 419, "1097": 420, "1098": 421, "1100": 422, "1107": 423, "1110": 424, "1112": 425, "1116": 426, "1121": 427, "1124": 428, "1132": 429, "1152": 430, "1154": 431, "1160": 432, "1161": 433, "1165": 434, "1166": 435, "1168": 436, "1171": 437, "1175": 438, "1179": 439, "1182": 440, "1183": 441, "1184": 442, "1187": 443, "1188": 444, "1195": 445, "1200": 446, "1212": 447, "1221": 448, "1222": 449, "1224": 450, "1225": 451, "1226": 452, "1230": 453, "1235": 454, "1239": 455, "1241": 456, "1246": 457, "1250": 458, "1252": 459, "1255": 460, "1258": 461, "1259": 462, "1260": 463, "1261": 464, "1263": 465, "1264": 466, "1265": 467, "1266": 468, "1271": 469, "1272": 470, "1274": 471, "1280": 472, "1283": 473, "1284": 474, "1289": 475, "1290": 476, "1291": 477, "1296": 478, "1298": 479, "1311": 480, "1313": 481, "1316": 482, "1320": 483, "1322": 484, "1323": 485, "1331": 486, "1334": 487, "1335": 488, "1336": 489, "1337": 490, "1341": 491, "1342": 492, "1343": 493, "1347": 494, "1348": 495, "1349": 496, "1353": 497, "1355": 498, "1363": 499, "1365": 500, "1367": 501, "1370": 502, "1373": 503, "1374": 504, "1379": 505, "1382": 506, "1383": 507, "1384": 508, "1387": 509, "1390": 510, "1392": 511, "1401": 512, "1403": 513, "1413": 514, "1414": 515, "1417": 516, "1421": 517, "1422": 518, "1425": 519, "1430": 520, "1444": 521, "1445": 522, "1446": 523, "1447": 524, "1448": 525, "1455": 526, "1456": 527, "1460": 528, "1462": 529, "1463": 530, "1469": 531, "1472": 532, "1473": 533, "1474": 534, "1482": 535, "1485": 536, "1487": 537, "1492": 538, "1494": 539, "1495": 540, "1498": 541, "1502": 542, "1505": 543, "1509": 544, "1513": 545, "1535": 546, "1536": 547, "1544": 548, "1545": 549, "1547": 550, "1552": 551, "1553": 552, "1556": 553, "1559": 554, "1563": 555, "1564": 556, "1566": 557, "1569": 558, "1571": 559, "1572": 560, "1578": 561, "1579": 562, "1580": 563, "1585": 564, "1593": 565, "1594": 566, "1595": 567, "1601": 568, "1603": 569, "1607": 570, "1614": 571, "1618": 572, "1621": 573, "1624": 574, "1629": 575, "1630": 576, "1633": 577, "1634": 578, "1636": 579, "1638": 580, "1639": 581, "1641": 582, "1643": 583, "1645": 584, "1646": 585, "1647": 586, "1648": 587, "1649": 588, "1650": 589, "1651": 590, "1653": 591, "1664": 592, "1665": 593, "1668": 594, "1673": 595, "1674": 596, "1678": 597, "1679": 598, "1680": 599, "1681": 600, "1685": 601, "1686": 602, "1688": 603, "1690": 604, "1691": 605, "1693": 606, "1695": 607, "1696": 608, "1699": 609, "1701": 610, "1704": 611, "1705": 612, "1708": 613, "1710": 614, "1714": 615, "1715": 616, "1717": 617, "1721": 618, "1723": 619, "1724": 620, "1726": 621, "1731": 622, "1733": 623, "1734": 624, "1736": 625, "1737": 626, "1740": 627, "1743": 628, "1746": 629, "1748": 630, "1750": 631, "1752": 632, "1754": 633, "1756": 634, "1757": 635, "1760": 636, "1765": 637, "1767": 638, "1769": 639, "1772": 640, "1773": 641, "1776": 642, "1777": 643, "1779": 644, "1780": 645, "1784": 646, "1789": 647, "1795": 648, "1800": 649, "1801": 650, "1804": 651, "1806": 652, "1809": 653, "1811": 654, "1813": 655, "1815": 656, "1819": 657, "1825": 658, "1826": 659, "1827": 660, "1828": 661, "1841": 662, "1844": 663, "1845": 664, "1846": 665, "1849": 666, "1851": 667, "1859": 668, "1863": 669, "1867": 670, "1868": 671, "1870": 672, "1874": 673, "1878": 674, "1885": 675, "1898": 676, "1901": 677, "1903": 678, "1913": 679, "1914": 680, "1919": 681, "1920": 682, "1923": 683, "1924": 684, "1926": 685, "1931": 686, "1933": 687, "1938": 688, "1943": 689, "1944": 690, "1958": 691, "1961": 692, "1963": 693, "1968": 694, "1970": 695, "1974": 696, "1977": 697, "1985": 698, "1987": 699, "1988": 700, "1989": 701, "1992": 702, "1993": 703, "1995": 704, "1998": 705, "2001": 706, "2002": 707, "2003": 708, "2004": 709, "2007": 710, "2010": 711, "2012": 712, "2013": 713, "2021": 714, "2026": 715, "2033": 716, "2035": 717, "2039": 718, "2042": 719, "2045": 720, "2046": 721, "2050": 722, "2051": 723, "2053": 724, "2056": 725, "2060": 726, "2061": 727, "2062": 728, "2063": 729, "2067": 730, "2068": 731, "2074": 732, "2078": 733, "2085": 734, "2086": 735, "2089": 736, "2090": 737, "2092": 738, "2093": 739, "2094": 740, "2096": 741, "2100": 742, "2104": 743, "2110": 744, "2113": 745, "2122": 746, "2127": 747, "2133": 748, "2136": 749, "2137": 750, "2140": 751, "2143": 752, "2146": 753, "2148": 754, "2149": 755, "2152": 756, "2156": 757, "2159": 758, "2162": 759, "2167": 760, "2182": 761, "2185": 762, "2194": 763, "2195": 764, "2196": 765, "2198": 766, "2201": 767, "2204": 768, "2208": 769, "2229": 770, "2230": 771, "2234": 772, "2237": 773, "2238": 774, "2240": 775, "2246": 776, "2254": 777, "2256": 778, "2262": 779, "2269": 780, "2270": 781, "2272": 782, "2273": 783, "2275": 784, "2276": 785, "2277": 786, "2279": 787, "2284": 788, "2285": 789, "2288": 790, "2289": 791, "2292": 792, "2294": 793, "2297": 794, "2299": 795, "2300": 796, "2301": 797, "2309": 798, "2312": 799, "2319": 800, "2334": 801, "2339": 802, "2341": 803, "2346": 804, "2348": 805, "2351": 806, "2356": 807, "2361": 808, "2364": 809, "2368": 810, "2374": 811, "2380": 812, "2384": 813, "2388": 814, "2391": 815, "2393": 816, "2397": 817, "2401": 818, "2404": 819, "2405": 820, "2407": 821, "2411": 822, "2412": 823, "2414": 824, "2416": 825, "2427": 826, "2428": 827, "2436": 828, "2437": 829, "2445": 830, "2448": 831, "2473": 832, "2481": 833, "2485": 834, "2487": 835, "2488": 836, "2491": 837, "2494": 838, "2496": 839, "2498": 840, "2499": 841, "2504": 842, "2506": 843, "2512": 844, "2514": 845, "2517": 846, "2518": 847, "2522": 848, "2526": 849, "2531": 850, "2532": 851, "2533": 852, "2541": 853, "2544": 854, "2545": 855, "2552": 856, "2553": 857, "2562": 858, "2568": 859, "2570": 860, "2573": 861, "2574": 862, "2577": 863, "2581": 864, "2582": 865, "2587": 866, "2588": 867, "2589": 868, "2592": 869, "2598": 870, "2606": 871, "2607": 872, "2609": 873, "2618": 874, "2624": 875, "2625": 876, "2628": 877, "2638": 878, "2652": 879, "2654": 880, "2660": 881, "2671": 882, "2673": 883, "2674": 884, "2676": 885, "2688": 886, "2691": 887, "2694": 888, "2696": 889, "2709": 890, "2712": 891, "2724": 892, "2730": 893, "2733": 894, "2735": 895, "2740": 896, "2741": 897, "2748": 898, "2751": 899, "2754": 900, "2758": 901, "2762": 902, "2764": 903, "2769": 904, "2774": 905, "2775": 906, "2785": 907, "2787": 908, "2790": 909, "2792": 910, "2803": 911, "2812": 912, "2815": 913, "2816": 914, "2817": 915, "2823": 916, "2825": 917, "2827": 918, "2830": 919, "2834": 920, "2836": 921, "2843": 922, "2853": 923, "2854": 924, "2882": 925, "2893": 926, "2895": 927, "2902": 928, "2909": 929, "2910": 930, "2911": 931, "2919": 932, "2920": 933, "2925": 934, "2929": 935, "2930": 936, "2943": 937, "2946": 938, "2952": 939, "2960": 940, "2961": 941, "2967": 942, "2971": 943, "2975": 944, "2979": 945, "2985": 946, "2988": 947, "2989": 948, "2990": 949, "2992": 950, "2997": 951, "2998": 952, "2999": 953, "3000": 954, "3001": 955, "3003": 956, "3005": 957, "3006": 958, "3008": 959, "3009": 960, "3020": 961, "3021": 962, "3025": 963, "3032": 964, "3033": 965, "3045": 966, "3046": 967, "3053": 968, "3054": 969, "3060": 970, "3063": 971, "3070": 972, "3072": 973, "3079": 974, "3080": 975, "3081": 976, "3082": 977, "3083": 978, "3088": 979, "3090": 980, "3092": 981, "3094": 982, "3097": 983, "3098": 984, "3100": 985, "3105": 986, "3109": 987, "3112": 988, "3114": 989, "3118": 990, "3119": 991, "3125": 992, "3132": 993, "3135": 994, "3137": 995, "3138": 996, "3142": 997, "3143": 998, "3144": 999, "3148": 1000, "3157": 1001, "3168": 1002, "3170": 1003, "3171": 1004, "3172": 1005, "3179": 1006, "3180": 1007, "3185": 1008, "3187": 1009, "3192": 1010, "3196": 1011, "3214": 1012, "3215": 1013, "3221": 1014, "3224": 1015, "3227": 1016, "3228": 1017, "3230": 1018, "3235": 1019, "3238": 1020, "3240": 1021, "3242": 1022, "3244": 1023, "3245": 1024, "3257": 1025, "3258": 1026, "3259": 1027, "3261": 1028, "3268": 1029, "3271": 1030, "3272": 1031, "3274": 1032, "3285": 1033, "3288": 1034, "3289": 1035, "3290": 1036, "3294": 1037, "3307": 1038, "3314": 1039, "3318": 1040, "3319": 1041, "3328": 1042, "3330": 1043, "3331": 1044, "3334": 1045, "3340": 1046, "3346": 1047, "3347": 1048, "3356": 1049, "3357": 1050, "3361": 1051, "3368": 1052, "3370": 1053, "3373": 1054, "3374": 1055, "3379": 1056, "3380": 1057, "3381": 1058, "3389": 1059, "3394": 1060, "3400": 1061, "3409": 1062, "3411": 1063, "3417": 1064, "3433": 1065, "3436": 1066, "3440": 1067, "3446": 1068, "3448": 1069, "3465": 1070, "3467": 1071, "3470": 1072, "3479": 1073, "3482": 1074, "3483": 1075, "3486": 1076, "3488": 1077, "3490": 1078, "3493": 1079, "3500": 1080, "3503": 1081, "3513": 1082, "3521": 1083, "3526": 1084, "3528": 1085, "3536": 1086, "3537": 1087, "3538": 1088, "3540": 1089, "3541": 1090, "3546": 1091, "3547": 1092, "3549": 1093, "3551": 1094, "3553": 1095, "3554": 1096, "3557": 1097, "3559": 1098, "3564": 1099, "3567": 1100, "3570": 1101, "3571": 1102, "3575": 1103, "3576": 1104, "3584": 1105, "3587": 1106, "3588": 1107, "3592": 1108, "3595": 1109, "3598": 1110, "3606": 1111, "3607": 1112, "3615": 1113, "3618": 1114, "3630": 1115, "3638": 1116, "3641": 1117, "3645": 1118, "3647": 1119, "3650": 1120, "3654": 1121, "3656": 1122, "3657": 1123, "3660": 1124, "3663": 1125, "3664": 1126, "3665": 1127, "3675": 1128, "3679": 1129, "3681": 1130, "3686": 1131, "3691": 1132, "3698": 1133, "3699": 1134, "3703": 1135, "3717": 1136, "3723": 1137, "3728": 1138, "3729": 1139, "3733": 1140, "3738": 1141, "3744": 1142, "3747": 1143, "3752": 1144, "3757": 1145, "3764": 1146, "3779": 1147, "3780": 1148, "3781": 1149, "3783": 1150, "3790": 1151, "3792": 1152, "3793": 1153, "3796": 1154, "3798": 1155, "3807": 1156, "3816": 1157, "3819": 1158, "3825": 1159, "3830": 1160, "3835": 1161, "3843": 1162, "3845": 1163, "3848": 1164, "3851": 1165, "3852": 1166, "3853": 1167, "3857": 1168, "3864": 1169, "3866": 1170, "3867": 1171, "3869": 1172, "3871": 1173, "3876": 1174, "3879": 1175, "3885": 1176, "3889": 1177, "3894": 1178, "3895": 1179, "3896": 1180, "3905": 1181, "3906": 1182, "3909": 1183, "3911": 1184, "3912": 1185, "3914": 1186, "3915": 1187, "3922": 1188, "3923": 1189, "3925": 1190, "3926": 1191, "3927": 1192, "3928": 1193, "3934": 1194, "3945": 1195, "3947": 1196, "3955": 1197, "3959": 1198, "3962": 1199, "3967": 1200, "3969": 1201, "3972": 1202, "3977": 1203, "3979": 1204, "3982": 1205, "3983": 1206, "3989": 1207, "3990": 1208, "3992": 1209, "3994": 1210, "3997": 1211, "4005": 1212, "4009": 1213, "4010": 1214, "4013": 1215, "4014": 1216, "4015": 1217, "4017": 1218, "4018": 1219, "4019": 1220, "4020": 1221, "4021": 1222, "4034": 1223, "4039": 1224, "4042": 1225, "4044": 1226, "4051": 1227, "4054": 1228, "4057": 1229, "4059": 1230, "4063": 1231, "4064": 1232, "4071": 1233, "4077": 1234, "4078": 1235, "4085": 1236, "4088": 1237, "4090": 1238, "4098": 1239, "4104": 1240, "4108": 1241, "4110": 1242, "4111": 1243, "4116": 1244, "4122": 1245, "4133": 1246, "4137": 1247, "4138": 1248, "4145": 1249, "4148": 1250, "4152": 1251, "4153": 1252, "4156": 1253, "4160": 1254, "4161": 1255, "4172": 1256, "4174": 1257, "4179": 1258, "4189": 1259, "4191": 1260, "4192": 1261, "4193": 1262, "4195": 1263, "4196": 1264, "4198": 1265, "4205": 1266, "4211": 1267, "4214": 1268, "4216": 1269, "4217": 1270, "4218": 1271, "4222": 1272, "4225": 1273, "4226": 1274, "4234": 1275, "4235": 1276, "4236": 1277, "4238": 1278, "4243": 1279, "4246": 1280, "4257": 1281, "4260": 1282, "4262": 1283, "4263": 1284, "4267": 1285, "4273": 1286, "4277": 1287, "4278": 1288, "4280": 1289, "4289": 1290, "4290": 1291, "4294": 1292, "4295": 1293, "4297": 1294, "4305": 1295, "4310": 1296, "4313": 1297, "4321": 1298, "4323": 1299, "4327": 1300, "4331": 1301, "4335": 1302, "4340": 1303, "4344": 1304, "4345": 1305, "4350": 1306, "4352": 1307, "4356": 1308, "4358": 1309, "4362": 1310, "4363": 1311, "4379": 1312, "4381": 1313, "4396": 1314, "4397": 1315, "4402": 1316, "4406": 1317, "4407": 1318, "4411": 1319, "4415": 1320, "4420": 1321, "4422": 1322, "4423": 1323, "4425": 1324, "4427": 1325, "4428": 1326, "4433": 1327, "4434": 1328, "4438": 1329, "4441": 1330, "4442": 1331, "4443": 1332, "4446": 1333, "4447": 1334, "4455": 1335, "4463": 1336, "4474": 1337, "4480": 1338, "4481": 1339, "4484": 1340, "4487": 1341, "4490": 1342, "4492": 1343, "4495": 1344, "4507": 1345, "4511": 1346, "4513": 1347, "4515": 1348, "4519": 1349, "4520": 1350, "4535": 1351, "4545": 1352, "4546": 1353, "4549": 1354, "4563": 1355, "4570": 1356, "4572": 1357, "4576": 1358, "4583": 1359, "4586": 1360, "4590": 1361, "4591": 1362, "4592": 1363, "4594": 1364, "4595": 1365, "4598": 1366, "4599": 1367, "4629": 1368, "4640": 1369, "4652": 1370, "4659": 1371, "4660": 1372, "4667": 1373, "4680": 1374, "4681": 1375, "4687": 1376, "4693": 1377, "4697": 1378, "4699": 1379, "4701": 1380, "4703": 1381, "4705": 1382, "4706": 1383, "4710": 1384, "4712": 1385, "4719": 1386, "4731": 1387, "4733": 1388, "4734": 1389, "4738": 1390, "4741": 1391, "4742": 1392, "4744": 1393, "4748": 1394, "4750": 1395, "4757": 1396, "4766": 1397, "4767": 1398, "4770": 1399, "4771": 1400, "4773": 1401, "4779": 1402, "4788": 1403, "4791": 1404, "4799": 1405, "4800": 1406, "4806": 1407, "4807": 1408, "4813": 1409, "4821": 1410, "4824": 1411, "4830": 1412, "4831": 1413, "4836": 1414, "4837": 1415, "4839": 1416, "4841": 1417, "4846": 1418, "4848": 1419, "4852": 1420, "4853": 1421, "4854": 1422, "4856": 1423, "4859": 1424, "4860": 1425, "4863": 1426, "4872": 1427, "4894": 1428, "4898": 1429, "4899": 1430, "4910": 1431, "4915": 1432, "4926": 1433, "4930": 1434, "4931": 1435, "4936": 1436, "4945": 1437, "4948": 1438, "4955": 1439, "4957": 1440, "4958": 1441, "4959": 1442, "4964": 1443, "4965": 1444, "4967": 1445, "4969": 1446, "4970": 1447, "4973": 1448, "4979": 1449, "4991": 1450, "4992": 1451, "4993": 1452, "5000": 1453, "5002": 1454, "5005": 1455, "5007": 1456, "5009": 1457, "5012": 1458, "5013": 1459, "5019": 1460, "5022": 1461, "5023": 1462, "5029": 1463, "5036": 1464, "5038": 1465, "5039": 1466, "5043": 1467, "5044": 1468, "5045": 1469, "5049": 1470, "5054": 1471, "5060": 1472, "5062": 1473, "5063": 1474, "5076": 1475, "5077": 1476, "5082": 1477, "5092": 1478, "5093": 1479, "5101": 1480, "5104": 1481, "5105": 1482, "5115": 1483, "5118": 1484, "5123": 1485, "5126": 1486, "5132": 1487, "5133": 1488, "5136": 1489, "5139": 1490, "5141": 1491, "5142": 1492, "5147": 1493, "5152": 1494, "5154": 1495, "5157": 1496, "5163": 1497, "5164": 1498, "5172": 1499, "5181": 1500, "5183": 1501, "5185": 1502, "5186": 1503, "5189": 1504, "5190": 1505, "5192": 1506, "5198": 1507, "5199": 1508, "5206": 1509, "5217": 1510, "5220": 1511, "5224": 1512, "5230": 1513, "5233": 1514, "5239": 1515, "5242": 1516, "5244": 1517, "5245": 1518, "5246": 1519, "5248": 1520, "5252": 1521, "5261": 1522, "5266": 1523, "5269": 1524, "5271": 1525, "5278": 1526, "5280": 1527, "5285": 1528, "5287": 1529, "5290": 1530, "5293": 1531, "5296": 1532, "5299": 1533, "5304": 1534, "5319": 1535, "5321": 1536, "5322": 1537, "5325": 1538, "5328": 1539, "5333": 1540, "5337": 1541, "5338": 1542, "5339": 1543, "5340": 1544, "5350": 1545, "5355": 1546, "5361": 1547, "5375": 1548, "5379": 1549, "5386": 1550, "5389": 1551, "5390": 1552, "5393": 1553, "5400": 1554, "5401": 1555, "5405": 1556, "5412": 1557, "5424": 1558, "5429": 1559, "5439": 1560, "5442": 1561, "5445": 1562, "5448": 1563, "5456": 1564, "5459": 1565, "5460": 1566, "5463": 1567, "5468": 1568, "5471": 1569, "5480": 1570, "5484": 1571, "5487": 1572, "5489": 1573, "5506": 1574, "5513": 1575, "5514": 1576, "5519": 1577, "5536": 1578, "5538": 1579, "5543": 1580, "5545": 1581, "5561": 1582, "5565": 1583, "5567": 1584, "5569": 1585, "5570": 1586, "5583": 1587, "5588": 1588, "5604": 1589, "5606": 1590, "5618": 1591, "5620": 1592, "5622": 1593, "5628": 1594, "5635": 1595, "5636": 1596, "5637": 1597, "5639": 1598, "5641": 1599, "5649": 1600, "5652": 1601, "5653": 1602, "5655": 1603, "5656": 1604, "5660": 1605, "5661": 1606, "5665": 1607, "5671": 1608, "5672": 1609, "5678": 1610, "5682": 1611, "5683": 1612, "5684": 1613, "5688": 1614, "5694": 1615, "5700": 1616, "5703": 1617, "5712": 1618, "5717": 1619, "5719": 1620, "5720": 1621, "5723": 1622, "5724": 1623, "5725": 1624, "5727": 1625, "5731": 1626, "5733": 1627, "5735": 1628, "5740": 1629, "5746": 1630, "5750": 1631, "5756": 1632, "5764": 1633, "5765": 1634, "5767": 1635, "5772": 1636, "5776": 1637, "5778": 1638, "5781": 1639, "5784": 1640, "5789": 1641, "5791": 1642, "5796": 1643, "5802": 1644, "5808": 1645, "5809": 1646, "5810": 1647, "5825": 1648, "5826": 1649, "5831": 1650, "5837": 1651, "5840": 1652, "5849": 1653, "5854": 1654, "5860": 1655, "5867": 1656, "5868": 1657, "5874": 1658, "5876": 1659, "5883": 1660, "5886": 1661, "5890": 1662, "5893": 1663, "5894": 1664, "5895": 1665, "5906": 1666, "5909": 1667, "5910": 1668, "5911": 1669, "5913": 1670, "5914": 1671, "5918": 1672, "5929": 1673, "5933": 1674, "5935": 1675, "5940": 1676, "5949": 1677, "5951": 1678, "5952": 1679, "5968": 1680, "5970": 1681, "5975": 1682, "5977": 1683, "5979": 1684, "5980": 1685, "5983": 1686, "5984": 1687, "5985": 1688, "5993": 1689, "6000": 1690, "6003": 1691, "6006": 1692, "6009": 1693, "6010": 1694, "6014": 1695, "6019": 1696, "6025": 1697, "6030": 1698, "6032": 1699, "6035": 1700, "6037": 1701, "6038": 1702, "6051": 1703, "6054": 1704, "6060": 1705, "6064": 1706, "6065": 1707, "6070": 1708, "6072": 1709, "6075": 1710, "6076": 1711, "6077": 1712, "6078": 1713, "6080": 1714, "6081": 1715, "6082": 1716, "6084": 1717, "6087": 1718, "6088": 1719, "6097": 1720, "6098": 1721, "6099": 1722, "6102": 1723, "6104": 1724, "6106": 1725, "6111": 1726, "6115": 1727, "6119": 1728, "6120": 1729, "6121": 1730, "6123": 1731, "6126": 1732, "6127": 1733, "6128": 1734, "6131": 1735, "6135": 1736, "6138": 1737, "6139": 1738, "6145": 1739, "6147": 1740, "6153": 1741, "6157": 1742, "6159": 1743, "6160": 1744, "6167": 1745, "6173": 1746, "6177": 1747, "6178": 1748, "6181": 1749, "6184": 1750, "6188": 1751, "6189": 1752, "6196": 1753, "6199": 1754, "6206": 1755, "6209": 1756, "6211": 1757, "6215": 1758, "6221": 1759, "6224": 1760, "6227": 1761, "6232": 1762, "6233": 1763, "6235": 1764, "6236": 1765, "6241": 1766, "6242": 1767, "6248": 1768, "6249": 1769, "6251": 1770, "6254": 1771, "6258": 1772, "6267": 1773, "6269": 1774, "6272": 1775, "6276": 1776, "6281": 1777, "6284": 1778, "6286": 1779, "6288": 1780, "6294": 1781, "6295": 1782, "6300": 1783, "6308": 1784, "6311": 1785, "6313": 1786, "6317": 1787, "6319": 1788, "6323": 1789, "6324": 1790, "6330": 1791, "6332": 1792, "6333": 1793, "6339": 1794, "6341": 1795, "6345": 1796, "6346": 1797, "6351": 1798, "6352": 1799, "6353": 1800, "6356": 1801, "6358": 1802, "6359": 1803, "6364": 1804, "6367": 1805, "6368": 1806, "6370": 1807, "6371": 1808, "6373": 1809, "6377": 1810, "6378": 1811, "6385": 1812, "6388": 1813, "6391": 1814, "6395": 1815, "6399": 1816, "6402": 1817, "6406": 1818, "6407": 1819, "6411": 1820, "6415": 1821, "6418": 1822, "6426": 1823, "6432": 1824, "6436": 1825, "6437": 1826, "6446": 1827, "6454": 1828, "6455": 1829, "6458": 1830, "6459": 1831, "6467": 1832, "6476": 1833, "6482": 1834, "6484": 1835, "6488": 1836, "6492": 1837, "6494": 1838, "6497": 1839, "6499": 1840, "6505": 1841, "6506": 1842, "6509": 1843, "6510": 1844, "6512": 1845, "6513": 1846, "6518": 1847, "6519": 1848, "6529": 1849, "6531": 1850, "6533": 1851, "6534": 1852, "6535": 1853, "6538": 1854, "6539": 1855, "6540": 1856, "6544": 1857, "6548": 1858, "6549": 1859, "6550": 1860, "6553": 1861, "6555": 1862, "6557": 1863, "6563": 1864, "6567": 1865, "6568": 1866, "6574": 1867, "6575": 1868, "6583": 1869, "6590": 1870, "6594": 1871, "6599": 1872, "6609": 1873, "6610": 1874, "6614": 1875, "6620": 1876, "6625": 1877, "6627": 1878, "6636": 1879, "6637": 1880, "6641": 1881, "6643": 1882, "6652": 1883, "6660": 1884, "6668": 1885, "6670": 1886, "6673": 1887, "6674": 1888, "6676": 1889, "6683": 1890, "6685": 1891, "6686": 1892, "6687": 1893, "6689": 1894, "6690": 1895, "6694": 1896, "6695": 1897, "6696": 1898, "6701": 1899, "6705": 1900, "6707": 1901, "6709": 1902, "6713": 1903, "6724": 1904, "6726": 1905, "6727": 1906, "6733": 1907, "6735": 1908, "6741": 1909, "6743": 1910, "6746": 1911, "6747": 1912, "6749": 1913, "6752": 1914, "6753": 1915, "6754": 1916, "6758": 1917, "6763": 1918, "6773": 1919, "6777": 1920, "6782": 1921, "6784": 1922, "6788": 1923, "6792": 1924, "6794": 1925, "6798": 1926, "6804": 1927, "6807": 1928, "6818": 1929, "6821": 1930, "6828": 1931, "6829": 1932, "6836": 1933, "6841": 1934, "6846": 1935, "6848": 1936, "6849": 1937, "6853": 1938, "6865": 1939, "6875": 1940, "6877": 1941, "6880": 1942, "6882": 1943, "6883": 1944, "6892": 1945, "6895": 1946, "6902": 1947, "6904": 1948, "6906": 1949, "6912": 1950, "6913": 1951, "6914": 1952, "6918": 1953, "6923": 1954, "6924": 1955, "6925": 1956, "6927": 1957, "6930": 1958, "6937": 1959, "6938": 1960, "6943": 1961, "6945": 1962, "6947": 1963, "6950": 1964, "6951": 1965, "6954": 1966, "6956": 1967, "6962": 1968, "6963": 1969, "6965": 1970, "6967": 1971, "6974": 1972, "6978": 1973, "6981": 1974, "6993": 1975, "7000": 1976, "7001": 1977, "7008": 1978, "7009": 1979, "7011": 1980, "7012": 1981, "7018": 1982, "7021": 1983, "7026": 1984, "7030": 1985, "7046": 1986, "7051": 1987, "7055": 1988, "7059": 1989, "7061": 1990, "7062": 1991, "7065": 1992, "7067": 1993, "7069": 1994, "7073": 1995, "7078": 1996, "7079": 1997, "7085": 1998, "7090": 1999, "7092": 2000, "7095": 2001, "7096": 2002, "7097": 2003, "7105": 2004, "7107": 2005, "7113": 2006, "7117": 2007, "7120": 2008, "7121": 2009, "7125": 2010, "7126": 2011, "7127": 2012, "7128": 2013, "7131": 2014, "7134": 2015, "7135": 2016, "7138": 2017, "7139": 2018, "7140": 2019, "7143": 2020, "7145": 2021, "7147": 2022, "7148": 2023, "7150": 2024, "7155": 2025, "7169": 2026, "7170": 2027, "7176": 2028, "7177": 2029, "7178": 2030, "7188": 2031, "7189": 2032, "7190": 2033, "7197": 2034, "7198": 2035, "7199": 2036, "7205": 2037, "7208": 2038, "7215": 2039, "7218": 2040, "7220": 2041, "7223": 2042, "7226": 2043, "7228": 2044, "7229": 2045, "7238": 2046, "7239": 2047, "7240": 2048, "7241": 2049, "7242": 2050, "7245": 2051, "7246": 2052, "7247": 2053, "7250": 2054, "7255": 2055, "7258": 2056, "7263": 2057, "7264": 2058, "7265": 2059, "7276": 2060, "7277": 2061, "7278": 2062, "7285": 2063, "7286": 2064, "7294": 2065, "7297": 2066, "7299": 2067, "7301": 2068, "7302": 2069, "7307": 2070, "7312": 2071, "7313": 2072, "7314": 2073, "7315": 2074, "7316": 2075, "7318": 2076, "7320": 2077, "7326": 2078, "7327": 2079, "7331": 2080, "7333": 2081, "7335": 2082, "7337": 2083, "7338": 2084, "7339": 2085, "7342": 2086, "7346": 2087, "7348": 2088, "7354": 2089, "7357": 2090, "7360": 2091, "7367": 2092, "7376": 2093, "7383": 2094, "7384": 2095, "7387": 2096, "7389": 2097, "7391": 2098, "7392": 2099, "7395": 2100, "7398": 2101, "7402": 2102, "7408": 2103, "7416": 2104, "7423": 2105, "7424": 2106, "7433": 2107, "7434": 2108, "7436": 2109, "7437": 2110, "7445": 2111, "7447": 2112, "7448": 2113, "7460": 2114, "7463": 2115, "7467": 2116, "7475": 2117, "7478": 2118, "7480": 2119, "7481": 2120, "7484": 2121, "7491": 2122, "7492": 2123, "7495": 2124, "7498": 2125, "7502": 2126, "7505": 2127, "7507": 2128, "7510": 2129, "7511": 2130, "7512": 2131, "7514": 2132, "7515": 2133, "7517": 2134, "7518": 2135, "7520": 2136, "7522": 2137, "7525": 2138, "7538": 2139, "7540": 2140, "7552": 2141, "7553": 2142, "7555": 2143, "7556": 2144, "7558": 2145, "7559": 2146, "7561": 2147, "7565": 2148, "7569": 2149, "7584": 2150, "7585": 2151, "7594": 2152, "7597": 2153, "7601": 2154, "7603": 2155, "7607": 2156, "7608": 2157, "7609": 2158, "7618": 2159, "7635": 2160, "7640": 2161, "7641": 2162, "7644": 2163, "7647": 2164, "7649": 2165, "7654": 2166, "7657": 2167, "7665": 2168, "7672": 2169, "7679": 2170, "7683": 2171, "7687": 2172, "7688": 2173, "7691": 2174, "7697": 2175, "7699": 2176, "7700": 2177, "7702": 2178, "7704": 2179, "7705": 2180, "7708": 2181, "7713": 2182, "7717": 2183, "7720": 2184, "7729": 2185, "7730": 2186, "7732": 2187, "7733": 2188, "7737": 2189, "7739": 2190, "7746": 2191, "7749": 2192, "7752": 2193, "7754": 2194, "7756": 2195, "7762": 2196, "7764": 2197, "7766": 2198, "7769": 2199, "7777": 2200, "7780": 2201, "7783": 2202, "7786": 2203, "7789": 2204, "7794": 2205, "7795": 2206, "7796": 2207, "7800": 2208, "7802": 2209, "7809": 2210, "7816": 2211, "7823": 2212, "7825": 2213, "7826": 2214, "7828": 2215, "7832": 2216, "7833": 2217, "7835": 2218, "7837": 2219, "7839": 2220, "7843": 2221, "7848": 2222, "7850": 2223, "7859": 2224, "7867": 2225, "7868": 2226, "7871": 2227, "7874": 2228, "7879": 2229, "7881": 2230, "7883": 2231, "7886": 2232, "7892": 2233, "7898": 2234, "7902": 2235, "7909": 2236, "7910": 2237, "7912": 2238, "7923": 2239, "7925": 2240, "7926": 2241, "7932": 2242, "7933": 2243, "7938": 2244, "7939": 2245, "7942": 2246, "7945": 2247, "7946": 2248, "7949": 2249, "7956": 2250, "7957": 2251, "7959": 2252, "7962": 2253, "7967": 2254, "7975": 2255, "7976": 2256, "7981": 2257, "7982": 2258, "7988": 2259, "7991": 2260, "7994": 2261, "7995": 2262, "7997": 2263, "8005": 2264, "8006": 2265, "8008": 2266, "8009": 2267, "8011": 2268, "8012": 2269, "8014": 2270, "8015": 2271, "8023": 2272, "8028": 2273, "8033": 2274, "8040": 2275, "8042": 2276, "8044": 2277, "8050": 2278, "8051": 2279, "8057": 2280, "8058": 2281, "8063": 2282, "8066": 2283, "8071": 2284, "8072": 2285, "8075": 2286, "8080": 2287, "8087": 2288, "8088": 2289, "8095": 2290, "8097": 2291, "8098": 2292, "8108": 2293, "8112": 2294, "8113": 2295, "8118": 2296, "8119": 2297, "8123": 2298, "8131": 2299, "8138": 2300, "8142": 2301, "8143": 2302, "8148": 2303, "8152": 2304, "8156": 2305, "8163": 2306, "8164": 2307, "8168": 2308, "8169": 2309, "8172": 2310, "8173": 2311, "8176": 2312, "8180": 2313, "8183": 2314, "8188": 2315, "8190": 2316, "8193": 2317, "8194": 2318, "8195": 2319, "8197": 2320, "8199": 2321, "8200": 2322, "8208": 2323, "8215": 2324, "8222": 2325, "8224": 2326, "8225": 2327, "8226": 2328, "8228": 2329, "8230": 2330, "8238": 2331, "8240": 2332, "8242": 2333, "8245": 2334, "8246": 2335, "8250": 2336, "8254": 2337, "8259": 2338, "8262": 2339, "8266": 2340, "8272": 2341, "8273": 2342, "8280": 2343, "8288": 2344, "8291": 2345, "8295": 2346, "8296": 2347, "8297": 2348, "8300": 2349, "8302": 2350, "8307": 2351, "8312": 2352, "8316": 2353, "8321": 2354, "8322": 2355, "8324": 2356, "8328": 2357, "8329": 2358, "8334": 2359, "8337": 2360, "8346": 2361, "8347": 2362, "8356": 2363, "8367": 2364, "8382": 2365, "8388": 2366, "8389": 2367, "8392": 2368, "8394": 2369, "8396": 2370, "8401": 2371, "8404": 2372, "8410": 2373, "8413": 2374, "8414": 2375, "8415": 2376, "8419": 2377, "8421": 2378, "8422": 2379, "8424": 2380, "8425": 2381, "8430": 2382, "8432": 2383, "8441": 2384, "8443": 2385, "8444": 2386, "8445": 2387, "8447": 2388, "8455": 2389, "8459": 2390, "8461": 2391, "8463": 2392, "8464": 2393, "8465": 2394, "8466": 2395, "8468": 2396, "8470": 2397, "8474": 2398, "8476": 2399, "8479": 2400, "8490": 2401, "8494": 2402, "8498": 2403, "8499": 2404, "8500": 2405, "8506": 2406, "8527": 2407, "8531": 2408, "8534": 2409, "8536": 2410, "8543": 2411, "8544": 2412, "8545": 2413, "8555": 2414, "8565": 2415, "8573": 2416, "8575": 2417, "8576": 2418, "8580": 2419, "8587": 2420, "8590": 2421, "8591": 2422, "8592": 2423, "8605": 2424, "8609": 2425, "8619": 2426, "8625": 2427, "8629": 2428, "8630": 2429, "8631": 2430, "8632": 2431, "8635": 2432, "8643": 2433, "8644": 2434, "8664": 2435, "8666": 2436, "8671": 2437, "8675": 2438, "8677": 2439, "8678": 2440, "8684": 2441, "8687": 2442, "8699": 2443, "8705": 2444, "8710": 2445, "8713": 2446, "8718": 2447, "8722": 2448, "8725": 2449, "8742": 2450, "8747": 2451, "8753": 2452, "8758": 2453, "8765": 2454, "8770": 2455, "8771": 2456, "8772": 2457, "8776": 2458, "8778": 2459, "8786": 2460, "8791": 2461, "8797": 2462, "8799": 2463, "8803": 2464, "8808": 2465, "8820": 2466, "8824": 2467, "8825": 2468, "8838": 2469, "8842": 2470, "8846": 2471, "8848": 2472, "8855": 2473, "8867": 2474, "8875": 2475, "8879": 2476, "8887": 2477, "8897": 2478, "8975": 2479, "9000": 2480, "9022": 2481, "9023": 2482, "9026": 2483}
config/speakers.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"3": {"id": 3, "name": "Kara Shallenberg", "gender": "F"}, "8": {"id": 8, "name": "Denny Sayers", "gender": "M"}, "9": {"id": 9, "name": "Sean McKinley", "gender": "M"}, "14": {"id": 14, "name": "Betsie Bush", "gender": "F"}, "18": {"id": 18, "name": "Sherry Crowther", "gender": "F"}, "19": {"id": 19, "name": "Vicki Barbour", "gender": "F"}, "32": {"id": 32, "name": "nan", "gender": "M"}, "41": {"id": 41, "name": "Hugh McGuire", "gender": "M"}, "45": {"id": 45, "name": "Catharine Eastman", "gender": "F"}, "48": {"id": 48, "name": "Rosalind Wills", "gender": "F"}, "49": {"id": 49, "name": "Kristen McQuillin", "gender": "F"}, "59": {"id": 59, "name": "Karen Savage", "gender": "F"}, "68": {"id": 68, "name": "Alex Buie", "gender": "M"}, "73": {"id": 73, "name": "Claire Goget", "gender": "F"}, "80": {"id": 80, "name": "Fox in the Stars", "gender": "F"}, "88": {"id": 88, "name": "Andrew Miller", "gender": "M"}, "99": {"id": 99, "name": "Stewart Wills", "gender": "M"}, "100": {"id": 100, "name": "Heather Barnett", "gender": "F"}, "102": {"id": 102, "name": "Maureen S. O'Brien", "gender": "F"}, "103": {"id": 103, "name": "Joplin James", "gender": "M"}, "112": {"id": 112, "name": "shanda_w", "gender": "F"}, "119": {"id": 119, "name": "Deb Bacon-Ziegler", "gender": "F"}, "122": {"id": 122, "name": "carnright", "gender": "M"}, "124": {"id": 124, "name": "Steve Karafit", "gender": "M"}, "132": {"id": 132, "name": "Becky Miller", "gender": "F"}, "134": {"id": 134, "name": "Mary Reagan", "gender": "F"}, "138": {"id": 138, "name": "Alan Davis Drake (1945-2010)", "gender": "M"}, "152": {"id": 152, "name": "Barbara Wedge", "gender": "F"}, "155": {"id": 155, "name": "Caroline Morse", "gender": "F"}, "156": {"id": 156, "name": "Chris Peterson", "gender": "F"}, "158": {"id": 158, "name": "Randy Phillips", "gender": "M"}, "160": {"id": 160, "name": "deadwhitemales", "gender": "M"}, "165": {"id": 165, "name": "Elisabeth Shields", "gender": "F"}, "167": {"id": 167, "name": "Elizabeth Palmer", "gender": "F"}, "170": {"id": 170, "name": "Aaron Teiser", "gender": "M"}, "186": {"id": 186, "name": "kumarei", "gender": "M"}, "192": {"id": 192, "name": "Nocturna", "gender": "F"}, "194": {"id": 194, "name": "Eric Dennison", "gender": "M"}, "197": {"id": 197, "name": "Brian Roberg", "gender": "M"}, "201": {"id": 201, "name": "Norah Piehl", "gender": "F"}, "206": {"id": 206, "name": "Sandra in Wales, United Kingdom", "gender": "F"}, "208": {"id": 208, "name": "Dave Foss", "gender": "M"}, "209": {"id": 209, "name": "Steve Hartzog", "gender": "M"}, "214": {"id": 214, "name": "Scott Splavec", "gender": "M"}, "216": {"id": 216, "name": "Dave Ranson", "gender": "M"}, "226": {"id": 226, "name": "Neal Foley", "gender": "M"}, "261": {"id": 261, "name": "Joy Scaglione", "gender": "F"}, "274": {"id": 274, "name": "toriasuncle", "gender": "M"}, "284": {"id": 284, "name": "Anne", "gender": "F"}, "292": {"id": 292, "name": "Tamara R. Schwartz", "gender": "F"}, "309": {"id": 309, "name": "Karen Labenz", "gender": "F"}, "340": {"id": 340, "name": "Nick Gallant", "gender": "M"}, "344": {"id": 344, "name": "rovert405", "gender": "M"}, "355": {"id": 355, "name": "Lana Taylor", "gender": "F"}, "359": {"id": 359, "name": "Greg Bryant", "gender": "M"}, "360": {"id": 360, "name": "frankjf", "gender": "M"}, "395": {"id": 395, "name": "Kevin O'Coin", "gender": "M"}, "396": {"id": 396, "name": "John Garvin", "gender": "M"}, "409": {"id": 409, "name": "Dawn", "gender": "F"}, "411": {"id": 411, "name": "Fracture", "gender": "M"}, "414": {"id": 414, "name": "Christabel", "gender": "F"}, "421": {"id": 421, "name": "Merryb", "gender": "F"}, "426": {"id": 426, "name": "Megan Stemm-Wade", "gender": "F"}, "441": {"id": 441, "name": "roolynninms", "gender": "F"}, "454": {"id": 454, "name": "Tim Gregory", "gender": "M"}, "457": {"id": 457, "name": "Sandra", "gender": "F"}, "465": {"id": 465, "name": "Leonie Rose", "gender": "F"}, "487": {"id": 487, "name": "John Schell", "gender": "M"}, "498": {"id": 498, "name": "Chris Gladis", "gender": "M"}, "499": {"id": 499, "name": "Tammy Sanders", "gender": "F"}, "524": {"id": 524, "name": "Luigina", "gender": "F"}, "526": {"id": 526, "name": "webslog", "gender": "M"}, "542": {"id": 542, "name": "Ann Boyer", "gender": "F"}, "552": {"id": 552, "name": "Mim Ritty", "gender": "F"}, "561": {"id": 561, "name": "Lorelle Anderson", "gender": "F"}, "566": {"id": 566, "name": "Jon Scott Jones", "gender": "M"}, "574": {"id": 574, "name": "Daniel Shorten", "gender": "M"}, "619": {"id": 619, "name": "Rob Whelan", "gender": "M"}, "626": {"id": 626, "name": "Erin Hastings", "gender": "F"}, "628": {"id": 628, "name": "Bryan Ness", "gender": "M"}, "662": {"id": 662, "name": "Laura Caldwell", "gender": "F"}, "670": {"id": 670, "name": "Rowdy Delaney", "gender": "M"}, "676": {"id": 676, "name": "Jennifer", "gender": "F"}, "685": {"id": 685, "name": "Nikki Sullivan", "gender": "F"}, "693": {"id": 693, "name": "Belinda Brown", "gender": "F"}, "695": {"id": 695, "name": "Dawn Larsen", "gender": "F"}, "702": {"id": 702, "name": "Michelle White", "gender": "F"}, "707": {"id": 707, "name": "Larry Maddocks", "gender": "M"}, "710": {"id": 710, "name": "Sheila Morton", "gender": "F"}, "738": {"id": 738, "name": "Elaine Hamby", "gender": "F"}, "749": {"id": 749, "name": "Great Plains", "gender": "M"}, "758": {"id": 758, "name": "Matthew Westra", "gender": "M"}, "761": {"id": 761, "name": "Susan Umpleby", "gender": "F"}, "765": {"id": 765, "name": "Andrea Fiore", "gender": "F"}, "791": {"id": 791, "name": "David Kleparek", "gender": "M"}, "813": {"id": 813, "name": "Ger", "gender": "M"}, "815": {"id": 815, "name": "treefingers", "gender": "F"}, "825": {"id": 825, "name": "Julia Albath", "gender": "F"}, "828": {"id": 828, "name": "Seth Adam Sher", "gender": "M"}, "845": {"id": 845, "name": "S. Young", "gender": "M"}, "847": {"id": 847, "name": "Rob Powell", "gender": "M"}, "887": {"id": 887, "name": "Donna Stewart", "gender": "F"}, "903": {"id": 903, "name": "Piper Hale", "gender": "F"}, "915": {"id": 915, "name": "Catherine Millward", "gender": "F"}, "921": {"id": 921, "name": "Linda McDaniel", "gender": "F"}, "922": {"id": 922, "name": "ricell", "gender": "M"}, "926": {"id": 926, "name": "Ryan Sutter", "gender": "M"}, "930": {"id": 930, "name": "Janna", "gender": "F"}, "931": {"id": 931, "name": "David Lawrence", "gender": "M"}, "939": {"id": 939, "name": "Scott Carpenter", "gender": "M"}, "948": {"id": 948, "name": "Jamie Strassenburg, Cypress, California", "gender": "F"}, "988": {"id": 988, "name": "Jessica Louise", "gender": "F"}, "1002": {"id": 1002, "name": "David Anton", "gender": "M"}, "1012": {"id": 1012, "name": "fourteatoo", "gender": "M"}, "1019": {"id": 1019, "name": "Karen Commins", "gender": "F"}, "1021": {"id": 1021, "name": "flakker", "gender": "M"}, "1022": {"id": 1022, "name": "peac", "gender": "M"}, "1027": {"id": 1027, "name": "Kate West", "gender": "F"}, "1055": {"id": 1055, "name": "Craig Campbell", "gender": "M"}, "1066": {"id": 1066, "name": "Anders Lankford", "gender": "M"}, "1067": {"id": 1067, "name": "Heidi Will", "gender": "F"}, "1076": {"id": 1076, "name": "Robin Balmer", "gender": "M"}, "1084": {"id": 1084, "name": "Bereni", "gender": "F"}, "1112": {"id": 1112, "name": "Richard Wallis", "gender": "M"}, "1126": {"id": 1126, "name": "Barry Eads", "gender": "M"}, "1134": {"id": 1134, "name": "Bruce Pirie", "gender": "M"}, "1137": {"id": 1137, "name": "Kevin Lavin", "gender": "M"}, "1156": {"id": 1156, "name": "Jesse Noar", "gender": "M"}, "1160": {"id": 1160, "name": "rymd80", "gender": "M"}, "1168": {"id": 1168, "name": "Epistomolus", "gender": "M"}, "1175": {"id": 1175, "name": "Keneva", "gender": "F"}, "1196": {"id": 1196, "name": "johnell", "gender": "F"}, "1205": {"id": 1205, "name": "Kate Adams", "gender": "F"}, "1206": {"id": 1206, "name": "lavocedorata", "gender": "F"}, "1216": {"id": 1216, "name": "Tom Clifton", "gender": "M"}, "1219": {"id": 1219, "name": "Nicholas Clifford", "gender": "M"}, "1227": {"id": 1227, "name": "Liz Devens", "gender": "F"}, "1237": {"id": 1237, "name": "Blazin48", "gender": "F"}, "1247": {"id": 1247, "name": "Sarah LuAnn", "gender": "F"}, "1254": {"id": 1254, "name": "Rosie", "gender": "F"}, "1263": {"id": 1263, "name": "bj", "gender": "F"}, "1268": {"id": 1268, "name": "A. Janelle Risa", "gender": "F"}, "1285": {"id": 1285, "name": "Ric F", "gender": "M"}, "1294": {"id": 1294, "name": "Tina Horning", "gender": "F"}, "1303": {"id": 1303, "name": "kiwafruit", "gender": "F"}, "1310": {"id": 1310, "name": "Michelle Montano", "gender": "F"}, "1315": {"id": 1315, "name": "John Dennison", "gender": "M"}, "1317": {"id": 1317, "name": "Matthew Scott Surprenant", "gender": "M"}, "1330": {"id": 1330, "name": "William Peck", "gender": "M"}, "1339": {"id": 1339, "name": "margo zinberg", "gender": "F"}, "1369": {"id": 1369, "name": "Karen Mason", "gender": "F"}, "1374": {"id": 1374, "name": "pachayes", "gender": "F"}, "1403": {"id": 1403, "name": "Bill Boerst", "gender": "M"}, "1409": {"id": 1409, "name": "Steve Mattern", "gender": "M"}, "1412": {"id": 1412, "name": "George Aalto", "gender": "M"}, "1421": {"id": 1421, "name": "Barbara Derksen", "gender": "F"}, "1424": {"id": 1424, "name": "nathank", "gender": "M"}, "1429": {"id": 1429, "name": "greatbasinrain", "gender": "M"}, "1461": {"id": 1461, "name": "Kathleen Costa", "gender": "F"}, "1470": {"id": 1470, "name": "Bradley Smith", "gender": "M"}, "1481": {"id": 1481, "name": "Chuck Burke", "gender": "M"}, "1497": {"id": 1497, "name": "LilyAnne", "gender": "F"}, "1506": {"id": 1506, "name": "Jason Esteves", "gender": "M"}, "1537": {"id": 1537, "name": "Jay Bidal", "gender": "M"}, "1543": {"id": 1543, "name": "Lauren McCullough", "gender": "F"}, "1552": {"id": 1552, "name": "Charles Bice", "gender": "M"}, "1553": {"id": 1553, "name": "Amy Hengst", "gender": "F"}, "1564": {"id": 1564, "name": "e_scarab", "gender": "M"}, "1567": {"id": 1567, "name": "GLM", "gender": "M"}, "1576": {"id": 1576, "name": "Ella Jane Quentin", "gender": "F"}, "1582": {"id": 1582, "name": "Ellen Jones", "gender": "F"}, "1601": {"id": 1601, "name": "amicrazy2u", "gender": "F"}, "1610": {"id": 1610, "name": "jgoffena", "gender": "M"}, "1614": {"id": 1614, "name": "Jennifer Dionne", "gender": "F"}, "1617": {"id": 1617, "name": "Garth Comira", "gender": "M"}, "1631": {"id": 1631, "name": "laurencetrask", "gender": "M"}, "1638": {"id": 1638, "name": "Laura Victoria", "gender": "F"}, "1641": {"id": 1641, "name": "Kirsten Wever", "gender": "F"}, "1645": {"id": 1645, "name": "jeandelfrio", "gender": "M"}, "1656": {"id": 1656, "name": "Sharon Omi", "gender": "F"}, "1690": {"id": 1690, "name": "MissRose", "gender": "F"}, "1696": {"id": 1696, "name": "DerekP", "gender": "M"}, "1706": {"id": 1706, "name": "Deborah Knight", "gender": "F"}, "1713": {"id": 1713, "name": "dobsonfly", "gender": "F"}, "1715": {"id": 1715, "name": "Lazuli", "gender": "M"}, "1740": {"id": 1740, "name": "Liberty Stump", "gender": "F"}, "1749": {"id": 1749, "name": "Mike", "gender": "M"}, "1756": {"id": 1756, "name": "deckerteach", "gender": "M"}, "1775": {"id": 1775, "name": "jlenardon", "gender": "F"}, "1805": {"id": 1805, "name": "Vince Dee", "gender": "M"}, "1812": {"id": 1812, "name": "Novella Serena", "gender": "F"}, "1821": {"id": 1821, "name": "Daryl Wor", "gender": "F"}, "1826": {"id": 1826, "name": "John Hoerr", "gender": "M"}, "1828": {"id": 1828, "name": "David Wales", "gender": "M"}, "1833": {"id": 1833, "name": "Viridian", "gender": "F"}, "1849": {"id": 1849, "name": "Fred DeBerardinis", "gender": "M"}, "1850": {"id": 1850, "name": "janesandberg", "gender": "F"}, "1864": {"id": 1864, "name": "William Tomcho", "gender": "M"}, "1929": {"id": 1929, "name": "beckyboyd", "gender": "F"}, "1933": {"id": 1933, "name": "John", "gender": "M"}, "1936": {"id": 1936, "name": "KarlHenning", "gender": "M"}, "1942": {"id": 1942, "name": "Capybara", "gender": "M"}, "1956": {"id": 1956, "name": "Thomas Meaney", "gender": "M"}, "1989": {"id": 1989, "name": "Joannemmp", "gender": "F"}, "1993": {"id": 1993, "name": "Matthew Wall", "gender": "M"}, "1996": {"id": 1996, "name": "Mary in Arkansas", "gender": "F"}, "2006": {"id": 2006, "name": "Sukaina Jaffer", "gender": "F"}, "2023": {"id": 2023, "name": "Vickie Ranz", "gender": "F"}, "2030": {"id": 2030, "name": "J.K. Neely", "gender": "F"}, "2033": {"id": 2033, "name": "Tony Posante", "gender": "M"}, "2043": {"id": 2043, "name": "Jonathan Moore", "gender": "M"}, "2058": {"id": 2058, "name": "Sean McClain", "gender": "M"}, "2062": {"id": 2062, "name": "Jon Smith", "gender": "M"}, "2069": {"id": 2069, "name": "Asta1234", "gender": "F"}, "2071": {"id": 2071, "name": "nkneer", "gender": "M"}, "2092": {"id": 2092, "name": "NIneFive83", "gender": "M"}, "2102": {"id": 2102, "name": "Canby Ibarra", "gender": "M"}, "2112": {"id": 2112, "name": "dasbury", "gender": "M"}, "2127": {"id": 2127, "name": "Ron Lockhart", "gender": "M"}, "2130": {"id": 2130, "name": "Sherri Vance", "gender": "F"}, "2134": {"id": 2134, "name": "Raz Mason", "gender": "F"}, "2160": {"id": 2160, "name": "Judy Guinan", "gender": "F"}, "2201": {"id": 2201, "name": "tazzle", "gender": "F"}, "2205": {"id": 2205, "name": "mlcui", "gender": "F"}, "2208": {"id": 2208, "name": "Arie", "gender": "F"}, "2224": {"id": 2224, "name": "xinamarieuhl", "gender": "F"}, "2270": {"id": 2270, "name": "constatine", "gender": "F"}, "2279": {"id": 2279, "name": "Maria Kasper", "gender": "F"}, "2282": {"id": 2282, "name": "Robert Snoza", "gender": "M"}, "2289": {"id": 2289, "name": "Jason Bolestridge", "gender": "M"}, "2290": {"id": 2290, "name": "Theodulf", "gender": "M"}, "2292": {"id": 2292, "name": "Arnold", "gender": "M"}, "2293": {"id": 2293, "name": "drakaunus", "gender": "M"}, "2298": {"id": 2298, "name": "Sheila Wood", "gender": "F"}, "2328": {"id": 2328, "name": "Adam Picot", "gender": "M"}, "2331": {"id": 2331, "name": "Madam Fickle", "gender": "F"}, "2352": {"id": 2352, "name": "Jaimie Noy", "gender": "F"}, "2356": {"id": 2356, "name": "Kathy Wright", "gender": "F"}, "2377": {"id": 2377, "name": "Jon Kissack", "gender": "M"}, "2381": {"id": 2381, "name": "Larry Wilson", "gender": "M"}, "2394": {"id": 2394, "name": "TinaNygard2", "gender": "F"}, "2396": {"id": 2396, "name": "Jennifer Dorr", "gender": "F"}, "2419": {"id": 2419, "name": "Gary Dana", "gender": "M"}, "2425": {"id": 2425, "name": "noblesavage", "gender": "M"}, "2428": {"id": 2428, "name": "Shivansh Dhar", "gender": "M"}, "2429": {"id": 2429, "name": "Eduardo", "gender": "M"}, "2451": {"id": 2451, "name": "DeanOBuchanan", "gender": "M"}, "2455": {"id": 2455, "name": "Paul Simonin", "gender": "M"}, "2462": {"id": 2462, "name": "Sean Grabosky", "gender": "M"}, "2469": {"id": 2469, "name": "Kevin Owens", "gender": "M"}, "2479": {"id": 2479, "name": "Daisy Flaim", "gender": "F"}}
config/speakers.tsv ADDED
@@ -0,0 +1,2485 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ READER GENDER SUBSET NAME
2
+ 14 F train-clean-360 Kristin LeMoine
3
+ 16 F train-clean-360 Alys AtteWater
4
+ 17 M train-clean-360 Gord Mackenzie
5
+ 19 F train-clean-100 Kara Shallenberg
6
+ 20 F train-other-500 Gesine
7
+ 22 F train-clean-360 Michelle Crandall
8
+ 23 F train-clean-360 Anita Roy Dobbs
9
+ 25 M train-other-500 John Gonzalez
10
+ 26 M train-clean-100 Denny Sayers
11
+ 27 M train-clean-100 Sean McKinley
12
+ 28 F train-clean-360 Kristin Hughes
13
+ 29 M train-other-500 Linton
14
+ 30 F train-clean-360 Annie Coleman Rothenberg
15
+ 31 M train-other-500 Martin Clifton
16
+ 32 F train-clean-100 Betsie Bush
17
+ 36 M train-other-500 Chip
18
+ 37 M train-other-500 wolvrin
19
+ 38 M train-clean-360 R. Francis Smith
20
+ 39 F train-clean-100 Sherry Crowther
21
+ 40 F train-clean-100 Vicki Barbour
22
+ 44 F train-other-500 travelbratd
23
+ 45 F train-other-500 Kelly Bescherer
24
+ 46 M train-other-500 Aaron Hochwimmer
25
+ 47 F train-other-500 Amanda
26
+ 49 M train-other-500 vrk74
27
+ 51 M train-other-500 rakkar
28
+ 52 F train-other-500 Luisa Hall
29
+ 54 F train-clean-360 Westwinds12
30
+ 55 M train-clean-360 David Jaquay
31
+ 56 F train-clean-360 Kirsten Ferreri
32
+ 57 F train-other-500 Ophelia Darcy
33
+ 58 M train-other-500 George Coutts
34
+ 60 M train-clean-100
35
+ 61 M test-clean Paul-Gabriel Wiener
36
+ 62 M train-other-500 Faris
37
+ 64 F train-clean-360 Robin Cotter
38
+ 65 F train-other-500 chriss the girl
39
+ 66 M train-other-500 Alex Foster
40
+ 70 M train-clean-360 Kurt Copeland
41
+ 75 M train-other-500 Jim Mowatt
42
+ 77 F train-other-500 JemmaBlythe
43
+ 78 M train-clean-100 Hugh McGuire
44
+ 79 F train-clean-360 Jennifer Crispin
45
+ 81 M train-clean-360 Aaron Decker
46
+ 82 F train-other-500 Marlo Dianne
47
+ 83 F train-clean-100 Catharine Eastman
48
+ 84 F dev-clean Christie Nowak
49
+ 85 M train-other-500 David Leaman
50
+ 87 F train-clean-100 Rosalind Wills
51
+ 89 F train-clean-100 Kristen McQuillin
52
+ 90 M train-clean-360 Dan Threetrees
53
+ 91 M train-other-500 Stephan Mobius
54
+ 92 F train-other-500 Cori Samuel
55
+ 93 F train-clean-360 Kathy
56
+ 94 M train-other-500 David Barnes
57
+ 98 F train-clean-360 Patricia Oakley
58
+ 100 F train-clean-360 Judy Bieber
59
+ 101 M train-clean-360 paulino
60
+ 102 F train-other-500 Linda Leu
61
+ 103 F train-clean-100 Karen Savage
62
+ 104 F train-other-500 Laura M.D.
63
+ 107 M train-other-500 John Greenman
64
+ 110 F train-other-500 Cynthia Lyons (1946-2011)
65
+ 111 F train-other-500 Linda Wilcox
66
+ 112 F train-clean-360 Christiane Levesque
67
+ 114 F train-clean-360 Jen Kidd
68
+ 115 F train-clean-360 Maddie
69
+ 116 M dev-other Steven Collins
70
+ 118 M train-clean-100 Alex Buie
71
+ 119 M train-clean-360 Alex Patterson
72
+ 121 F test-clean Nikolle Doolin
73
+ 122 M train-clean-360 J.C.
74
+ 123 F train-other-500 Ezwa
75
+ 125 F train-clean-100 Claire Goget
76
+ 126 F train-clean-360 Susan Denney
77
+ 127 M train-other-500 John Hicken
78
+ 128 M train-other-500 ML Cohen
79
+ 133 M train-other-500 Mick
80
+ 147 M train-other-500 Thomas Hoover
81
+ 149 M train-other-500 Joshua Young
82
+ 150 F train-clean-100 Fox in the Stars
83
+ 151 F train-other-500 Gwen
84
+ 152 M train-other-500 Andy Minter
85
+ 153 M train-other-500 Graham Williams
86
+ 154 M train-clean-360 Robert Foster
87
+ 157 M train-clean-360 Ben Douglas
88
+ 159 M train-clean-360 hugh mac
89
+ 161 M train-other-500 Cyril Law, Jr.
90
+ 163 M train-clean-100 Andrew Miller
91
+ 166 F train-clean-360 Paula Berinstein
92
+ 167 M train-other-500 Peter Yearsley
93
+ 168 M train-other-500 Chris Goringe
94
+ 173 F train-other-500 vlooi
95
+ 174 M dev-clean Peter Eastman
96
+ 175 F train-clean-360 Meredith Hughes
97
+ 176 M train-clean-360 Vinny Bove
98
+ 177 F train-other-500 Kymm Zuckert
99
+ 188 F train-clean-360 Mary Anderson
100
+ 192 F train-clean-360 Deborah Clark
101
+ 196 M train-clean-100 Stewart Wills
102
+ 198 F train-clean-100 Heather Barnett
103
+ 199 F train-other-500 Maria Morabe
104
+ 200 F train-clean-100 Maureen S. O'Brien
105
+ 201 M train-clean-100 Joplin James
106
+ 202 F train-other-500 Geetu Melwani
107
+ 203 F train-clean-360 Marian Brown
108
+ 204 M train-clean-360 Mark F. Smith
109
+ 205 F train-clean-360 Esther
110
+ 207 M train-clean-360 Kevin McAsh
111
+ 208 F train-clean-360 Andrea L
112
+ 209 F train-clean-360 Moira Fogarty
113
+ 210 M train-clean-360 Aldark
114
+ 211 F train-clean-100 shanda_w
115
+ 215 F train-other-500 Alice Elizabeth Still
116
+ 216 M train-clean-360 Thomas Davoren
117
+ 217 F train-clean-360 firefly
118
+ 218 M train-other-500 Kelly Clear
119
+ 224 F train-clean-360 Caitlin Kelly
120
+ 225 F train-clean-360 Brenda Dayne
121
+ 226 F train-clean-100 Deb Bacon-Ziegler
122
+ 227 F train-clean-360 Sarah Key-DeLyria
123
+ 228 F train-other-500 Arctura
124
+ 229 M train-clean-100 carnright
125
+ 231 M train-clean-360 Sean McGaughey
126
+ 233 M train-clean-100 Steve Karafit
127
+ 237 F test-clean rachelellen
128
+ 238 F train-other-500 Maria Elmvang
129
+ 240 M train-clean-360 Shurtagal
130
+ 242 F train-clean-360 Cagirlwithasoutherndrawl
131
+ 243 F train-other-500 Jennifer Stearns
132
+ 245 M train-other-500 Peter of Buckinghamshire England
133
+ 246 F train-clean-360 Beth Dudek
134
+ 248 F train-clean-100 Becky Miller
135
+ 249 M train-clean-360 pww214
136
+ 250 F train-clean-100 Mary Reagan
137
+ 251 M dev-clean Mark Nelson
138
+ 252 M train-other-500 Rainer
139
+ 253 M train-other-500 Stefan Schmelz
140
+ 254 M train-clean-100 Alan Davis Drake (1945-2010)
141
+ 255 M train-other-500 Chris Hawk
142
+ 258 M train-clean-360 Kurt Wong
143
+ 260 M test-clean Brad Bush
144
+ 263 M train-other-500 Michael Sirois
145
+ 264 M train-other-500 Chris Hughes
146
+ 265 M train-other-500 Janice
147
+ 272 M train-clean-360 Mr. Baby Man
148
+ 273 M train-other-500 Jim Cadwell
149
+ 274 F train-clean-360 Eileen George
150
+ 277 F train-other-500 Alessia
151
+ 278 F train-clean-360 AliceG
152
+ 283 M train-other-500 Asaf Bartov
153
+ 288 F train-clean-360 Bookworm
154
+ 289 F train-clean-100 Barbara Wedge
155
+ 294 F train-other-500 Calliope
156
+ 296 M train-clean-360 Carl Manchester
157
+ 298 F train-clean-100 Caroline Morse
158
+ 302 F train-clean-100 Chris Peterson
159
+ 303 M train-clean-360 Tony Hightower
160
+ 307 M train-clean-100 Randy Phillips
161
+ 310 F train-other-500 Dexnell Peters
162
+ 311 M train-clean-100 deadwhitemales
163
+ 313 F train-other-500 Dilini Jayasinghe
164
+ 317 M train-other-500 Mike Gardom
165
+ 318 F train-clean-360 Eileen aka e
166
+ 319 M train-other-500 Ed Good
167
+ 322 F train-clean-100 Elisabeth Shields
168
+ 323 F train-clean-360 Erica Kuntz
169
+ 328 F train-clean-100 Elizabeth Palmer
170
+ 329 M train-clean-360 Todd Cranston-Cuebas
171
+ 331 M train-other-500 Richard Grove
172
+ 332 M train-clean-100 Aaron Teiser
173
+ 335 M train-clean-360 Paul Harvey
174
+ 336 M train-other-500 Harvey Chinn
175
+ 337 F train-clean-360 Barbara Harvey
176
+ 339 F train-clean-360 Heather Ordover
177
+ 340 M train-clean-360 Scott Henkel
178
+ 345 M train-clean-360 Micah Sheppard
179
+ 348 M train-other-500 ianish
180
+ 353 M train-clean-360 Jamey Osborne
181
+ 359 M train-clean-360 John Nicholson
182
+ 362 F train-clean-360 Judith Brown
183
+ 365 M train-other-500 Jon Ingram
184
+ 366 F train-other-500 Katy Preston
185
+ 367 F test-other Kathleen Dang
186
+ 369 M train-clean-360 Kevin Readdean
187
+ 373 F train-clean-360 Kim Braun
188
+ 374 M train-clean-100 kumarei
189
+ 377 M train-other-500 Lenny Glionna Jr.
190
+ 380 F train-clean-360 Laurie Campbell
191
+ 392 F train-other-500 Maria Celano
192
+ 398 M train-clean-360 James Smith
193
+ 402 F train-other-500 Sharmini Kumar
194
+ 403 F train-clean-100 Nocturna
195
+ 404 F train-other-500 Nomenphile
196
+ 405 M train-clean-100 Eric Dennison
197
+ 408 F train-clean-360 Claudine Chen
198
+ 409 M train-clean-360 Mike Kauffmann
199
+ 412 M train-clean-100 Brian Roberg
200
+ 413 M train-other-500 Daniel Watkins
201
+ 421 M train-other-500 Patrick
202
+ 422 M dev-clean President Lethe
203
+ 426 F train-clean-100 Norah Piehl
204
+ 428 M train-other-500 Rayburn Beale
205
+ 432 M train-other-500 Steve Andersen
206
+ 434 F train-clean-360 Joyce Nussbaum
207
+ 439 M train-clean-360 Robert Garrison
208
+ 441 F train-clean-100 Sandra in Wales, United Kingdom
209
+ 444 F train-other-500 Sage Tyrtle
210
+ 445 M train-clean-100 Dave Foss
211
+ 446 M train-clean-100 Steve Hartzog
212
+ 448 F train-other-500 scrappylibrarian
213
+ 451 F train-clean-360 Sonserae Leese-Calver
214
+ 453 M train-other-500 Glen Hallstrom
215
+ 454 M train-clean-360 Tom Yates
216
+ 458 M train-clean-100 Scott Splavec
217
+ 459 M train-clean-360 Mark Bradford
218
+ 460 M train-clean-100 Dave Ranson
219
+ 464 M train-clean-360 Mike Wilson
220
+ 466 F train-other-500 Joy Chan
221
+ 470 M train-other-500 Chris Chapman
222
+ 472 F train-clean-360 Tina Tilney
223
+ 474 M train-other-500 Zachary Brewster-Geisz
224
+ 475 M train-clean-360 Jason X.
225
+ 476 M train-clean-360 Chuck Spann
226
+ 479 F train-clean-360 wedschild
227
+ 480 M train-clean-360 Chris Vee
228
+ 481 M train-clean-100 Neal Foley
229
+ 483 F train-other-500 junk science
230
+ 487 M train-clean-360 Clayton J. Smith
231
+ 489 F train-other-500 Tora
232
+ 492 M train-clean-360 TBOL3
233
+ 497 M train-clean-360 audiotoshokan
234
+ 500 M train-clean-360 galaxiant
235
+ 501 M train-clean-360 mikenkat
236
+ 505 M train-other-500 Menno
237
+ 510 M train-clean-360 Kirk Thomas
238
+ 511 M train-clean-360 Matthew Shepherd
239
+ 512 M train-clean-360 Anthony Craine
240
+ 517 M train-other-500 Matthew Walton
241
+ 525 F train-clean-360 Victoria Long
242
+ 533 F test-other Ana Simao
243
+ 534 F train-clean-360 Jean O'Sullivan
244
+ 542 M train-other-500 J. Hall
245
+ 543 M train-clean-360 Ted Delorme
246
+ 544 M train-other-500 bozgeez
247
+ 548 M train-clean-360 Chris Mitchell
248
+ 549 F train-clean-360 SarahHadley
249
+ 551 M train-other-500 Guntar
250
+ 557 M train-other-500 fieldsofgold
251
+ 559 M train-clean-360 Bill Stackpole
252
+ 561 M train-clean-360 Quentin
253
+ 567 M train-other-500 Aaron Benedict
254
+ 568 M train-other-500 JD Weber
255
+ 569 M train-other-500 Frank
256
+ 572 M train-other-500 Rebecca Dittman
257
+ 576 F train-clean-360 Caroline Mercier
258
+ 580 M train-clean-360 Ryan
259
+ 581 M train-clean-360 C. Berrius
260
+ 583 M train-clean-360 Russ Maxwell
261
+ 584 F train-other-500 miette
262
+ 585 F train-other-500 pheo
263
+ 587 F train-clean-100 Joy Scaglione
264
+ 589 F train-clean-360 Stephanie Konig
265
+ 593 M train-clean-360 Eric S. Piotrowski
266
+ 594 M train-clean-360 KentF
267
+ 596 F train-clean-360 Carol Goode
268
+ 597 F train-clean-360 Lisa Chau
269
+ 598 F train-clean-360 Kim
270
+ 606 M train-clean-360 Julian Jamison
271
+ 608 F train-other-500 Baranduin
272
+ 612 F train-clean-360 Cindy Steib
273
+ 613 M train-other-500 D.E. Wittkower
274
+ 614 F train-other-500 Christine Blachford
275
+ 622 M train-other-500 Andrew Lebrun
276
+ 625 M train-clean-100 toriasuncle
277
+ 636 F train-clean-360 Zale Schafer (Rose May Chamberlin Memorial Foundat
278
+ 637 M train-clean-360 Michael Scherer
279
+ 639 M train-clean-360 Robert Beach
280
+ 644 M train-other-500 Daniele
281
+ 652 M dev-clean Scott Walter
282
+ 663 M train-clean-360 Bruce Stafford
283
+ 664 F train-clean-360 Wendy G.
284
+ 666 F train-clean-360 Monique
285
+ 667 F train-clean-360 Bethany Simpson
286
+ 669 F train-clean-100 Anne
287
+ 671 M train-clean-360 koijmonop
288
+ 672 M test-clean Taylor Burton-Edward
289
+ 679 M train-other-500 rhodian
290
+ 681 F train-other-500 Lucy Burgoyne
291
+ 684 F train-other-500 Lizzie Driver
292
+ 688 F train-clean-360 J. M. Smallheer
293
+ 690 F train-other-500 Silver
294
+ 696 F train-clean-100 Tamara R. Schwartz
295
+ 698 F train-clean-360 Randi Warwick
296
+ 699 F train-clean-360 Diana Kiesners
297
+ 700 F dev-other Susan Hooks
298
+ 705 F train-other-500 eva
299
+ 707 M train-clean-360 Jason Mayoff
300
+ 708 M train-clean-360 Kevin Devine
301
+ 711 M train-clean-360 Roy Schreiber
302
+ 712 M train-other-500 Michael Shook
303
+ 713 F train-other-500 Onjana Yawnghwe
304
+ 716 M train-clean-360 martyd
305
+ 718 M train-clean-360 clarknova
306
+ 720 M train-other-500 Peter Gallagher
307
+ 724 M train-clean-360 Michael Crowl
308
+ 726 M train-other-500 Paul
309
+ 727 M train-other-500 Andrew Richards
310
+ 728 M train-other-500 Eric Connover
311
+ 730 F train-clean-100 Karen Labenz
312
+ 731 F train-clean-360 Megan-Jane Daniels Suyasu
313
+ 737 M train-other-500 Roger W. Barnett
314
+ 742 M train-other-500 Peter Groom
315
+ 753 M train-other-500 Tim Bulkeley
316
+ 764 M train-clean-360 Carl Vonnoh, III
317
+ 766 M train-other-500 Jean Crevier
318
+ 770 M train-clean-360 Justin S Barrett
319
+ 774 F train-other-500 Sara Walsh
320
+ 777 M dev-clean fling93
321
+ 778 M train-other-500 Branko Collin
322
+ 779 M train-other-500 Greg
323
+ 780 M train-other-500 Lloyd Davis
324
+ 781 M train-clean-360 Mitchell Dwyer
325
+ 782 F train-other-500 Michele Pacey
326
+ 783 F train-clean-360 Gina
327
+ 789 F train-other-500 Eva
328
+ 791 M train-other-500 Ivan
329
+ 792 F train-other-500 mjd-s
330
+ 797 M train-other-500 Mike Shapiro
331
+ 803 M train-clean-360 Greg Elmensdorp
332
+ 806 M train-clean-360 Aaron Andradne
333
+ 807 M train-other-500 Luke Venediger
334
+ 810 M train-other-500 Joseph Loverti
335
+ 811 F train-other-500 Elizabeth
336
+ 815 M train-clean-360 mawrtea
337
+ 816 M train-clean-360 Jeff Robinson
338
+ 820 M train-clean-360 Scoot
339
+ 826 M train-other-500 Thomas Wells
340
+ 829 F train-clean-360 frenchfry
341
+ 830 F train-clean-360 sebrazer
342
+ 831 M train-clean-100 Nick Gallant
343
+ 834 F train-clean-360 nausicaa
344
+ 835 M train-clean-360 echo
345
+ 836 M train-clean-360 Kevin LaVergne
346
+ 839 M train-clean-100 rovert405
347
+ 844 F train-other-500 Martina
348
+ 845 M train-other-500 DaveF
349
+ 846 M train-other-500 Anadaxis_Canejia
350
+ 850 M train-clean-360 tonypettit
351
+ 851 M train-other-500 brenthumphries
352
+ 868 M train-clean-360 Mike Rosenlof
353
+ 876 F train-other-500 Alisha
354
+ 882 F train-clean-360 Mur Lafferty
355
+ 884 M train-other-500 sayeth
356
+ 886 M train-other-500 Paul S. Jenkins
357
+ 887 F train-clean-100 Lana Taylor
358
+ 895 M train-other-500 Max Porter Zasada
359
+ 899 M train-clean-360 thomahal
360
+ 908 M test-clean Sam Stinson
361
+ 909 M train-clean-100 Greg Bryant
362
+ 911 M train-clean-100 frankjf
363
+ 915 M train-other-500 Ted Kaouk
364
+ 920 F train-clean-360 Sarah Bean
365
+ 921 M train-other-500 Brian J. Callaghan
366
+ 922 M train-clean-360 Steven H. Wilson
367
+ 923 F train-other-500 Layna
368
+ 925 F train-clean-360 pattymarie
369
+ 927 M train-other-500 Nerijus
370
+ 937 F train-other-500 Susie G.
371
+ 948 F train-clean-360 Chere Theriot
372
+ 949 M train-clean-360 ontheroad
373
+ 951 F train-other-500 thomasina
374
+ 953 M train-clean-360 Jim Mullins
375
+ 954 M train-clean-360 Brooks Seveer
376
+ 956 F train-other-500 krithiga
377
+ 957 M train-clean-360 iscatel
378
+ 960 F train-other-500 Marloes Schoonheim
379
+ 964 M train-other-500 Paul Sze
380
+ 968 F train-clean-360 Pat Elder
381
+ 969 M train-other-500 Czechchris
382
+ 976 F train-other-500 Alison Raouf
383
+ 978 M train-other-500 Rick Box
384
+ 979 F train-clean-360 Kelli Robinson
385
+ 982 M train-other-500 Mike Roop
386
+ 984 M train-clean-360 J A Carter
387
+ 985 M train-other-500 George Pilling
388
+ 986 M train-clean-360 Michael Kirkpatrick
389
+ 1001 M train-clean-360 Eric
390
+ 1006 F train-other-500 Marta Kornowska
391
+ 1012 F train-clean-360 Lizzie Oldfather
392
+ 1018 M train-clean-360 JimmyLogan
393
+ 1025 M train-clean-360 rdmagpie
394
+ 1027 M train-clean-360 Brooks Jensen
395
+ 1028 M train-clean-360 Tim Lundeen
396
+ 1031 F train-clean-360 swroot
397
+ 1034 M train-clean-100 Kevin O'Coin
398
+ 1040 M train-clean-100 John Garvin
399
+ 1046 M train-clean-360 durnburr
400
+ 1049 M train-other-500 Sam Fold
401
+ 1050 F train-clean-360 entada
402
+ 1051 F train-other-500 E. Moulton
403
+ 1052 F train-clean-360 Kathy Jacobs
404
+ 1053 F train-clean-360 katyleah
405
+ 1054 F train-clean-360 Igor Teaforay
406
+ 1058 M train-clean-360 James Tiley
407
+ 1060 F train-clean-360 Val Grimm
408
+ 1061 F train-clean-360 Missie
409
+ 1065 M train-other-500 Justin Brett
410
+ 1066 F train-clean-360 Laurie Anne Walden
411
+ 1069 F train-clean-100 Dawn
412
+ 1079 F train-clean-360 Mary aka Breadchick
413
+ 1081 M train-clean-100 Fracture
414
+ 1084 F train-other-500 Nichole Karl
415
+ 1085 M train-other-500 hefyd
416
+ 1088 F train-clean-100 Christabel
417
+ 1089 M test-clean Peter Bobbe
418
+ 1092 F train-other-500 Maria
419
+ 1093 F train-clean-360 Kiki Baessell
420
+ 1094 M train-other-500 tubeyes
421
+ 1096 M train-other-500 Geoff Dugwyler
422
+ 1097 M train-other-500 Euthymius
423
+ 1098 F train-clean-100 Merryb
424
+ 1100 F train-clean-360 Danielle Flores
425
+ 1107 M train-other-500 Jason Oakley
426
+ 1110 M train-other-500 Graeme Jolliffe
427
+ 1112 M train-clean-360 RedToby
428
+ 1116 F train-clean-100 Megan Stemm-Wade
429
+ 1121 M train-clean-360 John Lieder
430
+ 1124 F train-other-500 Ancilla
431
+ 1132 M train-other-500 Giles Baker
432
+ 1152 F train-other-500 Millbeach
433
+ 1154 F train-other-500 Larysa Jaworski
434
+ 1160 M train-clean-360 Gary Gilberd
435
+ 1161 M train-other-500 Dominic Moore
436
+ 1165 M train-clean-360 Bob Graff
437
+ 1166 F train-other-500 Debra Lynn
438
+ 1168 F train-other-500 Ree
439
+ 1171 F train-other-500 Julia Claussen
440
+ 1175 M train-clean-360 Brother Patrick
441
+ 1179 M train-other-500 Alan Chant
442
+ 1182 M train-clean-360 Brett Condron
443
+ 1183 F train-clean-100 roolynninms
444
+ 1184 M train-other-500 Jeremy Pavier
445
+ 1187 M train-other-500 Paul Hansen
446
+ 1188 M test-clean Duncan Murrell
447
+ 1195 F train-clean-360 Jennette Selig
448
+ 1200 M train-other-500 hosmer_angel
449
+ 1212 F train-clean-360 Lee Ann Howlett
450
+ 1221 F test-clean Dianne
451
+ 1222 M train-clean-360 Joseph Ugoretz
452
+ 1224 F train-clean-360 Heather Duncan
453
+ 1225 M train-other-500 Chris Langston
454
+ 1226 M train-clean-360 Russ Lemker
455
+ 1230 M train-other-500 Ian Skillen
456
+ 1235 M train-clean-100 Tim Gregory
457
+ 1239 M train-other-500 Scott Robbins
458
+ 1241 F train-clean-360 Catherine Fitz
459
+ 1246 F train-clean-100 Sandra
460
+ 1250 F train-other-500 Christina Boyles
461
+ 1252 F train-other-500 Avery
462
+ 1255 M dev-other Simon Evers
463
+ 1258 M train-other-500 Mellors
464
+ 1259 F train-clean-360 Elizabeth Klett
465
+ 1260 M train-other-500 Chris Hughes
466
+ 1261 M train-other-500 Mans Broo
467
+ 1263 F train-clean-100 Leonie Rose
468
+ 1264 M train-clean-360 Matthew Hinman
469
+ 1265 M train-clean-360 Edward Elmer
470
+ 1266 F train-other-500 Jenilee
471
+ 1271 M train-clean-360 Christian Pecaut
472
+ 1272 M dev-clean John Rose
473
+ 1274 M train-other-500 Larry Gilman
474
+ 1280 M train-other-500 Tim Makarios
475
+ 1283 M train-clean-360 Paul Siegel
476
+ 1284 F test-clean Daniel Anaya
477
+ 1289 F train-clean-360 Joanne Pauwels
478
+ 1290 F train-clean-360 librarianite
479
+ 1291 F train-other-500 Patti Brugman
480
+ 1296 F train-clean-360 Gigi Minden
481
+ 1298 F train-other-500 Wina Hathaway
482
+ 1311 M train-clean-360 Scott D. Farquhar
483
+ 1313 M train-clean-360 Scott Sherris
484
+ 1316 M train-clean-360 Estragon
485
+ 1320 M test-clean number6
486
+ 1322 M train-clean-360 chris tierney
487
+ 1323 M train-clean-360 Leon Mire
488
+ 1331 M train-other-500 Adrian Praetzellis
489
+ 1334 M train-clean-100 John Schell
490
+ 1335 F train-clean-360 Clarica
491
+ 1336 M train-clean-360 Charlie Blakemore
492
+ 1337 M train-clean-360 Steven Rushing
493
+ 1341 M train-other-500 Coastalbloke
494
+ 1342 F train-other-500 SueAnn Dozier
495
+ 1343 F train-clean-360 Laura Koskinen
496
+ 1347 M train-other-500 Ted Nugent
497
+ 1348 F train-clean-360 Janet Friday
498
+ 1349 M train-clean-360 John Pruden
499
+ 1353 M train-other-500 Clarke Bell
500
+ 1355 M train-clean-100 Chris Gladis
501
+ 1363 F train-clean-100 Tammy Sanders
502
+ 1365 M train-clean-360 Joel Poortenga
503
+ 1367 M train-other-500 Joe Brenneman
504
+ 1370 F train-other-500 Lee Elliott
505
+ 1373 F train-other-500 Kira Belkin
506
+ 1374 M train-other-500 Graham Thomsen
507
+ 1379 M train-clean-360 Ken Crooker
508
+ 1382 F train-clean-360 Heather Lawrence
509
+ 1383 M train-clean-360 David Best
510
+ 1384 M train-other-500 Stephen Lamb
511
+ 1387 M train-clean-360 Scott Mather
512
+ 1390 F train-clean-360 C.L.Coney
513
+ 1392 M train-clean-360 Chris Masterson
514
+ 1401 F train-clean-360 Sibella Denton
515
+ 1403 M train-other-500 tipaew
516
+ 1413 M train-clean-360 ryanaw
517
+ 1414 F train-other-500 guava
518
+ 1417 F train-clean-360 Psuke Bariah
519
+ 1421 F train-other-500 Madame Tusk
520
+ 1422 F train-clean-360 Yazpistachio
521
+ 1425 F train-clean-360 Jeanette Ferguson
522
+ 1430 M train-other-500 Alok Karulkar
523
+ 1444 M train-other-500 Ryan Mease
524
+ 1445 M train-clean-360 Michael Yard
525
+ 1446 M train-clean-360 Michael Loftus
526
+ 1447 F train-clean-100 Luigina
527
+ 1448 F train-clean-360 marevalo
528
+ 1455 M train-clean-100 webslog
529
+ 1456 M train-clean-360 Jason Isbell
530
+ 1460 F train-clean-360 E. Plein
531
+ 1462 F dev-clean E. Tavano
532
+ 1463 F train-clean-360 Vivian Bush
533
+ 1469 M train-other-500 Fr. Richard Zeile of Detroit
534
+ 1472 F train-clean-360 Sarah Jennings
535
+ 1473 M train-clean-360 Dan Polanco
536
+ 1474 F train-other-500 Jc Guan
537
+ 1482 M train-clean-360 Joshua B. Christensen
538
+ 1485 M train-other-500 Robert Flach
539
+ 1487 M train-clean-360 radioreader
540
+ 1492 M train-other-500 mb
541
+ 1494 M train-other-500 George Deprez, PhD
542
+ 1495 M train-other-500 Glendower Jones
543
+ 1498 F train-clean-360 Lori Hebel
544
+ 1502 F train-clean-100 Ann Boyer
545
+ 1505 M train-other-500 Mark Norman
546
+ 1509 F train-clean-360 Miranda Stinson
547
+ 1513 M train-clean-360 Simon-Peter Zak
548
+ 1535 M train-clean-360 Robert Scott
549
+ 1536 M train-clean-360 Marco
550
+ 1544 F train-other-500 LilianaVale
551
+ 1545 F train-other-500 AmyAG
552
+ 1547 F train-clean-360 Riddleman
553
+ 1552 M train-clean-360 Roger Turnau
554
+ 1553 F train-clean-100 Mim Ritty
555
+ 1556 M train-clean-360 geofred
556
+ 1559 M train-other-500 Luke Harrison
557
+ 1563 F train-other-500 Chandra Gioiello
558
+ 1564 F train-other-500 Hedvig
559
+ 1566 F train-other-500 Anna Christensen
560
+ 1569 F train-other-500 Kristine Mackin
561
+ 1571 M train-clean-360 Bob Tassinari
562
+ 1572 M train-other-500 Alan Clare
563
+ 1578 F train-clean-100 Lorelle Anderson
564
+ 1579 F train-other-500 Philippa Willitts
565
+ 1580 F test-clean TinyPines
566
+ 1585 F dev-other Nelly ()
567
+ 1593 F train-other-500 Kristine Bekere
568
+ 1594 M train-clean-100 Jon Scott Jones
569
+ 1595 M train-other-500 Riccardo Fasol
570
+ 1601 M train-other-500 Michael Yourshaw
571
+ 1603 M train-clean-360 Arouet
572
+ 1607 M train-clean-360 Claude Banta
573
+ 1614 M train-other-500 FNH
574
+ 1618 M train-other-500 Nicholas James Bridgewater
575
+ 1621 M train-other-500 Caliban
576
+ 1624 M train-clean-100 Daniel Shorten
577
+ 1629 F train-clean-360 Gwyneth
578
+ 1630 F dev-other spiritualbeing
579
+ 1633 F train-other-500 Beecher
580
+ 1634 M train-clean-360 daxm
581
+ 1636 F train-other-500 Sandra Zera
582
+ 1638 M train-clean-360 Kyle M.
583
+ 1639 M train-clean-360 Joe Konno
584
+ 1641 F train-clean-360 Rohanna
585
+ 1643 M train-other-500 Chris Leslie-Hynan
586
+ 1645 M train-clean-360 David Shamp
587
+ 1646 M train-other-500 Ben Cobbett
588
+ 1647 M train-other-500 Rich Meyers
589
+ 1648 F train-other-500 Accent
590
+ 1649 F train-clean-360 Kalynda
591
+ 1650 M dev-other WangHaojie
592
+ 1651 M dev-other Brendan Hodge
593
+ 1653 F train-other-500 Carmina Sansone
594
+ 1664 F train-other-500 Shauna M
595
+ 1665 F train-other-500 Jessica AC Snyder
596
+ 1668 F train-clean-360 stepheather
597
+ 1673 F dev-clean Tonia
598
+ 1674 F train-other-500 Jo
599
+ 1678 F train-clean-360 leonardswench
600
+ 1679 F train-other-500 Polly
601
+ 1680 F train-other-500 intothelight
602
+ 1681 F train-other-500 islajane
603
+ 1685 M train-other-500 Jonathan Horniblow
604
+ 1686 F dev-other neelma
605
+ 1688 M test-other winam
606
+ 1690 F train-other-500 Anne-Marie
607
+ 1691 F train-other-500 Classicsfan
608
+ 1693 F train-other-500 4Cullen
609
+ 1695 F train-other-500 Steph
610
+ 1696 F train-other-500 Darcywil
611
+ 1699 M train-other-500 Gavin Smith
612
+ 1701 M dev-other camelot2302
613
+ 1704 F train-other-500 JB
614
+ 1705 F train-clean-360 tittletattle
615
+ 1708 M train-other-500 Alaaious
616
+ 1710 F train-other-500 Gilly
617
+ 1714 F train-other-500 lauralee
618
+ 1715 F train-other-500 Marianna
619
+ 1717 F train-other-500 PJ
620
+ 1721 F train-other-500 Linnea
621
+ 1723 M train-clean-100 Rob Whelan
622
+ 1724 F train-clean-360 Anna Simon
623
+ 1726 F train-other-500 janeite
624
+ 1731 F train-clean-360 Dani
625
+ 1733 F train-other-500 Mira Cheskis
626
+ 1734 F train-clean-360 LuvDemBrooders
627
+ 1736 F train-other-500 LC
628
+ 1737 F train-clean-100 Erin Hastings
629
+ 1740 F train-clean-360 Shubda
630
+ 1743 M train-clean-100 Bryan Ness
631
+ 1746 M train-other-500 Theo Bacher
632
+ 1748 M train-clean-360 Brad Powers
633
+ 1750 F train-other-500 Lorie Heinrichs
634
+ 1752 F train-clean-360 Jan MacGillivray
635
+ 1754 F train-clean-360 Joan Freeman
636
+ 1756 F train-other-500 Tamara Hamilton
637
+ 1757 F train-other-500 cricket
638
+ 1760 F train-other-500 Matthew Howell
639
+ 1765 F train-other-500 Kelly Elizabeth
640
+ 1767 F train-other-500 Cori Dean
641
+ 1769 M train-clean-360 ej
642
+ 1772 M train-other-500 David A. Stokely
643
+ 1773 F train-other-500 Eliza Horne
644
+ 1776 M train-clean-360 Jim Eastman
645
+ 1777 M train-clean-360 Professor Chronotis
646
+ 1779 F train-clean-360 Cynthia Zocca
647
+ 1780 M train-other-500 Micah
648
+ 1784 F train-other-500 grovejade
649
+ 1789 M train-clean-360 Vin Reilly
650
+ 1795 M train-other-500 Muhammad Mussnoon
651
+ 1800 F train-clean-360 Scarlett!
652
+ 1801 M train-clean-360 Antonio
653
+ 1804 F train-other-500 Marie Manis
654
+ 1806 M train-clean-360 Gary W. Sherwin
655
+ 1809 F train-other-500 cucciasv
656
+ 1811 M train-clean-360 Eric Ray
657
+ 1813 F train-other-500 tesoro007
658
+ 1815 M train-other-500 Aringguth
659
+ 1819 F train-other-500 Shannon
660
+ 1825 F train-clean-360 srshel
661
+ 1826 M train-clean-360 Jacob Miller
662
+ 1827 M train-clean-360 Doug Wetzel
663
+ 1828 M train-other-500 James Gladwin
664
+ 1841 F train-clean-100 Laura Caldwell
665
+ 1844 M train-other-500 noonday
666
+ 1845 F train-clean-360 Katie Gibboney
667
+ 1846 M train-other-500 valikojohn
668
+ 1849 M train-clean-360 Kelly Dougherty
669
+ 1851 F train-clean-360 Kehinde
670
+ 1859 F train-clean-360 Jan Baxter
671
+ 1863 F train-other-500 Ania
672
+ 1867 M train-clean-100 Rowdy Delaney
673
+ 1868 M train-other-500 Graham Redman
674
+ 1870 M train-other-500 Stuart Bell
675
+ 1874 M train-clean-360 Ernst Schnell
676
+ 1878 M train-other-500 BLRossow
677
+ 1885 F train-clean-360 inkwelldragon
678
+ 1898 F train-clean-100 Jennifer
679
+ 1901 F train-other-500 Allyson Hester
680
+ 1903 M train-clean-360 Michael Thomas Robinson
681
+ 1913 M train-clean-360 Geoff Cowgill
682
+ 1914 M train-clean-360 Kevin Kivikko
683
+ 1919 F dev-clean nprigoda
684
+ 1920 F train-other-500 Annika Feilbach
685
+ 1923 F train-clean-360 Maire Rhode
686
+ 1924 M train-other-500 Andrew Drinkwater
687
+ 1926 F train-clean-100 Nikki Sullivan
688
+ 1931 F train-other-500 poormedea
689
+ 1933 F train-clean-360 iremonger
690
+ 1938 M train-other-500 icyjumbo (1964-2010)
691
+ 1943 M train-clean-360 Corun
692
+ 1944 F train-clean-360 Carolyn Frances
693
+ 1958 M train-clean-360 Furio
694
+ 1961 F train-clean-360 Qhali
695
+ 1963 F train-clean-100 Belinda Brown
696
+ 1968 F train-other-500 lizzyblack
697
+ 1970 F train-clean-100 Dawn Larsen
698
+ 1974 F train-clean-360 Katie Baynes
699
+ 1977 F train-other-500 Jennie Hughes
700
+ 1985 M train-other-500 Jonny Lee
701
+ 1987 M train-clean-360 Michael Macedonia
702
+ 1988 F dev-clean Ransom
703
+ 1989 M train-other-500 Sergio Baldelli
704
+ 1992 F train-clean-100 Michelle White
705
+ 1993 F dev-clean Wendy Belcher
706
+ 1995 F test-clean AJai Hilton
707
+ 1998 F test-other Sonja
708
+ 2001 M train-other-500 Phillip David
709
+ 2002 M train-clean-100 Larry Maddocks
710
+ 2003 M train-other-500 The Penang Lawyer
711
+ 2004 F train-clean-360 Kim S
712
+ 2007 F train-clean-100 Sheila Morton
713
+ 2010 F train-clean-360 Julie Bynum
714
+ 2012 M train-clean-360 jburby
715
+ 2013 M train-other-500 Mark
716
+ 2021 M train-other-500 Keri Ford
717
+ 2026 F train-other-500 Mil Nicholson
718
+ 2033 M test-other Filippo Gioachin
719
+ 2035 F dev-clean Sharon Bautista
720
+ 2039 M train-clean-360 Anton
721
+ 2042 F train-other-500 Charlene V. Smith
722
+ 2045 M train-clean-360 David O'Connell
723
+ 2046 M train-other-500 kyleti
724
+ 2050 F train-other-500 Xe Sands
725
+ 2051 M train-other-500 Grant Petersen
726
+ 2053 F train-clean-360 Vincent Tapia
727
+ 2056 F train-clean-360 Nancy Roberts
728
+ 2060 F train-clean-360 Julie Pandya
729
+ 2061 F train-clean-360 Jodi Krangle
730
+ 2062 F train-other-500 Mindy H
731
+ 2063 M train-other-500 hearhis
732
+ 2067 M train-other-500 Nick Gisburne
733
+ 2068 F train-other-500 Priya, India
734
+ 2074 M train-clean-360 Tysto
735
+ 2078 M dev-clean Kathy Caver
736
+ 2085 F train-clean-360 Stephanie Dupal-Demartin
737
+ 2086 M dev-clean Nicodemus
738
+ 2089 F train-other-500 Martina
739
+ 2090 F train-other-500 Melissa
740
+ 2092 F train-clean-100 Elaine Hamby
741
+ 2093 M train-clean-360 RK Wilcox
742
+ 2094 F test-clean amycsj
743
+ 2096 M train-other-500 Nick Marsh
744
+ 2100 F train-other-500 Katherine Holt
745
+ 2104 M train-other-500 R. S. Steinberg
746
+ 2110 M train-clean-360 Aaron Elliott
747
+ 2113 M train-clean-360 Andrew Vidal
748
+ 2122 M train-other-500 Kenneth R. Morefield
749
+ 2127 M train-clean-360 wrongshore
750
+ 2133 M train-other-500 Mat Messerschmidt
751
+ 2136 M train-clean-100 Great Plains
752
+ 2137 M train-clean-360 Jerome Lawsen
753
+ 2140 M train-other-500 Ralph Snelson
754
+ 2143 F train-other-500 Cat Schirf
755
+ 2146 M train-clean-360 Jeff Stuckey
756
+ 2148 F train-other-500 BethAnne
757
+ 2149 M train-clean-360 Mark Penfold
758
+ 2152 F train-other-500 redabrus
759
+ 2156 M train-clean-360 Roger Melin
760
+ 2159 M train-clean-100 Matthew Westra
761
+ 2162 M train-clean-360 Ray Clare
762
+ 2167 M train-clean-360 spiderman0521
763
+ 2182 F train-clean-100 Susan Umpleby
764
+ 2185 M train-other-500 Jonathan Feldman
765
+ 2194 F train-clean-360 RobbieRogers
766
+ 2195 M train-other-500 Joe Earley
767
+ 2196 F train-clean-100 Andrea Fiore
768
+ 2198 M train-other-500 Clive Catterall
769
+ 2201 M train-clean-360 Stephen Escalera
770
+ 2204 F train-clean-360 Pamnache
771
+ 2208 M train-other-500 Alan Brown
772
+ 2229 M train-clean-360 Pete Williams, Pittsburgh, PA
773
+ 2230 F train-clean-360 Isosceles
774
+ 2234 M train-other-500 Lars Rolander
775
+ 2237 F train-other-500 Chloey Winters
776
+ 2238 M train-clean-360 Will Larson
777
+ 2240 M train-clean-360 Ralph Volpi
778
+ 2246 M train-other-500 RaySee
779
+ 2254 F train-clean-360 Heidi Preuss
780
+ 2256 F train-clean-360 tamurile
781
+ 2262 M train-other-500 Andy
782
+ 2269 F train-clean-360 Rhonda Federman
783
+ 2270 F train-other-500 Megan Kunkel
784
+ 2272 M train-clean-360 Alec Daitsman
785
+ 2273 M train-other-500 Peter Kelleher
786
+ 2275 F train-other-500 Lori H
787
+ 2276 F train-other-500 Andrea
788
+ 2277 F dev-clean zinniz
789
+ 2279 M train-other-500 Gilles Lehoux
790
+ 2284 M train-other-500 Zapo
791
+ 2285 M train-clean-360 Bob Sage
792
+ 2288 F train-other-500 Ellis Christoff
793
+ 2289 M train-clean-100 David Kleparek
794
+ 2292 M train-other-500 Dick Durette
795
+ 2294 M train-clean-360 James Christopher
796
+ 2297 F train-other-500 Philippa
797
+ 2299 M train-clean-360 cpalmer17
798
+ 2300 M test-clean Mitchell L Leopard
799
+ 2301 F train-other-500 Chris Jones
800
+ 2309 M train-other-500 Wyatt
801
+ 2312 F train-other-500 Lucy Lo Faro
802
+ 2319 M train-clean-360 Jack Farrell
803
+ 2334 M train-clean-360 David Lipa
804
+ 2339 F train-other-500 skellie
805
+ 2341 M train-other-500 webround
806
+ 2346 F train-other-500 FirstKnight
807
+ 2348 F train-clean-360 KellyLC
808
+ 2351 F train-other-500 hugoceline
809
+ 2356 M train-other-500 Paul Curran
810
+ 2361 F train-other-500 M. J. Boyle
811
+ 2364 F train-clean-360 Anna-Maria Viola
812
+ 2368 M train-clean-360 Alex C. Telander
813
+ 2374 F train-other-500 M.C.Y.
814
+ 2380 M train-other-500 Jacob Cherry
815
+ 2384 M train-clean-100 Ger
816
+ 2388 M train-clean-360 Greg Bell
817
+ 2391 F train-clean-100 treefingers
818
+ 2393 M train-clean-360 Michael Bradford
819
+ 2397 M train-clean-360 texttalker
820
+ 2401 F train-clean-360 Matt Warzel
821
+ 2404 M train-clean-360 n8evv
822
+ 2405 M train-other-500 musil
823
+ 2407 M train-other-500 ajmacbeth
824
+ 2411 F train-clean-360 kristiface
825
+ 2412 F dev-clean calystra
826
+ 2414 M test-other Ashwin Jain
827
+ 2416 F train-clean-100 Julia Albath
828
+ 2427 M train-clean-360 Ed Meade
829
+ 2428 M dev-clean Stephen Kinford
830
+ 2436 M train-clean-100 Seth Adam Sher
831
+ 2437 M train-other-500 Wetcoast
832
+ 2445 F train-other-500 musici123
833
+ 2448 M train-other-500 David Federman
834
+ 2473 M train-clean-360 Hoosemon
835
+ 2481 F train-clean-360 Alana Jordan
836
+ 2485 F train-other-500 Serin
837
+ 2487 F train-other-500 Rachel Lintern
838
+ 2488 F train-other-500 Lisa Wilson
839
+ 2491 M train-other-500 johnb
840
+ 2494 M train-clean-360 Mark Cawley
841
+ 2496 M train-other-500 Ben Dutton
842
+ 2498 F train-clean-360 B. Grebe
843
+ 2499 M train-clean-360 Paul Henry Tremblay
844
+ 2504 F train-other-500 Helen Elsbeth
845
+ 2506 F dev-other Julie VW
846
+ 2512 F train-clean-360 Marion
847
+ 2514 M train-clean-100 S. Young
848
+ 2517 M train-clean-360 Gayland Darnell
849
+ 2518 M train-clean-100 Rob Powell
850
+ 2522 F train-other-500 senshisteph
851
+ 2526 M train-other-500 Bob Gilham
852
+ 2531 M train-clean-360 Greg Weeks
853
+ 2532 F train-clean-360 Jennifer Lott
854
+ 2533 M train-clean-360 Steven Proctor
855
+ 2541 M train-other-500 Eddie Winter
856
+ 2544 F train-other-500 Annise
857
+ 2545 M train-other-500 the quiet fox
858
+ 2552 M train-other-500 Daniel Cranston
859
+ 2553 F train-other-500 daisy55
860
+ 2562 M train-clean-360 Scott Merrill
861
+ 2568 F train-other-500 Elena the Quiet
862
+ 2570 F train-clean-360 kindlibrarian
863
+ 2573 F train-clean-360 Becca B
864
+ 2574 M train-other-500 TimSC
865
+ 2577 F train-clean-360 K Hindall
866
+ 2581 F train-clean-360 Julie Levi
867
+ 2582 F train-clean-360 dolce
868
+ 2587 F train-other-500 Anne Cheng
869
+ 2588 M train-other-500 Padraig O'hIceadha
870
+ 2589 M train-clean-360 Jordan
871
+ 2592 F train-clean-360 Anna Roberts
872
+ 2598 F train-clean-360 Barbara Bulkeley
873
+ 2606 M train-other-500 Marc Tanti
874
+ 2607 F train-other-500 Ruth Golding
875
+ 2609 M test-other Ian Hatley
876
+ 2618 M train-clean-360 Phil Surette
877
+ 2624 M train-other-500 David Nicol
878
+ 2625 F train-other-500 Auntie Em
879
+ 2628 M train-clean-360 Zloot
880
+ 2638 F train-clean-360 Dawn
881
+ 2652 F train-clean-360 MixieArmadillo
882
+ 2654 M train-clean-360 Notelrac
883
+ 2660 M train-other-500 mpetranech
884
+ 2671 F train-other-500 Foreign Girl
885
+ 2673 M train-clean-360 jude kaider
886
+ 2674 M train-clean-360 Jason Procopio
887
+ 2676 F train-other-500 missizii
888
+ 2688 M train-clean-360 Christopher Jennings
889
+ 2691 F train-clean-100 Donna Stewart
890
+ 2694 F train-other-500 DianaJMB
891
+ 2696 M train-clean-360 anonymous
892
+ 2709 F train-clean-360 PopularOutcast
893
+ 2712 F train-other-500 anoldfashiongirl
894
+ 2724 M train-other-500 Michael Dalling
895
+ 2730 F train-other-500 Shirley Anderson
896
+ 2733 M train-other-500 CalmDragon
897
+ 2735 F train-other-500 ASchindler
898
+ 2740 M train-other-500 Tony Ashworth
899
+ 2741 F train-clean-360 Jan Dawn Doronila
900
+ 2748 F train-other-500 Annoying Twit
901
+ 2751 F train-clean-360 Angela Kelley
902
+ 2754 F train-other-500 peaceuntoyou
903
+ 2758 F train-clean-360 SopranoHarmony
904
+ 2762 F train-other-500 Phillipa Chantry
905
+ 2764 F train-clean-100 Piper Hale
906
+ 2769 M train-clean-360 Anthony Wilson
907
+ 2774 M train-clean-360 William Kevin Manire
908
+ 2775 F train-clean-360 ink tree
909
+ 2785 F train-clean-360 humeangel
910
+ 2787 M train-clean-360 Quentin Manuel
911
+ 2790 F train-clean-360 Victoria Slonosky
912
+ 2792 F train-other-500 Varra Unreal
913
+ 2803 M dev-clean aquielisunari
914
+ 2812 M train-clean-360 Greg Hartley
915
+ 2815 M train-clean-360 Michael Sample
916
+ 2816 M train-clean-360 Andrew Symons
917
+ 2817 F train-clean-100 Catherine Millward
918
+ 2823 M train-clean-360 ChrisC
919
+ 2825 M train-other-500 Ernst Pattynama
920
+ 2827 M train-clean-360 David Leeson
921
+ 2830 M test-clean Tim Perkins
922
+ 2834 F train-other-500 Ksushi
923
+ 2836 F train-clean-100 Linda McDaniel
924
+ 2843 M train-clean-100 ricell
925
+ 2853 F train-clean-360 Jane Greensmith
926
+ 2854 M train-other-500 Andrew Coleman
927
+ 2882 F train-clean-360 ayngelwing
928
+ 2893 M train-clean-100 Ryan Sutter
929
+ 2895 F train-other-500 Jenny Lundak
930
+ 2902 M dev-clean dexter
931
+ 2909 F train-other-500 Petra
932
+ 2910 F train-clean-100 Janna
933
+ 2911 M train-clean-100 David Lawrence
934
+ 2919 F train-other-500 Raerity
935
+ 2920 F train-clean-360 Rechelle
936
+ 2925 F train-other-500 Darla
937
+ 2929 M train-clean-360 Topaz
938
+ 2930 M train-other-500 BUAES
939
+ 2943 F train-other-500 Sarah Gutierrez
940
+ 2946 M train-other-500 Markus Wachenheim
941
+ 2952 M train-clean-100 Scott Carpenter
942
+ 2960 M train-clean-360 Scotty
943
+ 2961 F test-clean Leni
944
+ 2967 F train-other-500 Landii
945
+ 2971 M train-clean-360 Matthew C. Heckel
946
+ 2975 F train-other-500 Sarafina Suransky
947
+ 2979 F train-other-500 Jilliane Brandt
948
+ 2985 M train-other-500 Cantor
949
+ 2988 F train-other-500 Larissa Little
950
+ 2989 F train-clean-100 Jamie Strassenburg, Cypress, California
951
+ 2990 M train-other-500 Tom Crawford
952
+ 2992 M train-clean-360 davechase
953
+ 2997 F train-other-500 Violet
954
+ 2998 M train-other-500 Kim Jansen
955
+ 2999 M train-clean-360 Joseph Finkberg
956
+ 3000 M dev-clean Brian von Dedenroth
957
+ 3001 F train-clean-360 priscilla hewitt
958
+ 3003 F train-clean-360 Sue Anderson
959
+ 3005 M test-other Ken Tischler
960
+ 3006 F train-other-500 MorganScorpion
961
+ 3008 F train-clean-360 Gloria Zbilicki
962
+ 3009 M train-clean-360 Jim Ruddy
963
+ 3020 M train-other-500 Mike Vendetti
964
+ 3021 M train-other-500 leetcr
965
+ 3025 F train-clean-360 MichelleHarris
966
+ 3032 M train-clean-360 Utek
967
+ 3033 F train-other-500 valli
968
+ 3045 M train-other-500 Cameron Conaway
969
+ 3046 F train-clean-360 Stephanie Land
970
+ 3053 F train-other-500 Tracy Yonemoto
971
+ 3054 M train-other-500 GerryR
972
+ 3060 M train-other-500 Didier
973
+ 3063 M train-other-500 markman
974
+ 3070 M train-clean-360 Mike Schwabe
975
+ 3072 M train-clean-360 Chris Amos
976
+ 3079 F train-other-500 nivedita
977
+ 3080 F test-other breathe
978
+ 3081 F dev-clean Renata
979
+ 3082 M train-clean-360 Logan McCamon
980
+ 3083 F train-clean-360 Emily Jarmard
981
+ 3088 M train-other-500 Sean O'Hara
982
+ 3090 F train-other-500 kelcymx
983
+ 3092 F train-clean-360 Maggie Russell
984
+ 3094 F train-clean-360 moe
985
+ 3097 M train-other-500 nitram
986
+ 3098 M train-other-500 woggy298
987
+ 3100 M train-other-500 David Higham
988
+ 3105 M train-clean-360 gfairch511
989
+ 3109 M train-other-500 Diogenes Dog
990
+ 3112 F train-clean-100 Jessica Louise
991
+ 3114 M train-clean-360 Geoffrey Edwards
992
+ 3118 M train-clean-360 George Yeager
993
+ 3119 F train-clean-360 Sharon Riskedahl
994
+ 3125 F train-other-500 Fran
995
+ 3132 M train-other-500 Andy Yu
996
+ 3135 M train-other-500 Steve Foreman
997
+ 3137 M train-other-500 Parrot
998
+ 3138 F train-other-500 Labyrinth Composer
999
+ 3142 M train-other-500 RogerA
1000
+ 3143 F train-other-500 suzanne
1001
+ 3144 M train-other-500 jfmarchini
1002
+ 3148 M train-other-500 artos
1003
+ 3157 F train-clean-360 TriciaG
1004
+ 3168 M train-clean-100 David Anton
1005
+ 3170 M dev-clean VOICEGUY
1006
+ 3171 M train-clean-360 JoeD
1007
+ 3172 F train-other-500 Beatrice
1008
+ 3179 F train-other-500 Robin
1009
+ 3180 M train-clean-360 Mike Conrad
1010
+ 3185 M train-clean-360 JohnNewman
1011
+ 3187 M train-clean-360 Wasichu
1012
+ 3192 M train-other-500 Arfuhrm
1013
+ 3196 F train-other-500 Elizabeth Harker
1014
+ 3214 M train-clean-100 fourteatoo
1015
+ 3215 F train-clean-360 Shirley Ellen
1016
+ 3221 M train-clean-360 David Schoepf
1017
+ 3224 F train-clean-360 Acacia Wood
1018
+ 3227 F train-other-500 Betina
1019
+ 3228 F train-clean-360 Benuathanasia
1020
+ 3230 M train-clean-360 rasputin
1021
+ 3235 F train-clean-100 Karen Commins
1022
+ 3238 M train-other-500 nihilist00
1023
+ 3240 M train-clean-100 flakker
1024
+ 3242 M train-clean-100 peac
1025
+ 3244 F train-other-500 wilwarin
1026
+ 3245 F train-other-500 wendy
1027
+ 3257 M train-other-500 Jay Vance
1028
+ 3258 F train-clean-360 mwalimu
1029
+ 3259 F train-clean-100 Kate West
1030
+ 3261 M train-other-500 fourgrays
1031
+ 3268 M train-other-500 Patrick McHaffie
1032
+ 3271 M train-other-500 Ancient mariner
1033
+ 3272 M train-other-500 Matthew_J_Almeida
1034
+ 3274 M train-clean-360 Morgan Saletta
1035
+ 3285 M train-other-500 David Collins
1036
+ 3288 M train-other-500 Euan Bayliss
1037
+ 3289 M train-clean-360 lukeprog
1038
+ 3290 F train-other-500 Marian Martin
1039
+ 3294 F train-clean-360 Marcy Fraser
1040
+ 3307 M train-clean-360 Doug Allison
1041
+ 3314 F train-other-500 Carol Stripling
1042
+ 3318 F train-other-500 Magdalena
1043
+ 3319 F train-other-500 mjbrichant
1044
+ 3328 M train-clean-360 Al Dano
1045
+ 3330 F train-clean-360 B. G. Oxford
1046
+ 3331 F test-other Peggy
1047
+ 3334 F train-other-500 joi
1048
+ 3340 M train-clean-360 Preston McConkie
1049
+ 3346 F train-other-500 Hannah Dowell
1050
+ 3347 F train-clean-360 tornadogrrrl
1051
+ 3356 F train-other-500 Diana Solomon
1052
+ 3357 F train-clean-360 swade
1053
+ 3361 F train-clean-360 Linda Lee Paquet
1054
+ 3368 M train-clean-360 Jim Allman
1055
+ 3370 M train-clean-360 Glenn Simonsen
1056
+ 3373 M train-other-500 cvd
1057
+ 3374 M train-clean-100 Craig Campbell
1058
+ 3379 F train-clean-360 Kele
1059
+ 3380 F train-clean-360 DrBeccaAnne
1060
+ 3381 M train-other-500 Cagliostro
1061
+ 3389 M train-clean-360 von
1062
+ 3394 F train-other-500 Jackie Provau
1063
+ 3400 F train-other-500 Laura Davis
1064
+ 3409 F train-other-500 Philippa Brodie
1065
+ 3411 F train-other-500 SuD
1066
+ 3417 M train-other-500 Albatross
1067
+ 3433 M train-other-500 Bob Sherman
1068
+ 3436 M train-clean-100 Anders Lankford
1069
+ 3440 F train-clean-100 Heidi Will
1070
+ 3446 F train-clean-360 kayo
1071
+ 3448 M train-clean-360 Todd Lennon
1072
+ 3465 F train-other-500 ravenotation
1073
+ 3467 F train-other-500 js392
1074
+ 3470 M train-other-500 Jason Mills
1075
+ 3479 F train-other-500 Karan Yamada
1076
+ 3482 F train-clean-360 Hayden
1077
+ 3483 M train-clean-360 Alan Winterrowd
1078
+ 3486 M train-clean-100 Robin Balmer
1079
+ 3488 M train-other-500 Tom Weiss
1080
+ 3490 M train-clean-360 Gregg Margarite (1957-2012)
1081
+ 3493 F train-clean-360 Gail Mattern
1082
+ 3500 F train-other-500 B. Treadgold
1083
+ 3503 M train-other-500 Christian Al-Kadi
1084
+ 3513 F train-clean-360 Symmie
1085
+ 3521 M train-clean-360 NickNumber
1086
+ 3526 F train-clean-100 Bereni
1087
+ 3528 F test-other minimoose83
1088
+ 3536 F dev-clean Arielle Lipshaw
1089
+ 3537 F train-clean-360 Tracy Datlen
1090
+ 3538 F test-other Wyndelyn
1091
+ 3540 M train-clean-360 Bill Ruhsam
1092
+ 3541 M train-other-500 Termin Dyan
1093
+ 3546 F train-clean-360 Jeannie
1094
+ 3547 M train-other-500 BenW
1095
+ 3549 F train-clean-360 Katie Riley
1096
+ 3551 F train-clean-360 Annie Kirkpatrick
1097
+ 3553 M train-other-500 Luc Kordas
1098
+ 3554 F train-other-500 LaraC, Louisville, KY
1099
+ 3557 F train-other-500 Rachel Triska
1100
+ 3559 F train-other-500 Kerry Hiles
1101
+ 3564 F train-other-500 Vanessa
1102
+ 3567 M train-other-500 David Lazarus
1103
+ 3570 F test-clean sarac
1104
+ 3571 M train-other-500 HarryInk
1105
+ 3575 F test-clean supergirl
1106
+ 3576 F dev-clean JudyGibson
1107
+ 3584 F train-clean-360 Bridget Gaige
1108
+ 3587 M train-other-500 John Nixon
1109
+ 3588 F train-other-500 Neeru Iyer
1110
+ 3592 M train-other-500 Paul McCartan
1111
+ 3595 M train-other-500 Martin Geeson
1112
+ 3598 F train-other-500 Dawn
1113
+ 3606 M train-other-500 Ashwath Ganesan
1114
+ 3607 M train-clean-100 Richard Wallis
1115
+ 3615 F train-clean-360 Lucy Perry
1116
+ 3618 M train-other-500 Timothy Ferguson
1117
+ 3630 F train-clean-360 Rachel Gatwood
1118
+ 3638 F train-clean-360 AmyG
1119
+ 3641 F train-other-500 Joelle Peebles
1120
+ 3645 F train-clean-360 MaryAnn
1121
+ 3647 F train-other-500 Channe
1122
+ 3650 M train-other-500 Jonathan Ross
1123
+ 3654 M train-clean-360 Mark Wilson
1124
+ 3656 M train-other-500 Kai Lu
1125
+ 3657 M train-other-500 Bellona Times
1126
+ 3660 M dev-other Russ Clough
1127
+ 3663 F dev-other ppezz
1128
+ 3664 M train-clean-100 Barry Eads
1129
+ 3665 M train-other-500 C.J. Casey
1130
+ 3675 F train-other-500 Linda Ferguson
1131
+ 3679 F train-other-500 veronasser
1132
+ 3681 F train-other-500 Ann Boulais
1133
+ 3686 M train-clean-360 Doug Delisle
1134
+ 3691 M train-other-500 Hollis Hanover
1135
+ 3698 F train-other-500 Nadine Eckert-Boulet
1136
+ 3699 M train-clean-100 Bruce Pirie
1137
+ 3703 F train-clean-360 Linda Andrus
1138
+ 3717 M train-clean-360 Elliott Miller
1139
+ 3723 M train-clean-100 Kevin Lavin
1140
+ 3728 F train-clean-360 amycs
1141
+ 3729 F test-clean Heather Hogan
1142
+ 3733 F train-clean-360 Melanie Schleeter McCalmont
1143
+ 3738 F train-clean-360 Collee McKinnon
1144
+ 3744 M train-other-500 Jonathan Burchard
1145
+ 3747 M train-other-500 Keith Henige
1146
+ 3752 M dev-clean Mark Welch
1147
+ 3757 F train-other-500 EmAllise
1148
+ 3764 F test-other Gabrielle Lambrick
1149
+ 3779 F train-other-500 Rachel Steely
1150
+ 3780 M train-other-500 Pete
1151
+ 3781 F train-clean-360 Celena Arter
1152
+ 3783 M train-other-500 TexasSteve
1153
+ 3790 F train-clean-360 hpark
1154
+ 3792 M train-clean-360 Brian Keith Barnes
1155
+ 3793 M train-other-500 Nathan
1156
+ 3796 M train-other-500 Mario Pineda
1157
+ 3798 F train-other-500 Bianca Kramer
1158
+ 3807 M train-clean-100 Jesse Noar
1159
+ 3816 F train-clean-360 Bev J Stevens
1160
+ 3819 M train-other-500 StarrDog
1161
+ 3825 M train-clean-360 Matt Wills
1162
+ 3830 M train-clean-100 rymd80
1163
+ 3835 M train-clean-360 M.White
1164
+ 3843 F train-other-500 storm
1165
+ 3845 M train-other-500 Ray Smith
1166
+ 3848 F train-other-500 skoval
1167
+ 3851 F train-clean-360 mbousquet
1168
+ 3852 F train-clean-360 selniff
1169
+ 3853 F dev-clean M. Bertke
1170
+ 3857 M train-clean-100 Epistomolus
1171
+ 3864 M train-clean-360 Tom Watts
1172
+ 3866 M train-clean-360 SilverG
1173
+ 3867 F train-other-500 Roberta Carlisle
1174
+ 3869 M train-clean-360 Timothy Pinkham
1175
+ 3871 M train-other-500 Figura
1176
+ 3876 F train-clean-360 Frances Marcinkiewicz
1177
+ 3879 F train-clean-100 Keneva
1178
+ 3885 F train-other-500 Elli
1179
+ 3889 F train-clean-360 Alina
1180
+ 3894 M train-other-500 Indy Gosal
1181
+ 3895 M train-other-500 porlob
1182
+ 3896 M train-other-500 Will Zufall
1183
+ 3905 F train-clean-360 J. Rebecca Franklin
1184
+ 3906 F train-other-500 tabithat
1185
+ 3909 F train-other-500 Evelyn Clarke
1186
+ 3911 F train-other-500 Joseph Couves
1187
+ 3912 M train-other-500 Bob Neufeld
1188
+ 3914 M train-clean-360 Rob James
1189
+ 3915 F dev-other JenniferW
1190
+ 3922 F train-clean-360 Ashley Candland
1191
+ 3923 M train-clean-360 Sean Michael Hogan
1192
+ 3925 F train-other-500 Viglione
1193
+ 3926 F train-other-500 Denise Lacey
1194
+ 3927 M train-clean-360 Bob Stretch
1195
+ 3928 F train-other-500 Marianne Coleman-Hipkins
1196
+ 3934 F train-other-500 Lynne Carroll
1197
+ 3945 M train-clean-360 Floyd Wilde
1198
+ 3947 F train-clean-100 johnell
1199
+ 3955 M train-other-500 Fredrik Karlsson
1200
+ 3959 M train-other-500 rjhargrav
1201
+ 3962 M train-other-500 writerboyontour
1202
+ 3967 F train-clean-360 Christine Dufour
1203
+ 3969 F train-other-500 CM Slosson
1204
+ 3972 F train-clean-360 Joy Easton
1205
+ 3977 M train-clean-360 LivelyHive
1206
+ 3979 F train-clean-360 Dale A. Bade
1207
+ 3982 F train-clean-100 Kate Adams
1208
+ 3983 F train-clean-100 lavocedorata
1209
+ 3989 M train-clean-360 Rayne
1210
+ 3990 F train-other-500 Jessi
1211
+ 3992 F train-other-500 perpetualdreamworld
1212
+ 3994 F train-clean-360 Miriam Esther Goldman
1213
+ 3997 F test-other Sophia Choi
1214
+ 4005 F train-other-500 Jhiu
1215
+ 4009 F train-other-500 Diana Majlinger
1216
+ 4010 M train-clean-360 David Baldwin
1217
+ 4013 M train-clean-360 Kevin Maxson
1218
+ 4014 M train-clean-100 Tom Clifton
1219
+ 4015 M train-other-500 JimOCR
1220
+ 4017 M train-other-500 gsolgaard
1221
+ 4018 M train-clean-100 Nicholas Clifford
1222
+ 4019 M train-other-500 brrrrrr6
1223
+ 4020 M train-other-500 Linda
1224
+ 4021 F train-other-500 Linda Woods
1225
+ 4034 F train-other-500 Sienna
1226
+ 4039 M train-clean-360 Shawn Craig Smith
1227
+ 4042 M train-other-500 Ryan DeRamos
1228
+ 4044 F train-clean-360 serenitylee
1229
+ 4051 F train-clean-100 Liz Devens
1230
+ 4054 M train-clean-360 Ryan Gubele
1231
+ 4057 F train-clean-360 RoseA
1232
+ 4059 M train-other-500 Troy Bond
1233
+ 4063 F train-other-500 Abigail Bartels
1234
+ 4064 F train-clean-360 Margaret Espaillat
1235
+ 4071 F train-clean-360 Nichelle von Lauder
1236
+ 4077 M test-clean Nathan Markham
1237
+ 4078 M train-other-500 Richard Kilmer
1238
+ 4085 M train-other-500 Paul P Miller
1239
+ 4088 F train-clean-100 Blazin48
1240
+ 4090 F train-other-500 madmouth
1241
+ 4098 F train-clean-360 Rachell Lovett
1242
+ 4104 F train-other-500 Linda Dodge
1243
+ 4108 M train-clean-360 garymacf
1244
+ 4110 M train-clean-360 Richard Ellwood
1245
+ 4111 F train-clean-360 Rachel P.
1246
+ 4116 F train-clean-360 Amy Benton
1247
+ 4122 M train-other-500 Wendel Topper
1248
+ 4133 M train-clean-360 BigStory
1249
+ 4137 F train-clean-100 Sarah LuAnn
1250
+ 4138 F train-clean-360 daltongirl
1251
+ 4145 F train-clean-360 Patti Cunningham
1252
+ 4148 M train-clean-360 David A. Moore.
1253
+ 4152 M train-clean-360 Ata Khudayberdiev
1254
+ 4153 F dev-other Hilara
1255
+ 4156 F train-other-500 Caroline Shapiro
1256
+ 4160 F train-clean-100 Rosie
1257
+ 4161 M train-other-500 Daniel Paashaus
1258
+ 4172 M train-other-500 Graeme Dunlop
1259
+ 4174 F train-other-500 Availle
1260
+ 4179 M train-other-500 Robert Keiper
1261
+ 4189 F train-other-500 Megan Argo
1262
+ 4191 M train-other-500 Grant Hurlock
1263
+ 4192 F train-other-500 MaryModern
1264
+ 4193 M train-other-500 Ethan Rampton
1265
+ 4195 F train-clean-100 bj
1266
+ 4196 M train-other-500 Jim Clevenger
1267
+ 4198 M test-other Examinfo
1268
+ 4205 M train-other-500 psi_mon
1269
+ 4211 F train-other-500 A. Knight
1270
+ 4214 F train-clean-100 A. Janelle Risa
1271
+ 4216 F train-other-500 Hannah Skoonberg
1272
+ 4217 M train-other-500 Brendan Tannam
1273
+ 4218 M train-other-500 David Cole
1274
+ 4222 F train-clean-360 msjodi777
1275
+ 4225 F train-other-500 gmiteva
1276
+ 4226 M train-clean-360 Jud Niven
1277
+ 4234 F train-other-500 laineyben
1278
+ 4235 F train-other-500 Haylayer Flaga
1279
+ 4236 M train-clean-360 Nicholas Feulner
1280
+ 4238 F train-clean-360 Chela
1281
+ 4243 M train-clean-360 Ian Grae
1282
+ 4246 M train-clean-360 JLaddJr
1283
+ 4257 M train-clean-360 garbageman99
1284
+ 4260 F train-clean-360 Clacas
1285
+ 4262 F train-other-500 LoraBeth Davis
1286
+ 4263 F train-other-500 Chelsea Baker
1287
+ 4267 M train-clean-100 Ric F
1288
+ 4273 F train-other-500 as101
1289
+ 4277 M train-other-500 JohanG
1290
+ 4278 M train-clean-360 smhamon
1291
+ 4280 F train-other-500 BB
1292
+ 4289 F train-clean-360 Veronica Jenkins
1293
+ 4290 M train-clean-360 Joshua Paul Johnson
1294
+ 4294 F test-other Jessamy Gloor
1295
+ 4295 M train-other-500 Slawek
1296
+ 4297 F train-clean-100 Tina Horning
1297
+ 4305 F train-other-500 Aspergine
1298
+ 4310 F train-other-500 grace4him
1299
+ 4313 F train-other-500 May Low
1300
+ 4321 F train-other-500 Xenutia
1301
+ 4323 F dev-other BookAngel7
1302
+ 4327 F train-other-500 brokenaltar
1303
+ 4331 F train-clean-360 Barbara Clements
1304
+ 4335 M train-clean-360 davidb
1305
+ 4340 F train-clean-100 kiwafruit
1306
+ 4344 M train-other-500 Tadhg
1307
+ 4345 M train-other-500 Richard Schipper
1308
+ 4350 M test-other willem
1309
+ 4352 F train-other-500 Martina Hutchins
1310
+ 4356 F train-clean-360 Patricia Rutledge
1311
+ 4358 M train-clean-360 Kim Stich
1312
+ 4362 F train-clean-100 Michelle Montano
1313
+ 4363 F train-clean-360 Emily Livingston
1314
+ 4379 M train-other-500 Scott Dahlem
1315
+ 4381 F train-clean-360 Denise Resnik
1316
+ 4396 F train-other-500 Michael Wolf
1317
+ 4397 M train-clean-100 John Dennison
1318
+ 4402 M train-other-500 Christopher Sanner
1319
+ 4406 M train-clean-100 Matthew Scott Surprenant
1320
+ 4407 M train-other-500 Ted Drury
1321
+ 4411 F train-other-500 Zarnaz
1322
+ 4415 F train-other-500 Anita Fleming
1323
+ 4420 M train-other-500 Steve Lomas
1324
+ 4422 F train-other-500 Kamna
1325
+ 4423 M train-other-500 David Dwight
1326
+ 4425 M train-clean-360 Gary Coy
1327
+ 4427 F train-clean-360 Lynne Handler
1328
+ 4428 M train-other-500 Blueoyster101
1329
+ 4433 M train-clean-360 Ken Sterry
1330
+ 4434 F train-clean-360 Sarah Nuxoll
1331
+ 4438 M train-clean-360 Greg W.
1332
+ 4441 M train-clean-100 William Peck
1333
+ 4442 M train-other-500 Pep
1334
+ 4443 F train-other-500 THOVO
1335
+ 4446 F test-clean Jen Maxwell
1336
+ 4447 M train-other-500 Cascades
1337
+ 4455 F train-other-500 Patrick Wells
1338
+ 4463 F train-other-500 Cate Mackenzie
1339
+ 4474 M train-other-500 John L. Clark
1340
+ 4480 M train-other-500 Iskander Shafikov
1341
+ 4481 F train-clean-100 margo zinberg
1342
+ 4484 M train-other-500 Phil Griffiths
1343
+ 4487 F train-other-500 Nienke
1344
+ 4490 F train-clean-360 Rachel Weaver
1345
+ 4492 F train-other-500 P.Hynes
1346
+ 4495 M train-clean-360 Dillon Stiles
1347
+ 4507 F test-clean Rachel Nelson-Smith
1348
+ 4511 F train-other-500 Jeanie
1349
+ 4513 F train-other-500 Gabi
1350
+ 4515 M dev-other Doug
1351
+ 4519 F train-clean-360 Mimi Wang
1352
+ 4520 F train-other-500 Dorlene Kaplan
1353
+ 4535 M train-clean-360 Brett W. Downey
1354
+ 4545 M train-other-500 SunshinePaul
1355
+ 4546 F train-other-500 Estelle Jobson
1356
+ 4549 F train-other-500 Kristen Zaza
1357
+ 4563 F train-other-500 Wiebke
1358
+ 4570 M dev-other Bill Mosley
1359
+ 4572 M dev-other om123
1360
+ 4576 F train-other-500 Snaefaxi
1361
+ 4583 M train-other-500 Jersey City Frankie
1362
+ 4586 M train-clean-360 Chris Caron
1363
+ 4590 M train-clean-360 Diapadion
1364
+ 4591 M train-other-500 Robert White
1365
+ 4592 F train-clean-360 WestWestest
1366
+ 4594 M train-other-500 mailman61953
1367
+ 4595 M train-clean-360 Eric Leach
1368
+ 4598 F train-clean-360 cher0520
1369
+ 4599 M train-other-500 xibu
1370
+ 4629 M train-clean-360 Edward W. LaBonte
1371
+ 4640 F train-clean-100 Karen Mason
1372
+ 4652 F train-other-500 Savanna Herrold
1373
+ 4659 M train-other-500 Stephen Marsh
1374
+ 4660 F train-other-500 SusieSA
1375
+ 4667 F train-other-500 Maria Therese
1376
+ 4680 F train-clean-100 pachayes
1377
+ 4681 M train-clean-360 Frank Adams
1378
+ 4687 M train-other-500 mevans
1379
+ 4693 M train-other-500 Robert Parker
1380
+ 4697 F train-other-500 Jannie Meisberger
1381
+ 4699 M train-other-500 Jason Justice
1382
+ 4701 M train-other-500 CC
1383
+ 4703 F train-other-500 HurstPP
1384
+ 4705 M train-other-500 Algy Pug
1385
+ 4706 F train-other-500 SallyMc
1386
+ 4710 M train-other-500 David Huston
1387
+ 4712 F train-other-500 Alisson Veldhuis
1388
+ 4719 M train-clean-360 M. Craun
1389
+ 4731 F train-clean-360 Becky Cook
1390
+ 4733 M train-clean-360 dwegowy
1391
+ 4734 M train-clean-360 Adib Masumian
1392
+ 4738 M train-other-500 Leonard Wilson
1393
+ 4741 M train-other-500 Nullifidian
1394
+ 4742 F train-other-500 Little Tee
1395
+ 4744 F train-clean-360 Amy Gramour
1396
+ 4748 M train-other-500 Dirk Eichhorn
1397
+ 4750 M train-other-500 Paul Huckerby
1398
+ 4757 F train-other-500 Grace Dobson
1399
+ 4766 F train-other-500 Melanie
1400
+ 4767 M train-other-500 Delysid
1401
+ 4770 F train-clean-360 Jeanne Luft
1402
+ 4771 M train-other-500 scrawl
1403
+ 4773 F train-other-500 Kathryn Lois
1404
+ 4779 F train-other-500 Angel5
1405
+ 4788 M train-clean-100 Bill Boerst
1406
+ 4791 F train-other-500 MelanieMae
1407
+ 4799 M train-other-500 Matt Judd
1408
+ 4800 F train-clean-360 Mary Herndon Bell
1409
+ 4806 M train-clean-360 Jason Ingolfsland
1410
+ 4807 F train-clean-360 Fuzz
1411
+ 4813 M train-clean-100 Steve Mattern
1412
+ 4821 M train-other-500 Zachary Johnson
1413
+ 4824 F train-other-500 meyerli
1414
+ 4830 M train-clean-100 George Aalto
1415
+ 4831 F dev-other Lisa Meyers
1416
+ 4836 M train-other-500 Preston Scrape
1417
+ 4837 F train-clean-360 Sharon Kilmer
1418
+ 4839 F train-clean-360 Julie K. Rose
1419
+ 4841 F train-other-500 Haley Pereira
1420
+ 4846 F train-clean-360 Kathrin Salazar
1421
+ 4848 M train-clean-360 Dee Wykoff
1422
+ 4852 M test-other Arthur Piantadosi
1423
+ 4853 F train-clean-100 Barbara Derksen
1424
+ 4854 M train-clean-360 Doctor_wu
1425
+ 4856 M train-clean-360 Steven Seitel
1426
+ 4859 M train-clean-100 nathank
1427
+ 4860 M train-clean-360 Jonah Cummings
1428
+ 4863 M train-other-500 I M CLIFFORD
1429
+ 4872 M train-other-500 R E Faust
1430
+ 4894 M train-other-500 Gary Dzierlenga
1431
+ 4898 M train-clean-100 greatbasinrain
1432
+ 4899 F train-clean-360 Theresa L. Downey
1433
+ 4910 F train-other-500 Amanda Martin Sandino
1434
+ 4915 M train-other-500 Andrew Bowles
1435
+ 4926 F train-clean-360 browneyedgirl32382
1436
+ 4930 M train-other-500 Adrian Levitsky
1437
+ 4931 M train-other-500 KevS
1438
+ 4936 F train-other-500 jedopi
1439
+ 4945 M train-clean-360 Charles RUHE
1440
+ 4948 M train-other-500 Tom Barron
1441
+ 4955 M train-other-500 Elwood Mott
1442
+ 4957 F train-clean-360 P Moscato
1443
+ 4958 M train-other-500 David P. Sroka
1444
+ 4959 F train-other-500 Piper Hayes
1445
+ 4964 F train-other-500 rashada
1446
+ 4965 F train-other-500 Rachel Craig
1447
+ 4967 F train-clean-360 Karen
1448
+ 4969 M train-other-500 Garth Burton
1449
+ 4970 F test-clean airandwaters
1450
+ 4973 M train-clean-360 Michael Lipschultz
1451
+ 4979 M train-other-500 Eric
1452
+ 4991 F train-other-500 Jacqueline (Jacqui) Grady
1453
+ 4992 F test-clean Joyce Martin
1454
+ 4993 M train-other-500 BillMac
1455
+ 5000 F train-other-500 Anna-Lisa Ott
1456
+ 5002 M train-clean-360 Brendan Stallard
1457
+ 5005 F train-other-500 pinhsien
1458
+ 5007 F train-clean-360 Kathleen Nelson
1459
+ 5009 M train-other-500 Michael Reuss
1460
+ 5012 F train-clean-360 Morgan Schlicker
1461
+ 5013 M train-other-500 Joseph Dsouza
1462
+ 5019 F train-other-500 Sandra Estenson
1463
+ 5022 F train-clean-100 Kathleen Costa
1464
+ 5023 F train-other-500 Elizabeth Zaranka
1465
+ 5029 F train-clean-360 Courtney Sandhu
1466
+ 5036 F train-other-500 NicolaRuth
1467
+ 5038 M train-other-500 John Kooz
1468
+ 5039 F train-clean-360 Inga Parsons
1469
+ 5043 M train-other-500 edbucks
1470
+ 5044 F train-other-500 Andrea Keene
1471
+ 5045 F train-other-500 Mounica
1472
+ 5049 M train-clean-100 Bradley Smith
1473
+ 5054 F train-clean-360 Denice Stradling
1474
+ 5060 F train-other-500 Linda Moreau
1475
+ 5062 F train-clean-360 E Ogston
1476
+ 5063 F train-clean-360 susanfrom
1477
+ 5076 M train-other-500 Jules Hawryluk
1478
+ 5077 F train-other-500 Sandra G
1479
+ 5082 F train-other-500 SummerWind
1480
+ 5092 M train-clean-360 Josh Smith
1481
+ 5093 F train-clean-360 Nicole Kay
1482
+ 5101 F train-other-500 E.Lee
1483
+ 5104 M train-clean-100 Chuck Burke
1484
+ 5105 M test-clean elongman
1485
+ 5115 F train-clean-360 Terry Goodyer
1486
+ 5118 M train-other-500 klbonds
1487
+ 5123 M train-clean-360 wvthcomp
1488
+ 5126 M train-clean-360 Tom Lennon
1489
+ 5132 M train-other-500 David Stryker
1490
+ 5133 F train-clean-360 Jo Karabasz
1491
+ 5136 F train-other-500 Felicity C
1492
+ 5139 F train-clean-360 Katine
1493
+ 5141 M train-other-500 David Goldfarb
1494
+ 5142 F test-clean Mary Ballard-Johansson
1495
+ 5147 M train-clean-360 Cody2
1496
+ 5152 M train-other-500 Liam Neely
1497
+ 5154 F train-clean-360 Danarra
1498
+ 5157 M train-clean-360 drewmac
1499
+ 5163 F train-clean-100 LilyAnne
1500
+ 5164 F train-other-500 Vsilverlining
1501
+ 5172 M train-other-500 Equilibrium33
1502
+ 5181 M train-other-500 Joel Nisbet
1503
+ 5183 M train-other-500 Kenneth Sergeant Gaghan
1504
+ 5185 M train-other-500 okei
1505
+ 5186 M train-clean-360 Brendan Brown
1506
+ 5189 M train-clean-360 Samanem
1507
+ 5190 M train-clean-360 Rom Maczka
1508
+ 5192 M train-clean-100 Jason Esteves
1509
+ 5198 M train-other-500 Brian
1510
+ 5199 F train-other-500 Diana Fast
1511
+ 5206 M train-clean-360 Simon Dexter
1512
+ 5217 F train-other-500 Anqi Wang
1513
+ 5220 F train-other-500 Mary Schneider
1514
+ 5224 M train-other-500 Matt Soar
1515
+ 5230 F train-other-500 Aubrey Anne
1516
+ 5233 F train-other-500 summerdaze
1517
+ 5239 M train-clean-360 compozr
1518
+ 5242 M train-clean-360 Michael Monhollon
1519
+ 5244 F train-other-500 Carolin Ksr
1520
+ 5245 M train-other-500 Dymmesdale
1521
+ 5246 M train-clean-360 Mike Bloomfield
1522
+ 5248 M train-other-500 Don Stirno
1523
+ 5252 M train-other-500 Michael Deng
1524
+ 5261 M train-clean-360 Ali Kazerani
1525
+ 5266 F train-clean-360 Jill
1526
+ 5269 F train-other-500 Elizabeth Barr
1527
+ 5271 F train-other-500 Amanda
1528
+ 5278 M train-other-500 Mike Harris
1529
+ 5280 M train-other-500 penboy7000
1530
+ 5285 F train-other-500 Sweetlilbirdy
1531
+ 5287 F train-other-500 adsum iam
1532
+ 5290 F train-clean-360 Natalie
1533
+ 5293 M train-clean-360 Ned Troxel
1534
+ 5296 F train-other-500 Joselyn Hasty
1535
+ 5299 F train-other-500 Becky Doughty
1536
+ 5304 M train-clean-360 Don W. Jenkins
1537
+ 5319 M train-clean-360 Guero
1538
+ 5321 M train-other-500 Adam Whybray
1539
+ 5322 M train-clean-100 Jay Bidal
1540
+ 5325 M train-other-500 Rory Lawton
1541
+ 5328 M train-other-500 Nathan Jordan
1542
+ 5333 M train-clean-360 Robert Fletcher
1543
+ 5337 F train-clean-360 Danielle
1544
+ 5338 F dev-clean S R Colon
1545
+ 5339 F train-clean-100 Lauren McCullough
1546
+ 5340 F train-other-500 Mary-Beth Blackburn
1547
+ 5350 F train-other-500 Cath Garde
1548
+ 5355 F train-other-500 Carrie Heyes
1549
+ 5361 F train-other-500 scarlettraces
1550
+ 5375 F train-other-500 BumbleVee
1551
+ 5379 M train-other-500 lennich
1552
+ 5386 M train-clean-360 Tim Ferreira
1553
+ 5389 M train-clean-360 Joseph Lawler
1554
+ 5390 M train-clean-100 Charles Bice
1555
+ 5393 F train-clean-100 Amy Hengst
1556
+ 5400 F train-clean-360 Natalie Sullivan
1557
+ 5401 M train-clean-360 Andrew Nelson
1558
+ 5405 F train-other-500 Anka
1559
+ 5412 F train-other-500 tommybascue
1560
+ 5424 F train-other-500 Julia Niedermaier
1561
+ 5429 M train-other-500 Dennis Lane Pretoria
1562
+ 5439 F train-other-500 Laine S.
1563
+ 5442 F test-other oneiros81
1564
+ 5445 F train-other-500 Liz DeLassus
1565
+ 5448 M train-clean-360 Bryan Reid
1566
+ 5456 M train-clean-100 e_scarab
1567
+ 5459 M train-other-500 bryan.peterson
1568
+ 5460 M train-other-500 Max Lindberg
1569
+ 5463 M train-clean-100 GLM
1570
+ 5468 F train-other-500 ashleighjane
1571
+ 5471 F train-other-500 ElleyKat
1572
+ 5480 F train-other-500 ESFJ Girl
1573
+ 5484 F test-other Nastassia
1574
+ 5487 F train-other-500 Michaela O'Connor
1575
+ 5489 F train-clean-360 LizMourant
1576
+ 5506 M train-other-500 Frank Booker
1577
+ 5513 M train-clean-360 David Callahan
1578
+ 5514 F train-clean-100 Ella Jane Quentin
1579
+ 5519 M train-clean-360 scoutman77
1580
+ 5536 M dev-clean David Mix
1581
+ 5538 F train-clean-360 Linda Velwest
1582
+ 5543 F dev-other Anya
1583
+ 5545 M train-other-500 Gary Olman
1584
+ 5561 F train-clean-100 Ellen Jones
1585
+ 5565 M train-other-500 Ken Padgitt
1586
+ 5567 M train-other-500 BStapley
1587
+ 5569 F train-other-500 Beth Hitesman
1588
+ 5570 F train-clean-360 Corinna Schultz
1589
+ 5583 F train-clean-360 Claudia Wilson
1590
+ 5588 F train-clean-360 Gail Timmerman Vaughan
1591
+ 5604 F train-clean-360 kittyandcheese
1592
+ 5606 F train-clean-360 PrincessG
1593
+ 5618 F train-clean-360 Shirleyroses
1594
+ 5620 M train-other-500 jerryB
1595
+ 5622 F train-clean-360 Roseanne Schmidt
1596
+ 5628 M train-other-500 Adrian Wheal
1597
+ 5635 M train-clean-360 Matthew Reece
1598
+ 5636 F train-other-500 Joyce Couch
1599
+ 5637 M train-clean-360 Anthony
1600
+ 5639 M test-clean Ulf Bjorklund
1601
+ 5641 M train-other-500 Gerald Peter Morgan
1602
+ 5649 F train-other-500 hazelra
1603
+ 5652 F train-clean-100 amicrazy2u
1604
+ 5653 F train-other-500 Kimberly Anderson
1605
+ 5655 F train-clean-360 Christine Rodriguez
1606
+ 5656 M train-clean-360 Joe Mabry
1607
+ 5660 F train-clean-360 hollz
1608
+ 5661 F train-other-500 Dianne Lanning
1609
+ 5665 F train-other-500 Lynda Sizemore
1610
+ 5671 F train-other-500 Trihypoo
1611
+ 5672 M train-clean-360 Jacob Paul Starr
1612
+ 5678 M train-clean-100 jgoffena
1613
+ 5682 F train-other-500 Lmwong
1614
+ 5683 F test-clean Rachael Lapidis
1615
+ 5684 F train-clean-360 Elsa Youngsteadt
1616
+ 5688 F train-clean-100 Jennifer Dionne
1617
+ 5694 M dev-clean Winston Tharp
1618
+ 5700 M train-other-500 Paul Adams
1619
+ 5703 M train-clean-100 Garth Comira
1620
+ 5712 F train-clean-360 Alexandra Huckabay
1621
+ 5717 M train-clean-360 Phil Chenevert
1622
+ 5719 M train-other-500 John Fricker
1623
+ 5720 F train-other-500 Thelma Meyer
1624
+ 5723 F train-clean-360 Linda Hogan
1625
+ 5724 F train-clean-360 paintgirl
1626
+ 5725 F train-other-500 doublemirrors
1627
+ 5727 M train-clean-360 JDavidMoore
1628
+ 5731 F train-clean-360 Andrea Boltz
1629
+ 5733 F train-other-500 Spinhop
1630
+ 5735 F train-other-500 Filipa
1631
+ 5740 F train-clean-360 Alisa
1632
+ 5746 M train-clean-360 DL Pead
1633
+ 5750 M train-clean-100 laurencetrask
1634
+ 5756 F train-other-500 Mich_elle
1635
+ 5764 M test-other Herman Roskams
1636
+ 5765 M train-other-500 A. J. Carroll
1637
+ 5767 M train-clean-360 taijohn
1638
+ 5772 M train-other-500 jessecoy
1639
+ 5776 M train-clean-360 Chris Pauley
1640
+ 5778 F train-clean-100 Laura Victoria
1641
+ 5781 M train-other-500 Parrot17
1642
+ 5784 M train-other-500 Chris Donnelly
1643
+ 5789 F train-clean-100 Kirsten Wever
1644
+ 5791 M train-other-500 croudy
1645
+ 5796 F train-other-500 Linette Geisel
1646
+ 5802 M train-clean-360 Christopher Maust
1647
+ 5808 M train-clean-100 jeandelfrio
1648
+ 5809 F train-clean-360 kattekliek
1649
+ 5810 M train-clean-360 Patrick Reinhart
1650
+ 5825 F train-other-500 Vira Denton
1651
+ 5826 M train-other-500 Phineas Redux
1652
+ 5831 F train-other-500 Kirsty Leishman
1653
+ 5837 F train-other-500 Debbie Pieterse
1654
+ 5840 M train-other-500 Dick Summerfield
1655
+ 5849 F dev-other ashleyspence
1656
+ 5854 M train-other-500 Gabriel Glenn
1657
+ 5860 F train-other-500 J L Raimundo
1658
+ 5867 F train-clean-100 Sharon Omi
1659
+ 5868 M train-clean-360 alwpoe
1660
+ 5874 M train-other-500 Paul Andrews
1661
+ 5876 F train-clean-360 kelleywyskiel
1662
+ 5883 M train-clean-360 Jerry Romero
1663
+ 5886 M train-other-500 Simon Brown
1664
+ 5890 F train-other-500 GabrielleC
1665
+ 5893 F train-other-500 Elizabeth Fiedler
1666
+ 5894 M train-other-500 Paul Stephens
1667
+ 5895 F dev-clean iamartin
1668
+ 5906 F train-other-500 Lily-LLM
1669
+ 5909 M train-clean-360 Mark Mickelson
1670
+ 5910 M train-other-500 Anthony Lee
1671
+ 5911 M train-other-500 Paul C. Newman
1672
+ 5913 M train-other-500 dmbrought
1673
+ 5914 M train-clean-360 bobbybrill
1674
+ 5918 M train-clean-360 Mike Wajda
1675
+ 5929 F train-other-500 Gryphon Perkins
1676
+ 5933 M train-other-500 Barry O'Neill
1677
+ 5935 M train-clean-360 Mike Okonek
1678
+ 5940 M train-clean-360 Gargoyle
1679
+ 5949 F train-other-500 debolee
1680
+ 5951 M train-other-500 Stevan Simmons
1681
+ 5952 F train-other-500 sherlock85
1682
+ 5968 F train-clean-360 Cate Barratt
1683
+ 5970 M train-other-500 Larry Degala
1684
+ 5975 M train-clean-360 Tony Maxey
1685
+ 5977 M train-other-500 Ken Felt
1686
+ 5979 M train-other-500 Pentti Hirvonen
1687
+ 5980 F train-other-500 Nichole Thompson
1688
+ 5983 F train-other-500 Katew
1689
+ 5984 F train-clean-360 sbburke
1690
+ 5985 M train-clean-360 James K. White
1691
+ 5993 M train-other-500 garyday
1692
+ 6000 F train-clean-100 MissRose
1693
+ 6003 M train-other-500 sparks0314
1694
+ 6006 F train-clean-360 Stephanie Lee
1695
+ 6009 M train-other-500 AVG
1696
+ 6010 M train-other-500 Ralph Kerwin
1697
+ 6014 F train-clean-360 Tina Nuzzi
1698
+ 6019 M train-clean-100 DerekP
1699
+ 6025 F train-other-500 Lonelle Yoder
1700
+ 6030 F train-other-500 Shiromi
1701
+ 6032 F train-clean-360 Beverly Scott
1702
+ 6035 M train-other-500 Marty Kris
1703
+ 6037 M train-clean-360 bish
1704
+ 6038 F train-clean-360 Sirmelja
1705
+ 6051 M train-other-500 Ric Cornwall
1706
+ 6054 F train-clean-360 Leslie Stevens Suhy
1707
+ 6060 M train-clean-360 Jonathan Lange
1708
+ 6064 F train-clean-100 Deborah Knight
1709
+ 6065 M train-other-500 David Olson
1710
+ 6070 F test-other Saab
1711
+ 6072 F train-other-500 CrowGirl
1712
+ 6075 M train-clean-360 Rob Smith
1713
+ 6076 M train-other-500 Saethram
1714
+ 6077 M train-other-500 Steve Belleguelle
1715
+ 6078 F train-clean-100 dobsonfly
1716
+ 6080 M train-clean-360 progressingamerica
1717
+ 6081 M train-clean-100 Lazuli
1718
+ 6082 F train-clean-360 EyeBones
1719
+ 6084 M train-other-500 Amallen
1720
+ 6087 F train-other-500 Caroline Driggs
1721
+ 6088 F train-other-500 burk
1722
+ 6097 M train-other-500 Phil Benson
1723
+ 6098 M train-clean-360 Kancamagus
1724
+ 6099 F train-clean-360 Cheri Gardner
1725
+ 6102 F train-other-500 Rachel Bossier
1726
+ 6104 F train-clean-360 Juliana M.
1727
+ 6106 F train-other-500 Ruth Kidson
1728
+ 6111 F train-other-500 Jill Preston
1729
+ 6115 M train-clean-360 MitchHerd
1730
+ 6119 M train-clean-360 Vinnie Tesla
1731
+ 6120 F train-clean-360 Terra Mendoza
1732
+ 6121 F train-other-500 Imagine
1733
+ 6123 F dev-other chocmuse
1734
+ 6126 M train-other-500 David Abbott
1735
+ 6127 F train-other-500 Andee
1736
+ 6128 F test-other Isabelle Brasme
1737
+ 6131 F train-other-500 Malane
1738
+ 6135 F train-other-500 Spike Holcomb
1739
+ 6138 F train-other-500 Deborah Brabyn
1740
+ 6139 F train-clean-360 Lois C. Johnson
1741
+ 6145 F train-other-500 Madeleine Brook
1742
+ 6147 F train-clean-100 Liberty Stump
1743
+ 6153 F train-other-500 anjieliu
1744
+ 6157 M train-clean-360 HotConflict
1745
+ 6159 M train-other-500 Ted Garvin
1746
+ 6160 F train-clean-360 FaithR
1747
+ 6167 F train-clean-360 Janet
1748
+ 6173 F train-other-500 Carol Box
1749
+ 6177 M train-other-500 wminbru
1750
+ 6178 F train-other-500 alegriavida
1751
+ 6181 M train-clean-100 Mike
1752
+ 6184 M train-other-500 Adam Tomkins
1753
+ 6188 F train-clean-360 Roxanna Nazari
1754
+ 6189 F train-clean-360 Shana Cohen
1755
+ 6196 M train-other-500 Martin Gradwell
1756
+ 6199 M train-other-500 bobolink
1757
+ 6206 F train-clean-360 Yvonne Smith
1758
+ 6209 M train-clean-100 deckerteach
1759
+ 6211 F train-other-500 Caeliveres
1760
+ 6215 F train-clean-360 Janet248
1761
+ 6221 M train-other-500 pwu909
1762
+ 6224 M train-other-500 dave k
1763
+ 6227 F train-other-500 EliMarieHK
1764
+ 6232 M train-other-500 Paul Denton
1765
+ 6233 F train-clean-360 Gen Jones
1766
+ 6235 F train-clean-360 ReadWriteLib
1767
+ 6236 M train-other-500 jcwyatt
1768
+ 6241 M dev-clean badey
1769
+ 6242 F train-other-500 Lucinda Gainey
1770
+ 6248 M train-other-500 Kevin Green
1771
+ 6249 M train-other-500 Thomas A. Copeland
1772
+ 6251 F train-other-500 Theresa Sheridan
1773
+ 6254 F train-other-500 Chelsea S.
1774
+ 6258 M train-clean-360 haggisreflux
1775
+ 6267 M dev-other Cata
1776
+ 6269 M train-clean-360 Don Halpert
1777
+ 6272 F train-clean-100 jlenardon
1778
+ 6276 M train-other-500 dan_h
1779
+ 6281 F train-other-500 Beth Thomas
1780
+ 6284 F train-other-500 cklee
1781
+ 6286 F train-clean-360 Wendy Almeida
1782
+ 6288 F train-clean-360 Sunni West
1783
+ 6294 M train-clean-360 humanode
1784
+ 6295 M dev-clean Michael Packard
1785
+ 6300 F train-clean-360 Sarah Crampton
1786
+ 6308 F train-clean-360 Easton
1787
+ 6311 M train-other-500 TRUEBRIT
1788
+ 6313 F dev-clean Jennifer Wiginton
1789
+ 6317 F train-clean-360 Sarah K
1790
+ 6319 F dev-clean thestorygirl
1791
+ 6323 M train-other-500 Caluminium
1792
+ 6324 F train-other-500 Barbara E. McCarthy
1793
+ 6330 M train-clean-360 David Cummings
1794
+ 6332 F train-other-500 Kelli England
1795
+ 6333 M train-other-500 Max Korlinge
1796
+ 6339 F train-clean-360 Michelle Remington
1797
+ 6341 F train-clean-360 Tiffany J. Kim
1798
+ 6345 F dev-clean Jean Bascom
1799
+ 6346 M train-other-500 Matthew Pagan
1800
+ 6351 F train-other-500 C. L. W. Rollins
1801
+ 6352 F train-clean-360 stmacduff
1802
+ 6353 F train-other-500 Jennifer Randall
1803
+ 6356 M train-other-500 John O
1804
+ 6358 F train-other-500 selway
1805
+ 6359 F train-clean-360 Susan Hanfield
1806
+ 6364 M train-other-500 Todd Ulbrich
1807
+ 6367 M train-clean-100 Vince Dee
1808
+ 6368 M train-other-500 Marc Pizzuti
1809
+ 6370 M train-other-500 Dan Craig
1810
+ 6371 F train-clean-360 Rebecca King
1811
+ 6373 F train-clean-360 Sandie Guenther
1812
+ 6377 M train-other-500 Maxim Babich
1813
+ 6378 F train-clean-360 Michelle Day
1814
+ 6385 F train-clean-100 Novella Serena
1815
+ 6388 F train-clean-360 Leda
1816
+ 6391 F train-other-500 polkadotish
1817
+ 6395 M train-clean-360 Richard Carpenter
1818
+ 6399 M train-other-500 Edmund Bloxam
1819
+ 6402 M train-other-500 Chiquito Crasto
1820
+ 6406 F train-clean-360 Abigail Rasmussen
1821
+ 6407 M train-other-500 AdamH
1822
+ 6411 F train-other-500 Feyaza
1823
+ 6415 F train-clean-100 Daryl Wor
1824
+ 6418 M train-other-500 Iolo Jones
1825
+ 6426 F train-clean-360 Pat Redstone
1826
+ 6432 M test-other Ditchdog
1827
+ 6436 M train-other-500 Steve Mattingly
1828
+ 6437 M train-clean-100 John Hoerr
1829
+ 6446 M train-clean-360 Bob Gonzalez
1830
+ 6454 M train-clean-100 David Wales
1831
+ 6455 F dev-other Betty Chen
1832
+ 6458 M train-clean-360 Dennis Blake
1833
+ 6459 M train-other-500 Nigel Boydell
1834
+ 6467 M dev-other sid
1835
+ 6476 F train-clean-100 Viridian
1836
+ 6482 M train-other-500 Delmar H Dolbier
1837
+ 6484 F train-other-500 ilianthe
1838
+ 6488 F train-other-500 Kendall Ashyby
1839
+ 6492 M train-clean-360 Hugh Gillis
1840
+ 6494 M train-clean-360 Morey Kunin
1841
+ 6497 M train-clean-360 James E. Carson
1842
+ 6499 M train-clean-360 dave7
1843
+ 6505 F train-clean-360 Elena
1844
+ 6506 M train-other-500 Tim Quinn
1845
+ 6509 F train-clean-360 Marianna Foos
1846
+ 6510 M train-clean-360 JimD
1847
+ 6512 M train-other-500 mcgovern1934
1848
+ 6513 F train-other-500 Susan de Raadt
1849
+ 6518 F train-clean-360 Wayfarer
1850
+ 6519 F train-clean-360 Monica Knuppe
1851
+ 6529 M train-clean-100 Fred DeBerardinis
1852
+ 6531 F train-clean-100 janesandberg
1853
+ 6533 M train-other-500 drewmore
1854
+ 6534 F train-other-500 Helen Falconer
1855
+ 6535 M train-other-500 Ron Altman
1856
+ 6538 M train-clean-360 Juan Federico
1857
+ 6539 M train-other-500 David W. Wolfe
1858
+ 6540 M train-other-500 Craig Gulliver
1859
+ 6544 F train-clean-360 Amanda Friday
1860
+ 6548 F train-other-500 Kristin Gjerlw
1861
+ 6549 F train-other-500 Sandra Luna
1862
+ 6550 M train-clean-360 elfpen
1863
+ 6553 M train-clean-360 DublinGothic
1864
+ 6555 M train-clean-360 Alexandre Laplante
1865
+ 6557 F train-other-500 Tika Sabu
1866
+ 6563 M train-clean-100 William Tomcho
1867
+ 6567 F train-clean-360 vikvenom
1868
+ 6568 F train-other-500 Heather Hamtil
1869
+ 6574 M train-clean-360 Caden Vaughn Clegg
1870
+ 6575 M train-clean-360 Patrick Painter
1871
+ 6583 F train-other-500 NastassiaS
1872
+ 6590 F train-other-500 Marea Brook
1873
+ 6594 F train-other-500 Amelia Chantarotwong
1874
+ 6599 M dev-other rohde
1875
+ 6609 M train-other-500 Patrick Wallace
1876
+ 6610 F train-other-500 sylly
1877
+ 6614 F train-other-500 Veronica Schlette
1878
+ 6620 F train-clean-360 Amy Koenig
1879
+ 6625 M train-other-500 hearmeout7
1880
+ 6627 F train-other-500 Amber Hamilton
1881
+ 6636 M train-other-500 Philip Martin
1882
+ 6637 F train-clean-360 Christine Nendza
1883
+ 6641 F train-other-500 Julienne
1884
+ 6643 F train-clean-360 cbooren
1885
+ 6652 M train-other-500 Brendon Wright
1886
+ 6660 F train-other-500 Nicole Lee
1887
+ 6668 M train-other-500 Ecological Humanist
1888
+ 6670 M train-other-500 Mike Pelton
1889
+ 6673 F train-clean-360 Jenna Lanman
1890
+ 6674 M train-other-500 jimmylee
1891
+ 6676 F train-other-500 Chill28
1892
+ 6683 F train-clean-360 Julia Kelley
1893
+ 6685 M train-other-500 Jonathan Drury
1894
+ 6686 M train-clean-360 Elin
1895
+ 6687 M train-other-500 KirksVoice
1896
+ 6689 F train-other-500 Tiffany Halla Colonna
1897
+ 6690 M train-clean-360 T Michael Burke
1898
+ 6694 M train-clean-360 Ross Williamson
1899
+ 6695 F train-other-500 Linda Fredericks
1900
+ 6696 F train-clean-360 Katryn Wiese
1901
+ 6701 M train-clean-360 Dayle
1902
+ 6705 F train-other-500 D. A. Frank
1903
+ 6707 M train-other-500 Lewis
1904
+ 6709 M train-other-500 vinphizz
1905
+ 6713 M train-other-500 stephenreader
1906
+ 6724 F train-other-500 Kristin Young
1907
+ 6726 F train-other-500 metgmz
1908
+ 6727 M train-clean-360 Tony Russell
1909
+ 6733 F train-other-500 Snapdragon
1910
+ 6735 F train-other-500 fshort
1911
+ 6741 F train-other-500 Sharon C.
1912
+ 6743 M train-other-500 Rick Rodney
1913
+ 6746 M train-other-500 Robin Skelcey
1914
+ 6747 M train-other-500 Ryan Lothian
1915
+ 6749 F train-other-500 MaryA
1916
+ 6752 M train-other-500 maxvon_d
1917
+ 6753 M train-other-500 T.E. McHenry
1918
+ 6754 M train-other-500 ToddHW
1919
+ 6758 F train-other-500 The Gypsy
1920
+ 6763 F train-clean-360 Manjit Bains
1921
+ 6773 M train-other-500 MostafaRazavi
1922
+ 6777 M train-other-500 Rick Saffery
1923
+ 6782 F train-clean-360 zcameo
1924
+ 6784 M train-other-500 SteveBuys
1925
+ 6788 F train-clean-360 Pamela Krantz
1926
+ 6792 M train-other-500 montmorency
1927
+ 6794 F train-other-500 Rachel Moyar
1928
+ 6798 M train-other-500 Aesthete's Readings
1929
+ 6804 M train-other-500 Nick Duncan
1930
+ 6807 F train-other-500 Lisa Caputo
1931
+ 6818 F train-clean-100 beckyboyd
1932
+ 6821 F train-other-500 Rholdah
1933
+ 6828 F train-clean-360 Lori Fuller Chugiak, AK
1934
+ 6829 F test-clean LadyBug
1935
+ 6836 M train-clean-100 John
1936
+ 6841 M dev-other A. E. Maroney
1937
+ 6846 M train-other-500 John Leonard
1938
+ 6848 M train-clean-100 KarlHenning
1939
+ 6849 M train-other-500 Dan Raynham
1940
+ 6853 F train-other-500 J. McKnight
1941
+ 6865 F train-clean-360 Jing Li
1942
+ 6875 M train-other-500 Bill Miller
1943
+ 6877 M train-clean-360 Bear Schacht
1944
+ 6880 M train-clean-100 Capybara
1945
+ 6882 M train-other-500 David Isenhower
1946
+ 6883 M train-other-500 Adam Doughty
1947
+ 6892 M train-other-500 Piotr Nater
1948
+ 6895 F train-clean-360 Reeses118
1949
+ 6902 F train-other-500 Barbara Edelman
1950
+ 6904 F train-clean-360 Kirsten Nelson
1951
+ 6906 F train-other-500 Joanna1
1952
+ 6912 M train-other-500 Richard Beck
1953
+ 6913 F train-other-500 daisyb
1954
+ 6914 F train-other-500 Katalina Watt
1955
+ 6918 F train-clean-360 Marilyn Mack
1956
+ 6923 M train-other-500 Szindbad
1957
+ 6924 F train-clean-360 Rapunzelina
1958
+ 6925 M train-clean-100 Thomas Meaney
1959
+ 6927 F train-clean-360 Sarika Pawar
1960
+ 6930 M test-clean Nolan Fout
1961
+ 6937 F train-clean-360 DVoice
1962
+ 6938 F test-other Simmy
1963
+ 6943 F train-other-500 Chieko Steely
1964
+ 6945 M train-other-500 Daniel George
1965
+ 6947 F train-other-500 Grace
1966
+ 6950 F train-other-500 elmay
1967
+ 6951 F train-other-500 redhed3095
1968
+ 6954 M train-other-500 Paul Richards
1969
+ 6956 M train-clean-360 DannyHauger
1970
+ 6962 M train-other-500 mattoscarlomas
1971
+ 6963 M train-other-500 Kasper
1972
+ 6965 M train-clean-360 NoelBadrian
1973
+ 6967 F train-other-500 sganatra81
1974
+ 6974 M train-other-500 Michael Armenta
1975
+ 6978 F train-other-500 Debra
1976
+ 6981 M train-clean-360 nlonghu
1977
+ 6993 M train-clean-360 Seyed
1978
+ 7000 M train-clean-360 Kevin Alix
1979
+ 7001 F train-other-500 Arienne
1980
+ 7008 M train-other-500 John Trevithick
1981
+ 7009 M train-other-500 roeg11
1982
+ 7011 M train-clean-360 Icprice
1983
+ 7012 F train-other-500 Erin McKelle
1984
+ 7018 M test-other FSharp
1985
+ 7021 M test-clean Nodo420
1986
+ 7026 F train-other-500 Michele Eaton
1987
+ 7030 M train-clean-360 Conrad T
1988
+ 7046 M train-other-500 Pascal Ramseier
1989
+ 7051 M train-clean-360 Andrew White
1990
+ 7055 M train-other-500 gemtwist
1991
+ 7059 F train-clean-100 Joannemmp
1992
+ 7061 M train-clean-360 AllenJohns
1993
+ 7062 F train-other-500 Rebecca Thomas
1994
+ 7065 M train-other-500 smitaj
1995
+ 7067 M train-clean-100 Matthew Wall
1996
+ 7069 M train-clean-360 John Schuurman
1997
+ 7073 F train-other-500 Jill Janovetz
1998
+ 7078 F train-clean-100 Mary in Arkansas
1999
+ 7079 F train-other-500 Chuck Williamson
2000
+ 7085 M train-clean-360 voicebynatalie
2001
+ 7090 M train-clean-360 Jon Sindell
2002
+ 7092 F train-other-500 Lorraine B
2003
+ 7095 M train-clean-360 Wesseling
2004
+ 7096 M train-other-500 Gary Iredale
2005
+ 7097 F train-other-500 novelreader
2006
+ 7105 M test-other jennycbnyn
2007
+ 7107 M train-other-500 titankin77
2008
+ 7113 F train-clean-100 Sukaina Jaffer
2009
+ 7117 F train-clean-360 Art Leung
2010
+ 7120 F train-clean-360 L D Hamilton
2011
+ 7121 M train-other-500 384403
2012
+ 7125 F train-other-500 Peggy
2013
+ 7126 M train-clean-360 pekein
2014
+ 7127 M test-clean Bill Kneeland
2015
+ 7128 M train-clean-360 morganreads
2016
+ 7131 F train-other-500 Eden Rea-Hedrick
2017
+ 7134 M train-clean-360 Steve Jackson
2018
+ 7135 F train-other-500 Maggie Smallwood
2019
+ 7138 F train-other-500 CaprishaPage
2020
+ 7139 M train-clean-360 gabrielv
2021
+ 7140 F train-clean-360 Deanna Bovee
2022
+ 7143 F train-other-500 Minni Ang
2023
+ 7145 F train-clean-360 Lita Ledesma
2024
+ 7147 M train-other-500 S.Nevets
2025
+ 7148 F train-clean-100 Vickie Ranz
2026
+ 7150 M train-other-500 asterix
2027
+ 7155 M train-other-500 pklipp
2028
+ 7169 M train-clean-360 Ryan Ransom
2029
+ 7170 M train-other-500 alanmapstone
2030
+ 7176 M test-clean KalenXI
2031
+ 7177 F train-other-500 shana
2032
+ 7178 F train-clean-100 J.K. Neely
2033
+ 7188 M train-clean-360 Marty
2034
+ 7189 M train-other-500 doonaboon
2035
+ 7190 M train-clean-100 Tony Posante
2036
+ 7197 F train-other-500 Christine Richardson
2037
+ 7198 F train-other-500 Daniela Austin
2038
+ 7199 F train-other-500 T.K. Kirven
2039
+ 7205 F train-other-500 genierose
2040
+ 7208 M train-other-500 KK
2041
+ 7215 M train-other-500 BensonBrunswin
2042
+ 7218 F train-other-500 MJ Franck
2043
+ 7220 F train-other-500 LynnAlison
2044
+ 7223 F train-other-500 eye hear voices
2045
+ 7226 M train-clean-100 Jonathan Moore
2046
+ 7228 M train-other-500 Peter John Keeble
2047
+ 7229 F train-clean-360 Linda Ciano
2048
+ 7238 M train-other-500 Uday Sagar
2049
+ 7239 M train-other-500 manofwealth
2050
+ 7240 F train-clean-360 Lucretia B.
2051
+ 7241 M train-clean-360 AdrianBisson
2052
+ 7242 F train-other-500 Renate
2053
+ 7245 F train-clean-360 Laura Atkinson
2054
+ 7246 F train-other-500 Lyn Silva
2055
+ 7247 M train-clean-360 Robert Hoffman
2056
+ 7250 F train-other-500 A. J. Elliot
2057
+ 7255 F train-other-500 Jendia
2058
+ 7258 M train-clean-360 acloward
2059
+ 7263 F train-other-500 rachaelg
2060
+ 7264 M train-clean-100 Sean McClain
2061
+ 7265 F train-other-500 Annie
2062
+ 7276 F train-clean-360 ASPotter
2063
+ 7277 F train-other-500 Jenny Bradshaw
2064
+ 7278 M train-clean-100 Jon Smith
2065
+ 7285 F train-clean-360 Christina M. Glavas
2066
+ 7286 F train-clean-360 kindfish
2067
+ 7294 F train-clean-360 Muriel
2068
+ 7297 F train-clean-360 Mudlark
2069
+ 7299 F train-other-500 Barbara Miller
2070
+ 7301 M train-other-500 jonseverity
2071
+ 7302 F train-clean-100 Asta1234
2072
+ 7307 M train-other-500 Anthony Ogus
2073
+ 7312 M train-clean-100 nkneer
2074
+ 7313 M train-clean-360 Mark DeVol
2075
+ 7314 M train-clean-360 Rick Cahill
2076
+ 7315 F train-other-500 Charlotte Duckett
2077
+ 7316 F train-clean-360 Joy S Grape
2078
+ 7318 F train-clean-360 Anise
2079
+ 7320 F train-other-500 Monika Rolley
2080
+ 7326 M train-other-500 Adam
2081
+ 7327 M train-other-500 Tommy Howell
2082
+ 7331 F train-other-500 AnabelleC
2083
+ 7333 F train-other-500 Lydia Paterson
2084
+ 7335 F train-clean-360 Kathryn Louise
2085
+ 7337 F train-other-500 Adina Owen
2086
+ 7338 M train-other-500 Eberle Thomas
2087
+ 7339 M train-clean-360 wildalaska
2088
+ 7342 F train-clean-360 Carol
2089
+ 7346 M train-other-500 James Bendall
2090
+ 7348 F train-other-500 acousticwave
2091
+ 7354 M train-other-500 TrevorD777
2092
+ 7357 M train-other-500 rebcult
2093
+ 7360 F train-other-500 Caroline Hemmerly Kunkle
2094
+ 7367 M train-clean-100 NIneFive83
2095
+ 7376 F train-other-500 Nyssa E. Schmidt
2096
+ 7383 F train-clean-360 Meg Cowan
2097
+ 7384 F train-clean-360 Diana Dolan
2098
+ 7387 F train-other-500 Tara Dow
2099
+ 7389 M train-other-500 Steve C
2100
+ 7391 M train-other-500 Cary Simz
2101
+ 7392 F train-other-500 MicheleW
2102
+ 7395 F train-clean-360 Katherine
2103
+ 7398 F train-clean-360 Marie Daum
2104
+ 7402 M train-clean-100 Canby Ibarra
2105
+ 7408 M train-other-500 David Clarke
2106
+ 7416 F train-clean-360 Jeanni Hall
2107
+ 7423 M train-other-500 Gilles G. Le Blanc
2108
+ 7424 M train-other-500 Christopher Smith
2109
+ 7433 F train-other-500 Gabriela Cowan
2110
+ 7434 F train-clean-360 Emily Feuka
2111
+ 7436 M train-other-500 Gregory Eccles
2112
+ 7437 M train-clean-360 Graham McMillan
2113
+ 7445 F train-clean-360 Emily Anderson
2114
+ 7447 M train-clean-100 dasbury
2115
+ 7448 M train-other-500 Kevin Johnson
2116
+ 7460 M train-clean-360 Larry Beasley
2117
+ 7463 M train-other-500 Pete Milan
2118
+ 7467 F train-other-500 freshface
2119
+ 7475 M train-clean-360 Jared Hess
2120
+ 7478 M train-clean-360 Dan Froese
2121
+ 7480 F train-other-500 Tricia F.
2122
+ 7481 F train-clean-360 Karen Howard
2123
+ 7484 M train-clean-360 Tyran Rexx
2124
+ 7491 F train-other-500 Lilaread
2125
+ 7492 F train-other-500 Scheherazade
2126
+ 7495 F train-clean-360 Arlene Joyce
2127
+ 7498 F train-clean-360 MarianneVictoria
2128
+ 7502 M train-other-500 mikefernlea
2129
+ 7505 M train-clean-100 Ron Lockhart
2130
+ 7507 F train-other-500 UnaVersal
2131
+ 7510 F train-other-500 Kathrine Engan
2132
+ 7511 F train-clean-100 Sherri Vance
2133
+ 7512 M train-other-500 dudeman
2134
+ 7514 F train-other-500 Barbara Baker
2135
+ 7515 F train-clean-360 Cynthia Moyer
2136
+ 7517 F train-clean-100 Raz Mason
2137
+ 7518 M train-clean-360 TJDasch
2138
+ 7520 M train-clean-360 Richard Jackson
2139
+ 7522 F train-other-500 Kelsey P
2140
+ 7525 F train-clean-360 Jeannie Tirado
2141
+ 7538 M train-clean-360 Logan West
2142
+ 7540 M train-clean-360 Christopher Webber
2143
+ 7552 F train-other-500 KateC
2144
+ 7553 M train-clean-360 BDSEmpire
2145
+ 7555 F train-clean-360 Suebee
2146
+ 7556 M train-other-500 Alex Lau
2147
+ 7558 M train-clean-360 J. A. Cook
2148
+ 7559 M train-other-500 gassumpcao
2149
+ 7561 M train-other-500 Shawn Bayern
2150
+ 7565 M train-other-500 Derek
2151
+ 7569 M train-clean-360 Stephen L. Moss
2152
+ 7584 F train-other-500 kandice stehlik
2153
+ 7585 M train-other-500 MaxSitting
2154
+ 7594 F train-clean-360 Kristel Tretter
2155
+ 7597 F train-other-500 Inah Derby
2156
+ 7601 M dev-other Malone
2157
+ 7603 M train-other-500 Wupperhippo
2158
+ 7607 F train-other-500 C F de Rosset
2159
+ 7608 M train-other-500 rookieblue
2160
+ 7609 F train-other-500 detroitreads
2161
+ 7618 M train-other-500 Stipsky
2162
+ 7635 F train-clean-100 Judy Guinan
2163
+ 7640 M train-other-500 Dan Darbandi
2164
+ 7641 M dev-other Moromis
2165
+ 7644 F train-other-500 Raphael Platt
2166
+ 7647 M train-clean-360 Daniel T. Miller
2167
+ 7649 F train-other-500 Lanerd
2168
+ 7654 M train-other-500 Word And Mouth
2169
+ 7657 F train-clean-360 shalclark
2170
+ 7665 M train-clean-360 Christian Mitchell
2171
+ 7672 M train-other-500 Cooper Leith
2172
+ 7679 F train-other-500 Libby Gohn
2173
+ 7683 F train-other-500 Carolyne
2174
+ 7687 F train-other-500 Demosthenes
2175
+ 7688 M train-clean-360 Leslie Walden
2176
+ 7691 M train-other-500 engineerdst
2177
+ 7697 M dev-other JustinJYN
2178
+ 7699 F train-other-500 DylanTG
2179
+ 7700 M train-other-500 Dave Wills
2180
+ 7702 F train-other-500 Linda Jenner
2181
+ 7704 M train-clean-360 Robert Harder
2182
+ 7705 M train-clean-360 Timothy Luke
2183
+ 7708 F train-other-500 Savannah
2184
+ 7713 M train-other-500 Sacha Chander
2185
+ 7717 F train-clean-360 Astrid Fingerhut
2186
+ 7720 M train-clean-360 jeffwiltzius
2187
+ 7729 M test-clean Tim Bower
2188
+ 7730 F train-clean-360 Fiddlesticks
2189
+ 7732 M train-clean-360 Daniel Vimont
2190
+ 7733 F train-clean-360 Jewel Raquel
2191
+ 7737 F train-other-500 Elisabeth Sollog
2192
+ 7739 F train-clean-360 Melissa Burns-Price
2193
+ 7746 M train-other-500 Tom Causby
2194
+ 7749 M train-other-500 Sammy Bean
2195
+ 7752 F train-clean-360 Samantha Miles
2196
+ 7754 F train-clean-360 Iridescat
2197
+ 7756 F train-other-500 Lynne Thompson
2198
+ 7762 F train-other-500 Fannie
2199
+ 7764 M train-other-500 Mike Nelson
2200
+ 7766 F train-clean-360 Maryanka
2201
+ 7769 M train-other-500 David Biro
2202
+ 7777 M train-clean-360 Jacob Paine
2203
+ 7780 F train-clean-100 tazzle
2204
+ 7783 F train-clean-360 Rebecca Owens
2205
+ 7786 M train-other-500 Kevin W. Davidson
2206
+ 7789 F train-clean-360 Lauren Jane
2207
+ 7794 F train-clean-100 mlcui
2208
+ 7795 M train-other-500 Cubrick
2209
+ 7796 M train-other-500 Raybrite
2210
+ 7800 F train-clean-100 Arie
2211
+ 7802 F train-clean-360 Samantha J Gubitz
2212
+ 7809 M train-clean-360 D. T. McGregor
2213
+ 7816 F train-clean-360 Stefanie Heinrichs
2214
+ 7823 M train-other-500 Bart in 't Veld
2215
+ 7825 M train-clean-360 PDyer
2216
+ 7826 M train-other-500 Dave Shaw
2217
+ 7828 M train-clean-360 Dan Mason
2218
+ 7832 M train-clean-360 DJRickyV
2219
+ 7833 M train-clean-360 Jesse Crisp-Sears
2220
+ 7835 M train-other-500 kageokami
2221
+ 7837 M train-clean-360 Alfian
2222
+ 7839 F train-other-500 Loveday
2223
+ 7843 F train-other-500 Annette McGuinness
2224
+ 7848 M train-other-500 bala
2225
+ 7850 F dev-clean Jill Engle
2226
+ 7859 F train-clean-100 xinamarieuhl
2227
+ 7867 M train-clean-360 nomorejeffs
2228
+ 7868 F train-clean-360 Chessie Joy
2229
+ 7871 M train-other-500 Rocit
2230
+ 7874 M train-clean-360 dgulino
2231
+ 7879 F train-other-500 deongines
2232
+ 7881 M train-clean-360 Sam Naishtat
2233
+ 7883 F train-other-500 Annapurna
2234
+ 7886 F train-other-500 Mariah Lyons
2235
+ 7892 F train-other-500 Alexis Castro
2236
+ 7898 F train-other-500 Coreena
2237
+ 7902 M test-other Kyle Van DeGlast
2238
+ 7909 M train-clean-360 MGreenberg
2239
+ 7910 F train-clean-360 southernemma
2240
+ 7912 M train-other-500 Nathan Dickey
2241
+ 7923 M train-other-500 amaskill
2242
+ 7925 F train-other-500 Etel Buss
2243
+ 7926 M train-clean-360 Steven Reynolds
2244
+ 7932 F train-clean-360 Tammy Stalcup
2245
+ 7933 F train-clean-360 Highlandoaks
2246
+ 7938 M train-clean-360 Goss45
2247
+ 7939 M train-clean-360 DPranitis
2248
+ 7942 M train-other-500 Luke Sartor
2249
+ 7945 F train-clean-360 Lois Browne
2250
+ 7946 F train-other-500 Flash
2251
+ 7949 M train-clean-360 Jon Miller
2252
+ 7956 M train-clean-360 Devon Purtz
2253
+ 7957 M train-clean-360 Wiley Combs
2254
+ 7959 F train-clean-360 Lily Took
2255
+ 7962 F train-clean-360 Jolie O'Dell
2256
+ 7967 F train-clean-360 Lois Hill
2257
+ 7975 M test-other William A Crenshaw
2258
+ 7976 M dev-clean JenniferRutters
2259
+ 7981 M train-clean-360 timothyFR
2260
+ 7982 F train-clean-360 Lori Arsenault
2261
+ 7988 M train-other-500 JaySands
2262
+ 7991 M train-clean-360 Aaron Weber
2263
+ 7994 F train-clean-360 Marian Cervassi
2264
+ 7995 F train-clean-360 Marie Hoffman
2265
+ 7997 M train-other-500 Tom Merritt
2266
+ 8005 F train-other-500 Julia Wells
2267
+ 8006 M train-clean-360 TyroneS
2268
+ 8008 M train-clean-360 Paul Adamson
2269
+ 8009 F train-other-500 Frances Brown
2270
+ 8011 M train-clean-360 Greg Giordano
2271
+ 8012 F train-other-500 WoollyBee
2272
+ 8014 F train-clean-100 constatine
2273
+ 8015 F train-other-500 Underhill
2274
+ 8023 M train-other-500 JamesMcAndrew
2275
+ 8028 M train-clean-360 Tom Geller
2276
+ 8033 M train-other-500 geoffbl
2277
+ 8040 F train-other-500 NatalieOram
2278
+ 8042 M train-other-500 Jack Watson Warr
2279
+ 8044 F train-other-500 Sarah Hannah
2280
+ 8050 M train-clean-360 Jake Woldstad
2281
+ 8051 F train-clean-100 Maria Kasper
2282
+ 8057 F train-clean-360 Linda Dougherty
2283
+ 8058 M train-other-500 RLC
2284
+ 8063 M train-clean-100 Robert Snoza
2285
+ 8066 M train-clean-360 Tim Cote
2286
+ 8071 F train-other-500 Vanessa Garcia
2287
+ 8072 F train-other-500 Kimberly Krause
2288
+ 8075 F train-clean-360 Melora
2289
+ 8080 F train-clean-360 e.a.zokaites
2290
+ 8087 M train-other-500 Arnie Horton
2291
+ 8088 M train-clean-100 Jason Bolestridge
2292
+ 8095 M train-clean-100 Theodulf
2293
+ 8097 F train-clean-360 lewildesen
2294
+ 8098 M train-clean-100 Arnold
2295
+ 8108 M train-clean-100 drakaunus
2296
+ 8112 F train-other-500 Christine Lamberton
2297
+ 8113 F train-clean-360 PennyAnn
2298
+ 8118 F train-clean-360 Katie McClain
2299
+ 8119 M train-clean-360 Malcolm Cameron
2300
+ 8123 F train-clean-100 Sheila Wood
2301
+ 8131 M test-other Christian Alexander
2302
+ 8138 M train-clean-360 Lee Smalley
2303
+ 8142 M train-clean-360 Timothy Lucas
2304
+ 8143 M train-other-500 Nick Whitley
2305
+ 8148 F train-other-500 Xiph
2306
+ 8152 M train-clean-360 Bigcowfeet
2307
+ 8156 F train-other-500 Brooke Cunningham
2308
+ 8163 F train-clean-360 Greengecko
2309
+ 8164 M train-other-500 Rob Board
2310
+ 8168 F train-other-500 Kiera Davidson
2311
+ 8169 M train-other-500 tovarisch
2312
+ 8172 M train-other-500 Alan Weyman
2313
+ 8173 F dev-other emmablob
2314
+ 8176 M train-clean-360 Jon Kerfoot
2315
+ 8180 F train-other-500 Elanor Sakamoto
2316
+ 8183 F train-clean-360 Cheri Jordan
2317
+ 8188 M test-other Matthew Calvin
2318
+ 8190 F train-clean-360 Lisa Phelps Gonzalez
2319
+ 8193 F train-clean-360 helengraves
2320
+ 8194 F train-clean-360 MsMO
2321
+ 8195 M train-clean-360 Mr Krause
2322
+ 8197 F train-other-500 Victoria P
2323
+ 8199 F train-other-500 maryagneskatherine
2324
+ 8200 M train-other-500 Dan S
2325
+ 8208 M train-other-500 zaanta
2326
+ 8215 M train-other-500 readread
2327
+ 8222 M train-clean-360 Greg Golding
2328
+ 8224 M test-clean Leanne Kinkopf
2329
+ 8225 M train-clean-360 Matt Lusher
2330
+ 8226 M train-clean-100 Adam Picot
2331
+ 8228 F train-clean-360 hgal2010
2332
+ 8230 M test-clean David Jenkins
2333
+ 8238 F train-clean-100 Madam Fickle
2334
+ 8240 F train-other-500 Gertrude Durette
2335
+ 8242 F train-other-500 Anita Slusser
2336
+ 8245 M train-other-500 gscheids
2337
+ 8246 M train-other-500 beeveeo
2338
+ 8250 M train-other-500 Stephen Gibbons
2339
+ 8254 F dev-other Jeana Wei
2340
+ 8259 F train-other-500 Lawrence
2341
+ 8262 M train-other-500 Jack Powell
2342
+ 8266 M train-clean-360 Jeff K.
2343
+ 8272 F train-other-500 Haili
2344
+ 8273 M train-other-500 Lucas Boulding
2345
+ 8280 F test-other AlaynaMay
2346
+ 8288 M dev-other Wayne Donovan
2347
+ 8291 M train-other-500 Elliot Gage
2348
+ 8295 F train-other-500 Susan Morin
2349
+ 8296 F train-other-500 Bria Snow
2350
+ 8297 M dev-clean David Mecionis
2351
+ 8300 F train-clean-360 Judith Parker
2352
+ 8302 F train-other-500 Charlotte Day
2353
+ 8307 M train-other-500 Nick Bulka
2354
+ 8312 F train-clean-100 Jaimie Noy
2355
+ 8316 M train-other-500 Rocket Rodger
2356
+ 8321 F train-other-500 SamR
2357
+ 8322 M train-other-500 yeknod
2358
+ 8324 F train-clean-100 Kathy Wright
2359
+ 8328 M train-other-500 William Gavula
2360
+ 8329 F train-clean-360 Betty Perry
2361
+ 8334 M train-other-500 Doug Reed
2362
+ 8337 F train-other-500 Claudia Salto
2363
+ 8346 M train-other-500 Al Rocca
2364
+ 8347 M train-clean-360 Terry Torres
2365
+ 8356 M train-other-500 Paul Mazumdar
2366
+ 8367 M train-other-500 ophiuroidea
2367
+ 8382 F train-other-500 Claire Schreuder
2368
+ 8388 F train-clean-360 Jacki Horn
2369
+ 8389 M train-other-500 Steven Bateman
2370
+ 8392 F train-other-500 Katharina Huang
2371
+ 8394 M train-other-500 Matthew Walker
2372
+ 8396 M train-clean-360 gloriousjob
2373
+ 8401 M train-clean-360 Alexander Hatton
2374
+ 8404 F train-clean-360 Lynne Ray
2375
+ 8410 F train-clean-360 Shauna Kennett
2376
+ 8413 M train-other-500 PaulMichael1084
2377
+ 8414 F train-other-500 jtueller
2378
+ 8415 F train-other-500 Rusty Dancer
2379
+ 8419 M train-clean-100 Jon Kissack
2380
+ 8421 F train-clean-360 Jackie Drown
2381
+ 8422 M train-other-500 pjhoury
2382
+ 8424 F train-other-500 Schums
2383
+ 8425 M train-clean-100 Larry Wilson
2384
+ 8430 F train-other-500 shihping
2385
+ 8432 F train-other-500 Emma Joyce
2386
+ 8441 F train-other-500 ryoko
2387
+ 8443 F train-other-500 Marsha Payne
2388
+ 8444 M train-other-500 Anthony Webster
2389
+ 8445 M train-other-500 Brett G. Hirsch
2390
+ 8447 F train-other-500 Anastasiia Solokha
2391
+ 8455 M test-clean thecheops
2392
+ 8459 M train-clean-360 sdaeley17
2393
+ 8461 F test-other Allie Cingi
2394
+ 8463 F test-clean Michele Fry
2395
+ 8464 M train-clean-360 HappyMiamiDad
2396
+ 8465 F train-clean-100 TinaNygard2
2397
+ 8466 M train-other-500 Chris Cartwright
2398
+ 8468 F train-clean-100 Jennifer Dorr
2399
+ 8470 F train-other-500 Rebecca Braunert-Plunkett
2400
+ 8474 M train-clean-360 Scott Snowman
2401
+ 8476 F train-other-500 Julie Mansius
2402
+ 8479 M train-clean-360 R.W. Rushing
2403
+ 8490 M train-clean-360 Matt Parker
2404
+ 8494 M train-clean-360 Bill Yallalee
2405
+ 8498 M train-clean-360 Ian Quinlan
2406
+ 8499 M train-other-500 ReadAllDay
2407
+ 8500 M train-other-500 Ravi Shankar
2408
+ 8506 F train-clean-360 Denise Nordell
2409
+ 8527 M train-clean-360 Gary Bohannon
2410
+ 8531 M train-other-500 imenadel
2411
+ 8534 M train-clean-360 Chris Clark
2412
+ 8536 M train-other-500 Jonathan Brubaker
2413
+ 8543 F train-other-500 luckyemma
2414
+ 8544 F train-other-500 Pooja DSr
2415
+ 8545 F train-clean-360 Joanne Rochon
2416
+ 8555 F test-clean Michelle Goode
2417
+ 8565 M train-other-500 Patrick Eaton
2418
+ 8573 F train-clean-360 Paige G
2419
+ 8575 M train-clean-360 Jeremy Robertson
2420
+ 8576 M train-other-500 Phil Schempf
2421
+ 8580 M train-clean-100 Gary Dana
2422
+ 8587 M train-other-500 Drew Johnson
2423
+ 8590 M train-other-500 bobrose
2424
+ 8591 F train-clean-360 Jude Somers
2425
+ 8592 M train-clean-360 Dylan Posa
2426
+ 8605 F train-clean-360 Kate Sterner
2427
+ 8609 M train-clean-100 noblesavage
2428
+ 8619 M train-clean-360 Tad E.
2429
+ 8625 F train-other-500 Ellen Preckel
2430
+ 8629 M train-clean-100 Shivansh Dhar
2431
+ 8630 M train-clean-100 Eduardo
2432
+ 8631 M train-other-500 Edward Kirkby
2433
+ 8632 M train-other-500 Geremia
2434
+ 8635 M train-clean-360 ACBowgus
2435
+ 8643 M train-clean-360 jabc1950
2436
+ 8644 F train-other-500 Eenae
2437
+ 8664 F train-other-500 Pam Castille
2438
+ 8666 M train-other-500 josembi
2439
+ 8671 M train-other-500 Simon Smoke
2440
+ 8675 M train-other-500 Larry Greene
2441
+ 8677 F train-clean-360 KHand
2442
+ 8678 F train-other-500 Amy
2443
+ 8684 F train-clean-360 Alison Stewart
2444
+ 8687 M train-clean-360 EccentricOwl
2445
+ 8699 F train-clean-360 Jessica Atha
2446
+ 8705 M train-clean-360 dsilber01
2447
+ 8710 M train-other-500 Ralph Crown
2448
+ 8713 M train-clean-360 Expatriate
2449
+ 8718 F train-clean-360 Deena Rhoads
2450
+ 8722 F train-clean-360 Emily Maynard
2451
+ 8725 M train-clean-360 Gary Ericson
2452
+ 8742 M train-clean-360 Adam Taylor
2453
+ 8747 M train-clean-100 DeanOBuchanan
2454
+ 8753 M train-other-500 Walt Allan
2455
+ 8758 M train-clean-360 Krzysztof Rowinski
2456
+ 8765 M train-other-500 jciesielski
2457
+ 8770 M train-clean-100 Paul Simonin
2458
+ 8771 F train-clean-360 Anna Millard
2459
+ 8772 M train-clean-360 Martin Reyto
2460
+ 8776 F train-clean-360 Taliesin
2461
+ 8778 F train-other-500 Francoise
2462
+ 8786 M train-clean-360 Bruce Kachuk
2463
+ 8791 M train-clean-360 ScottReyonoldsVoice
2464
+ 8797 M train-clean-100 Sean Grabosky
2465
+ 8799 M train-other-500 Peter Tucker
2466
+ 8803 M train-other-500 Ben Lindsey-Clark
2467
+ 8808 M train-other-500 davidpr
2468
+ 8820 M train-clean-360 Ignare
2469
+ 8824 M train-clean-360 Mark Johnston
2470
+ 8825 F train-clean-360 Erin Schellhase
2471
+ 8838 M train-clean-100 Kevin Owens
2472
+ 8842 F dev-clean Mary J
2473
+ 8846 F train-other-500 MariaS
2474
+ 8848 M train-clean-360 Craig Kenneth Bryant
2475
+ 8855 M train-clean-360 Eric Metzler
2476
+ 8867 F train-other-500 sorbet87
2477
+ 8875 M train-clean-360 David D'Huet
2478
+ 8879 M train-clean-360 Son of the Exiles
2479
+ 8887 M train-clean-360 Andrew Hernandez
2480
+ 8897 F train-other-500 beyondutopia
2481
+ 8975 F train-clean-100 Daisy Flaim
2482
+ 9000 M train-other-500 Ramon Escamilla
2483
+ 9022 F train-clean-360 Claire M
2484
+ 9023 F train-clean-360 P. J. Morgan
2485
+ 9026 F train-clean-360 Tammy Porter
config/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
config/vocab_phonemes.txt ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [MASK]
2
+ [PAD]
3
+ [UNK]
4
+ [COMMA]
5
+ [EXCLAMATION MARK]
6
+ [FULL STOP]
7
+ [QUESTION MARK]
8
+ [SEMICOLON]
9
+ [SILENCE]
10
+
11
+
12
+ b
13
+ d
14
+
15
+
16
+ f
17
+ h
18
+ i
19
+ j
20
+ k
21
+ l
22
+ m
23
+ n
24
+
25
+ p
26
+ s
27
+ t
28
+
29
+ u
30
+ v
31
+ w
32
+ z
33
+ æ
34
+ ð
35
+ ŋ
36
+ ɑ
37
+ ɔ
38
+ ɔɪ
39
+ ɛ
40
+ ɜ˞
41
+ ɡ
42
+ ɪ
43
+ ɹ
44
+ ʃ
45
+ ʊ
46
+ ʌ
47
+ ʒ
48
+ ˌaɪ
49
+ ˌaʊ
50
+ ˌeɪ
51
+ ˌi
52
+ ˌoʊ
53
+ ˌu
54
+ ˌæ
55
+ ˌɑ
56
+ ˌɔ
57
+ ˌɔɪ
58
+ ˌɛ
59
+ ˌɜ˞
60
+ ˌɪ
61
+ ˌʊ
62
+ ˌʌ
63
+ θ
demo/__init__.py ADDED
File without changes
demo/config.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ speakers_delightful_22050 = {
2
+ "Dan Threetrees": 50,
3
+ "Cori Samuel": 52,
4
+ "Linda Wilcox": 63,
5
+ "Christiane Levesque": 64,
6
+ "Fox in the Stars": 80,
7
+ "Chris Goringe": 91,
8
+ "Maureen S. O'Brien": 102,
9
+ "Kevin McAsh": 108,
10
+ "Brenda Dayne": 118,
11
+ "Sean McGaughey": 123,
12
+ "Ed Good": 164,
13
+ "Paul Harvey": 171,
14
+ "Nocturna": 192,
15
+ "Joy Chan": 218,
16
+ "fieldsofgold": 248,
17
+ "Eric Connover": 308,
18
+ "Carl Vonnoh, III": 314,
19
+ "Brooks Seveer": 373,
20
+ "swroot": 394,
21
+ "Christabel": 414,
22
+ "Kiki Baessell": 417,
23
+ "RedToby": 425,
24
+ "Heather Duncan": 450,
25
+ "Christian Pecaut": 469,
26
+ "Scott Sherris": 481,
27
+ "Madame Tusk": 517,
28
+ "Miranda Stinson": 544,
29
+ "Daniel Shorten": 574,
30
+ "Jo": 596,
31
+ "Anne-Marie": 604,
32
+ "PJ": 617,
33
+ "Cynthia Zocca": 644,
34
+ "Micah": 645,
35
+ "Scarlett!": 649,
36
+ "cucciasv": 653,
37
+ "James Gladwin": 661,
38
+ "Kelly Dougherty": 666,
39
+ "Jan Baxter": 668,
40
+ "Nikki Sullivan": 685,
41
+ "Sheila Morton": 710,
42
+ "Tysto": 732,
43
+ "Pete Williams, Pittsburgh, PA": 770,
44
+ "Alec Daitsman": 782,
45
+ "David Kleparek": 791,
46
+ "FirstKnight": 804,
47
+ "texttalker": 817,
48
+ "kristiface": 822,
49
+ "Rachel Lintern": 835,
50
+ "Jennifer Lott": 851,
51
+ "mpetranech": 881,
52
+ "Quentin Manuel": 908,
53
+ "Jane Greensmith": 923,
54
+ "Petra": 929,
55
+ "Raerity": 932,
56
+ "Parrot": 995,
57
+ "mjbrichant": 1041,
58
+ "Martin Geeson": 1109,
59
+ "Linda Andrus": 1135,
60
+ "Jonathan Burchard": 1142,
61
+ "Dale A. Bade": 1204,
62
+ "Troy Bond": 1230,
63
+ "Sarah LuAnn": 1247,
64
+ "garbageman99": 1281,
65
+ "davidb": 1302,
66
+ "Savanna Herrold": 1370,
67
+ "Angel5": 1402,
68
+ "Preston Scrape": 1414,
69
+ "browneyedgirl32382": 1433,
70
+ "P Moscato": 1440,
71
+ "Joyce Couch": 1596,
72
+ "Sharon Omi": 1656,
73
+ "Steve Belleguelle": 1712,
74
+ "Caroline Driggs": 1718,
75
+ "Vinnie Tesla": 1728,
76
+ "anjieliu": 1741,
77
+ "Yvonne Smith": 1755,
78
+ "Sarah Crampton": 1783,
79
+ "Vince Dee": 1805,
80
+ "Rebecca King": 1808,
81
+ "Kendall Ashyby": 1836,
82
+ "NastassiaS": 1869,
83
+ "acloward": 2056,
84
+ "Eberle Thomas": 2084,
85
+ "Larry Beasley": 2114,
86
+ "Pete Milan": 2115,
87
+ "Suebee": 2143,
88
+ "Sammy Bean": 2192,
89
+ "Mike Nelson": 2197,
90
+ "Samantha J Gubitz": 2209,
91
+ "Haili": 2341,
92
+ "Alexander Hatton": 2371,
93
+ "KHand": 2439,
94
+ "Deena Rhoads": 2447,
95
+ "Erin Schellhase": 2468,
96
+ }
97
+
98
+ speakers_hifi_tts = {
99
+ "Cori Samuel": 92,
100
+ "Phil Benson": 6097,
101
+ "John Van Stan": 9017,
102
+ "Mike Pelton": 6670,
103
+ "Tony Oliva": 6671,
104
+ "Maria Kasper": 8051,
105
+ "Helen Taylor": 9136,
106
+ "Sylviamb": 11614,
107
+ "Celine Major": 11697,
108
+ "LikeManyWaters": 12787,
109
+ }
en_us_cmudict_ipa_forward.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cadce3d77597b55e772799cb46994ab29a460f1a62a87207b52f3cdb29894e02
3
+ size 65637046
epoch=5816-step=390418.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65f41d587e37cc12a05e43c9f0ed107dcca634f3987bee7facec6f62571aeda9
3
+ size 2381456584
mocks/audio_example.wav ADDED
Binary file (109 kB). View file
 
mocks/data/Alice/0001.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61f5942c46d80a7517d7979589b5c2f6613138fedb921b23ed0cdd7b065f2409
3
+ size 97172
mocks/data/Bob/0002.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2765d71f271f668d80c266deb449cee5d94ad19e4949db10f4b50cf53b6d1c5e
3
+ size 97172
mocks/data/Charlie/0003.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f3de9a2b066779141176513f2e0ee80d0ec87157fd30e0c59289562d58f9fe2
3
+ size 97172
mocks/metadata.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 0001|Alice
2
+ 0002|Bob
3
+ 0003|Charlie
mocks/speakers.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "Alice": 0,
3
+ "Bob": 1,
4
+ "Charlie": 2
5
+ }
mocks/test_compute_yin.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9a4db041f1f2f053d1477775dc177d27989d5186c0849cc2ab24e337c2c4115
3
+ size 5632
models/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .delightful_hifi import DelightfulHiFi
models/config/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .configs import *
2
+ from .langs import *
3
+ from .symbols import *
models/config/configs.py ADDED
@@ -0,0 +1,438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, field
2
+ from typing import List, Literal, Tuple, Union
3
+
4
+ PreprocessLangType = Literal["english_only", "multilingual"]
5
+
6
+
7
+ @dataclass
8
+ class STFTConfig:
9
+ filter_length: int
10
+ hop_length: int
11
+ win_length: int
12
+ n_mel_channels: int
13
+ mel_fmin: int
14
+ mel_fmax: int
15
+
16
+
17
+ # Base class used with the Univnet vocoder
18
+ @dataclass
19
+ class PreprocessingConfig:
20
+ language: PreprocessLangType
21
+ stft: STFTConfig
22
+ sampling_rate: int = 22050
23
+ min_seconds: float = 0.5
24
+ max_seconds: float = 6.0
25
+ use_audio_normalization: bool = True
26
+ workers: int = 8
27
+
28
+
29
+ @dataclass
30
+ class PreprocessingConfigUnivNet(PreprocessingConfig):
31
+ stft: STFTConfig = field(
32
+ default_factory=lambda: STFTConfig(
33
+ filter_length=1024,
34
+ hop_length=256,
35
+ win_length=1024,
36
+ n_mel_channels=100, # univnet
37
+ mel_fmin=20,
38
+ mel_fmax=11025,
39
+ ),
40
+ )
41
+
42
+
43
+ @dataclass
44
+ class PreprocessingConfigHifiGAN(PreprocessingConfig):
45
+ stft: STFTConfig = field(
46
+ default_factory=lambda: STFTConfig(
47
+ filter_length=1024,
48
+ hop_length=256,
49
+ win_length=1024,
50
+ n_mel_channels=80, # For univnet 100
51
+ mel_fmin=20,
52
+ mel_fmax=11025,
53
+ ),
54
+ )
55
+
56
+ def __post_init__(self):
57
+ r"""It modifies the 'stft' attribute based on the 'sampling_rate' attribute.
58
+ If 'sampling_rate' is 44100, 'stft' is set with specific values for this rate.
59
+ If 'sampling_rate' is not 22050 or 44100, a ValueError is raised.
60
+
61
+ Raises:
62
+ ValueError: If 'sampling_rate' is not 22050 or 44100.
63
+ """
64
+ if self.sampling_rate == 44100:
65
+ self.stft = STFTConfig(
66
+ filter_length=2048,
67
+ hop_length=512, # NOTE: 441 ?? https://github.com/jik876/hifi-gan/issues/116#issuecomment-1436999858
68
+ win_length=2048,
69
+ n_mel_channels=80, # Based on https://github.com/jik876/hifi-gan/issues/116
70
+ mel_fmin=20,
71
+ mel_fmax=11025,
72
+ )
73
+ if self.sampling_rate not in [22050, 44100]:
74
+ raise ValueError("Sampling rate must be 22050 or 44100")
75
+
76
+
77
+ @dataclass
78
+ class AcousticTrainingOptimizerConfig:
79
+ learning_rate: float
80
+ weight_decay: float
81
+ lr_decay: float
82
+ betas: Tuple[float, float] = (0.9, 0.98)
83
+ eps: float = 0.000000001
84
+ grad_clip_thresh: float = 1.0
85
+ warm_up_step: float = 4000
86
+ anneal_steps: List[int] = field(default_factory=list)
87
+ anneal_rate: float = 0.3
88
+
89
+
90
+ @dataclass
91
+ class AcousticFinetuningConfig:
92
+ batch_size = 5
93
+ grad_acc_step = 3
94
+ train_steps = 30000
95
+ log_step = 100
96
+ synth_step = 250
97
+ val_step = 4000
98
+ save_step = 250
99
+ freeze_bert_until = 0
100
+ mcd_gen_max_samples = 400
101
+ only_train_speaker_until = 5000
102
+ optimizer_config: AcousticTrainingOptimizerConfig = field(
103
+ default_factory=lambda: AcousticTrainingOptimizerConfig(
104
+ learning_rate=0.0002,
105
+ weight_decay=0.001,
106
+ lr_decay=0.99999,
107
+ ),
108
+ )
109
+
110
+
111
+ @dataclass
112
+ class AcousticPretrainingConfig:
113
+ batch_size = 5
114
+ grad_acc_step = 5
115
+ train_steps = 500000
116
+ log_step = 20
117
+ synth_step = 250
118
+ val_step = 4000
119
+ save_step = 1000
120
+ freeze_bert_until = 4000
121
+ mcd_gen_max_samples = 400
122
+ only_train_speaker_until = 0
123
+ optimizer_config: AcousticTrainingOptimizerConfig = field(
124
+ default_factory=lambda: AcousticTrainingOptimizerConfig(
125
+ learning_rate=0.0002,
126
+ weight_decay=0.01,
127
+ lr_decay=1.0,
128
+ ),
129
+ )
130
+
131
+
132
+ AcousticTrainingConfig = Union[AcousticFinetuningConfig, AcousticPretrainingConfig]
133
+
134
+
135
+ @dataclass
136
+ class ConformerConfig:
137
+ n_layers: int
138
+ n_heads: int
139
+ n_hidden: int
140
+ p_dropout: float
141
+ kernel_size_conv_mod: int
142
+ kernel_size_depthwise: int
143
+ with_ff: bool
144
+
145
+
146
+ @dataclass
147
+ class ReferenceEncoderConfig:
148
+ bottleneck_size_p: int
149
+ bottleneck_size_u: int
150
+ ref_enc_filters: List[int]
151
+ ref_enc_size: int
152
+ ref_enc_strides: List[int]
153
+ ref_enc_pad: List[int]
154
+ ref_enc_gru_size: int
155
+ ref_attention_dropout: float
156
+ token_num: int
157
+ predictor_kernel_size: int
158
+
159
+
160
+ @dataclass
161
+ class VarianceAdaptorConfig:
162
+ n_hidden: int
163
+ kernel_size: int
164
+ emb_kernel_size: int
165
+ p_dropout: float
166
+ n_bins: int
167
+
168
+
169
+ @dataclass
170
+ class AcousticLossConfig:
171
+ ssim_loss_alpha: float
172
+ mel_loss_alpha: float
173
+ aligner_loss_alpha: float
174
+ pitch_loss_alpha: float
175
+ energy_loss_alpha: float
176
+ u_prosody_loss_alpha: float
177
+ p_prosody_loss_alpha: float
178
+ dur_loss_alpha: float
179
+ binary_align_loss_alpha: float
180
+ binary_loss_warmup_epochs: int
181
+
182
+
183
+ @dataclass
184
+ class AcousticENModelConfig:
185
+ speaker_embed_dim: int = 1024
186
+ lang_embed_dim: int = 1
187
+ encoder: ConformerConfig = field(
188
+ default_factory=lambda: ConformerConfig(
189
+ n_layers=6,
190
+ n_heads=8,
191
+ n_hidden=512,
192
+ p_dropout=0.1,
193
+ kernel_size_conv_mod=7,
194
+ kernel_size_depthwise=7,
195
+ with_ff=True,
196
+ ),
197
+ )
198
+ decoder: ConformerConfig = field(
199
+ default_factory=lambda: ConformerConfig(
200
+ n_layers=6,
201
+ n_heads=8,
202
+ n_hidden=512,
203
+ p_dropout=0.1,
204
+ kernel_size_conv_mod=11,
205
+ kernel_size_depthwise=11,
206
+ with_ff=True,
207
+ ),
208
+ )
209
+ reference_encoder: ReferenceEncoderConfig = field(
210
+ default_factory=lambda: ReferenceEncoderConfig(
211
+ bottleneck_size_p=4,
212
+ bottleneck_size_u=256,
213
+ ref_enc_filters=[32, 32, 64, 64, 128, 128],
214
+ ref_enc_size=3,
215
+ ref_enc_strides=[1, 2, 1, 2, 1],
216
+ ref_enc_pad=[1, 1],
217
+ ref_enc_gru_size=32,
218
+ ref_attention_dropout=0.2,
219
+ token_num=32,
220
+ predictor_kernel_size=5,
221
+ ),
222
+ )
223
+ variance_adaptor: VarianceAdaptorConfig = field(
224
+ default_factory=lambda: VarianceAdaptorConfig(
225
+ n_hidden=512,
226
+ kernel_size=5,
227
+ emb_kernel_size=3,
228
+ p_dropout=0.5,
229
+ n_bins=256,
230
+ ),
231
+ )
232
+ loss: AcousticLossConfig = field(
233
+ default_factory=lambda: AcousticLossConfig(
234
+ ssim_loss_alpha=1.0,
235
+ mel_loss_alpha=1.0,
236
+ aligner_loss_alpha=1.0,
237
+ pitch_loss_alpha=1.0,
238
+ energy_loss_alpha=1.0,
239
+ u_prosody_loss_alpha=0.25,
240
+ p_prosody_loss_alpha=0.25,
241
+ dur_loss_alpha=1.0,
242
+ binary_align_loss_alpha=0.1,
243
+ binary_loss_warmup_epochs=10,
244
+ ),
245
+ )
246
+
247
+
248
+ @dataclass
249
+ class AcousticMultilingualModelConfig:
250
+ speaker_embed_dim: int = 1024
251
+ lang_embed_dim: int = 256
252
+ encoder: ConformerConfig = field(
253
+ default_factory=lambda: ConformerConfig(
254
+ n_layers=6,
255
+ n_heads=8,
256
+ n_hidden=512,
257
+ p_dropout=0.1,
258
+ kernel_size_conv_mod=7,
259
+ kernel_size_depthwise=7,
260
+ with_ff=True,
261
+ ),
262
+ )
263
+ decoder: ConformerConfig = field(
264
+ default_factory=lambda: ConformerConfig(
265
+ n_layers=6,
266
+ n_heads=8,
267
+ n_hidden=512,
268
+ p_dropout=0.1,
269
+ kernel_size_conv_mod=11,
270
+ kernel_size_depthwise=11,
271
+ with_ff=True,
272
+ ),
273
+ )
274
+ reference_encoder: ReferenceEncoderConfig = field(
275
+ default_factory=lambda: ReferenceEncoderConfig(
276
+ bottleneck_size_p=4,
277
+ bottleneck_size_u=256,
278
+ ref_enc_filters=[32, 32, 64, 64, 128, 128],
279
+ ref_enc_size=3,
280
+ ref_enc_strides=[1, 2, 1, 2, 1],
281
+ ref_enc_pad=[1, 1],
282
+ ref_enc_gru_size=32,
283
+ ref_attention_dropout=0.2,
284
+ token_num=32,
285
+ predictor_kernel_size=5,
286
+ ),
287
+ )
288
+ variance_adaptor: VarianceAdaptorConfig = field(
289
+ default_factory=lambda: VarianceAdaptorConfig(
290
+ n_hidden=512,
291
+ kernel_size=5,
292
+ emb_kernel_size=3,
293
+ p_dropout=0.5,
294
+ n_bins=256,
295
+ ),
296
+ )
297
+ loss: AcousticLossConfig = field(
298
+ default_factory=lambda: AcousticLossConfig(
299
+ ssim_loss_alpha=1.0,
300
+ mel_loss_alpha=1.0,
301
+ aligner_loss_alpha=1.0,
302
+ pitch_loss_alpha=1.0,
303
+ energy_loss_alpha=1.0,
304
+ u_prosody_loss_alpha=0.25,
305
+ p_prosody_loss_alpha=0.25,
306
+ dur_loss_alpha=1.0,
307
+ binary_align_loss_alpha=0.1,
308
+ binary_loss_warmup_epochs=10,
309
+ ),
310
+ )
311
+
312
+
313
+ AcousticModelConfigType = Union[AcousticENModelConfig, AcousticMultilingualModelConfig]
314
+
315
+
316
+ @dataclass
317
+ class VocoderBasicConfig:
318
+ segment_size: int = 16384
319
+ learning_rate: float = 0.0001
320
+ adam_b1: float = 0.5
321
+ adam_b2: float = 0.9
322
+ lr_decay: float = 0.995
323
+ synth_interval: int = 250
324
+ checkpoint_interval: int = 250
325
+ stft_lamb: float = 2.5
326
+
327
+
328
+ @dataclass
329
+ class VocoderPretrainingConfig(VocoderBasicConfig):
330
+ batch_size: int = 14
331
+ grad_accum_steps: int = 1
332
+ train_steps: int = 1000000
333
+ stdout_interval: int = 25
334
+ validation_interval: int = 2000
335
+
336
+
337
+ @dataclass
338
+ class VocoderFinetuningConfig(VocoderBasicConfig):
339
+ batch_size: int = 5
340
+ grad_accum_steps: int = 3
341
+ train_steps: int = 10000
342
+ stdout_interval: int = 100
343
+ validation_interval: int = 4000
344
+
345
+
346
+ VoicoderTrainingConfig = Union[VocoderPretrainingConfig, VocoderFinetuningConfig]
347
+
348
+
349
+ @dataclass
350
+ class VocoderGeneratorConfig:
351
+ noise_dim: int
352
+ channel_size: int
353
+ dilations: List[int]
354
+ strides: List[int]
355
+ lReLU_slope: float
356
+ kpnet_conv_size: int
357
+
358
+
359
+ @dataclass
360
+ class VocoderMPDConfig:
361
+ periods: List[int]
362
+ kernel_size: int
363
+ stride: int
364
+ use_spectral_norm: bool
365
+ lReLU_slope: float
366
+
367
+
368
+ @dataclass
369
+ class VocoderMRDConfig:
370
+ resolutions: List[Tuple[int, int, int]]
371
+ use_spectral_norm: bool
372
+ lReLU_slope: float
373
+
374
+
375
+ @dataclass
376
+ class VocoderModelConfig:
377
+ gen: VocoderGeneratorConfig = field(
378
+ default_factory=lambda: VocoderGeneratorConfig(
379
+ noise_dim=64,
380
+ channel_size=32,
381
+ dilations=[1, 3, 9, 27],
382
+ strides=[8, 8, 4],
383
+ lReLU_slope=0.2,
384
+ kpnet_conv_size=3,
385
+ ),
386
+ )
387
+ mpd: VocoderMPDConfig = field(
388
+ default_factory=lambda: VocoderMPDConfig(
389
+ periods=[2, 3, 5, 7, 11],
390
+ kernel_size=5,
391
+ stride=3,
392
+ use_spectral_norm=False,
393
+ lReLU_slope=0.2,
394
+ ),
395
+ )
396
+ mrd: VocoderMRDConfig = field(
397
+ default_factory=lambda: VocoderMRDConfig(
398
+ resolutions=[(1024, 120, 600), (2048, 240, 1200), (512, 50, 240)],
399
+ use_spectral_norm=False,
400
+ lReLU_slope=0.2,
401
+ ),
402
+ )
403
+
404
+
405
+ #####################
406
+ # HI-FI GAN CONFIGS #
407
+ #####################
408
+
409
+
410
+ @dataclass
411
+ class HifiGanPretrainingConfig(VocoderBasicConfig):
412
+ segment_size: int = 16384
413
+ learning_rate: float = 0.0002
414
+ adam_b1: float = 0.8
415
+ adam_b2: float = 0.99
416
+ lr_decay: float = 0.9995
417
+ lReLU_slope: float = 0.1
418
+ l1_factor: int = 45
419
+ sampling_rate_acoustic: int = 22050
420
+ sampling_rate_vocoder: int = 44100
421
+
422
+
423
+ @dataclass
424
+ class HifiGanConfig:
425
+ resblock: str = "1"
426
+ upsample_rates: List[int] = field(
427
+ default_factory=lambda: [8, 8, 4, 2],
428
+ )
429
+ upsample_kernel_sizes: List[int] = field(
430
+ default_factory=lambda: [16, 16, 4, 4],
431
+ )
432
+ upsample_initial_channel: int = 512
433
+ resblock_kernel_sizes: List[int] = field(
434
+ default_factory=lambda: [3, 7, 11],
435
+ )
436
+ resblock_dilation_sizes: List[List[int]] = field(
437
+ default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
438
+ )
models/config/experimental_configs.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+
3
+
4
+ # TODO: DEPRECATED!
5
+ @dataclass
6
+ class PostNetConfig:
7
+ p_dropout: float
8
+ postnet_embedding_dim: int
9
+ postnet_kernel_size: int
10
+ postnet_n_convolutions: int
11
+
12
+ postnet_expetimental = PostNetConfig(
13
+ p_dropout=0.1,
14
+ postnet_embedding_dim=512,
15
+ postnet_kernel_size=5,
16
+ postnet_n_convolutions=3,
17
+ )
18
+
19
+ # TODO: DEPRECATED!
20
+ @dataclass
21
+ class DiffusionConfig:
22
+ # model parameters
23
+ model: str
24
+ n_mel_channels: int
25
+ multi_speaker: bool
26
+ # denoiser parameters
27
+ residual_channels: int
28
+ residual_layers: int
29
+ denoiser_dropout: float
30
+ noise_schedule_naive: str
31
+ timesteps: int
32
+ shallow_timesteps: int
33
+ min_beta: float
34
+ max_beta: float
35
+ s: float
36
+ pe_scale: int
37
+ keep_bins: int
38
+ # trainsformer params
39
+ encoder_hidden: int
40
+ decoder_hidden: int
41
+ speaker_embed_dim: int
42
+ # loss params
43
+ noise_loss: str
44
+
45
+
46
+ diff_en = DiffusionConfig(
47
+ # model parameters
48
+ model="shallow",
49
+ n_mel_channels=100,
50
+ multi_speaker=True,
51
+ # denoiser parameters
52
+ # residual_channels=256,
53
+ # residual_channels=384,
54
+ residual_channels=100,
55
+ residual_layers=20,
56
+ denoiser_dropout=0.2,
57
+ noise_schedule_naive="vpsde",
58
+ timesteps=10,
59
+ shallow_timesteps=1,
60
+ min_beta=0.1,
61
+ max_beta=40,
62
+ s=0.008,
63
+ keep_bins=80,
64
+ pe_scale=1000,
65
+ # trainsformer params
66
+ # encoder_hidden=100,
67
+ encoder_hidden=512,
68
+ decoder_hidden=512,
69
+ # Speaker_emb + lang_emb
70
+ speaker_embed_dim=1025,
71
+ # loss params
72
+ noise_loss="l1",
73
+ )
74
+
75
+ diff_multi = DiffusionConfig(
76
+ # model parameters
77
+ model="shallow",
78
+ n_mel_channels=100,
79
+ multi_speaker=True,
80
+ # denoiser parameters
81
+ # residual_channels=256,
82
+ residual_channels=100,
83
+ residual_layers=20,
84
+ denoiser_dropout=0.2,
85
+ noise_schedule_naive="vpsde",
86
+ timesteps=10,
87
+ shallow_timesteps=1,
88
+ min_beta=0.1,
89
+ max_beta=40,
90
+ s=0.008,
91
+ pe_scale=1000,
92
+ keep_bins=80,
93
+ # trainsformer params
94
+ encoder_hidden=512,
95
+ decoder_hidden=512,
96
+ # Speaker_emb + lang_emb
97
+ speaker_embed_dim=1280,
98
+ # loss params
99
+ noise_loss="l1",
100
+ )
models/config/langs.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Dict
3
+
4
+ from models.config import PreprocessLangType
5
+
6
+ # TODO: now we only support english, but we need to support other languages!
7
+ SUPPORTED_LANGUAGES = [
8
+ "bg",
9
+ "cs",
10
+ "de",
11
+ "en",
12
+ "es",
13
+ "fr",
14
+ "ha",
15
+ "hr",
16
+ "ko",
17
+ "pl",
18
+ "pt",
19
+ "ru",
20
+ "sv",
21
+ "sw",
22
+ "th",
23
+ "tr",
24
+ "uk",
25
+ "vi",
26
+ "zh",
27
+ ]
28
+
29
+ # Mappings from symbol to numeric ID and vice versa:
30
+ lang2id = {s: i for i, s in enumerate(SUPPORTED_LANGUAGES)}
31
+ id2lang = dict(enumerate(SUPPORTED_LANGUAGES))
32
+
33
+ @dataclass
34
+ class LangItem:
35
+ r"""A class for storing language information."""
36
+
37
+ phonemizer: str
38
+ phonemizer_espeak: str
39
+ nemo: str
40
+ processing_lang_type: PreprocessLangType
41
+
42
+ langs_map: Dict[str, LangItem] = {
43
+ "en": LangItem(
44
+ phonemizer="en_us",
45
+ phonemizer_espeak="en-us",
46
+ nemo="en",
47
+ processing_lang_type="english_only",
48
+ ),
49
+ }
50
+
51
+ def get_lang_map(lang: str) -> LangItem:
52
+ r"""Returns a LangItem object for the given language.
53
+
54
+ Args:
55
+ lang (str): The language to get the LangItem for.
56
+
57
+ Raises:
58
+ ValueError: If the language is not supported.
59
+
60
+ Returns:
61
+ LangItem: The LangItem object for the given language.
62
+ """
63
+ if lang not in langs_map:
64
+ raise ValueError(f"Language {lang} is not supported!")
65
+ return langs_map[lang]
models/config/speakers.py ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from typing import Dict, List
3
+
4
+ # Load the ID mapping
5
+ with open("training/datasets/speaker_id_mapping_libri.json") as f:
6
+ id_mapping = json.load(f)
7
+
8
+ # Create a reverse mapping
9
+ reverse_mapping: Dict[int, int] = {int(v): int(k) for k, v in id_mapping.items()}
10
+
11
+ # Selected for the fine-tuning
12
+ # train-960 subset of LibriTTS
13
+ selected_speakers = [
14
+ 574, # Daniel Shorten M train-clean-100
15
+ 242, # J. Hall M train-other-500
16
+ 536, # Robert Flach M train-other-500
17
+ 82, # Andy Minter M train-other-500
18
+ 672, # Stuart Bell M train-other-500
19
+ 315, # Jean Crevier M train-other-500
20
+ 628, # Bryan Ness M train-clean-100
21
+ 61, # John Greenman M train-other-500
22
+ 649, # Scarlett! F train-clean-360
23
+ 105, # Marian Brown F train-clean-360
24
+ 399, # entada F train-clean-360
25
+ 89, # Paula Berinstein F train-clean-360
26
+ 502, # Lee Elliott F train-other-500
27
+ 102, # Maureen S. O'Brien F train-clean-100
28
+ 544, # Miranda Stinson F train-clean-360
29
+ 653, # cucciasv F train-other-500
30
+ 465, # Leonie Rose F train-clean-100
31
+ 96, # Kymm Zuckert F train-other-500
32
+ 447, # Lee Ann Howlett F train-clean-360
33
+ 165, # Elisabeth Shields F train-clean-100
34
+ 430, # Millbeach F train-other-500
35
+ 214, # Scott Splavec M train-clean-100
36
+ 666, # Kelly Dougherty M train-clean-360
37
+ 481, # Scott Sherris M train-clean-360
38
+ 463, # Chris Hughes M train-other-500
39
+ 273, # Andrew Lebrun M train-other-500
40
+ 172, # Harvey Chinn M train-other-500
41
+ 83, # Graham Williams M train-other-500
42
+ 523, # Michael Loftus M train-clean-360
43
+ 38, # Kurt Copeland M train-clean-360
44
+ 248, # fieldsofgold M train-other-500
45
+ 234, # Menno M train-other-500
46
+ 145, # Mr. Baby Man M train-clean-360
47
+ 250, # Quentin M train-clean-360
48
+ 498, # Chris Gladis M train-clean-100
49
+ 123, # Sean McGaughey M train-clean-360
50
+ 171, # Paul Harvey M train-clean-360
51
+ 49, # Kristen McQuillin F train-clean-100
52
+ 588, # Kalynda F train-clean-360
53
+ 117, # Caitlin Kelly F train-clean-360
54
+ 657, # Shannon F train-other-500
55
+ 275, # Zale Schafer (Rose May Chamberlin Memorial Foundat F train-clean-360
56
+ 604, # Anne-Marie F train-other-500
57
+ 64, # Christiane Levesque F train-clean-360
58
+ 685, # Nikki Sullivan F train-clean-100
59
+ 355, # Lana Taylor F train-clean-100
60
+ 185, # Kim Braun F train-clean-360
61
+ 52, # Cori Samuel F train-other-500
62
+ 218, # Joy Chan F train-other-500
63
+ 549, # AmyAG F train-other-500
64
+ 617, # PJ F train-other-500
65
+ 414, # Christabel F train-clean-100
66
+ 382, # Kelli Robinson F train-clean-360
67
+ 76, # ML Cohen M train-other-500
68
+ 176, # Micah Sheppard M train-clean-360
69
+ 233, # mikenkat M train-clean-360
70
+ 390, # JimmyLogan M train-clean-360
71
+ 393, # Tim Lundeen M train-clean-360
72
+ 425, # RedToby M train-clean-360
73
+ 398, # Sam Fold M train-other-500
74
+ 372, # Jim Mullins M train-clean-360
75
+ 99, # Stewart Wills M train-clean-100
76
+ 340, # Nick Gallant M train-clean-100
77
+ 40, # JemmaBlythe F train-other-500
78
+ 118, # Brenda Dayne F train-clean-360
79
+ 640, # David A. Stokely M train-other-500
80
+ 50, # Dan Threetrees M train-clean-360
81
+ 373, # Brooks Seveer M train-clean-360
82
+ 124, # Steve Karafit M train-clean-100
83
+ 314, # Carl Vonnoh, III M train-clean-360
84
+ 531, # Fr. Richard Zeile of Detroit M train-other-500
85
+ 383, # Mike Roop M train-other-500
86
+ 710, # Sheila Morton F train-clean-100
87
+ 450, # Heather Duncan F train-clean-360
88
+ 645, # Micah M train-other-500
89
+ 517, # Madame Tusk F train-other-500
90
+ 479, # Wina Hathaway F train-other-500
91
+ 30, # Ophelia Darcy F train-other-500
92
+ 220, # Tina Tilney F train-clean-360
93
+ 63, # Linda Wilcox F train-other-500
94
+ 283, # Bethany Simpson F train-clean-360
95
+ 644, # Cynthia Zocca F train-clean-360
96
+ 677, # Allyson Hester F train-other-500
97
+ 21, # Kelly Bescherer F train-other-500
98
+ 552, # Mim Ritty F train-clean-100
99
+ 80, # Fox in the Stars F train-clean-100
100
+ 394, # swroot F train-clean-360
101
+ 426, # Megan Stemm-Wade F train-clean-100
102
+ 91, # Chris Goringe M train-other-500
103
+ 108, # Kevin McAsh M train-clean-360
104
+ 130, # Peter of Buckinghamshire England M train-other-500
105
+ 661, # James Gladwin M train-other-500
106
+ 216, # Dave Ranson M train-clean-100
107
+ 164, # Ed Good M train-other-500
108
+ 308, # Eric Connover M train-other-500
109
+ 569, # Arouet M train-clean-360
110
+ 313, # Tim Bulkeley M train-other-500
111
+ 212, # Glen Hallstrom M train-other-500
112
+ 15, # Chip M train-other-500
113
+ 469, # Christian Pecaut M train-clean-360
114
+ 294, # Diana Kiesners F train-clean-360
115
+ 192, # Nocturna F train-clean-100
116
+ 73, # Claire Goget F train-clean-100
117
+ 417, # Kiki Baessell F train-clean-360
118
+ 636, # Matthew Howell F train-other-500
119
+ 36, # chriss the girl F train-other-500
120
+ 668, # Jan Baxter F train-clean-360
121
+ 403, # Igor Teaforay F train-clean-360
122
+ 618, # Linnea F train-other-500
123
+ 596, # Jo F train-other-500
124
+ 499, # Tammy Sanders F train-clean-100
125
+ 207, # Sage Tyrtle F train-other-500
126
+ 1346, # Jeanie F train-other-500
127
+ 1109, # Martin Geeson M train-other-500
128
+ 770, # Pete Williams, Pittsburgh, PA M train-clean-360
129
+ 1247, # Sarah LuAnn F train-clean-100
130
+ 1526, # Mike Harris M train-other-500
131
+ 908, # Quentin Manuel M train-clean-360
132
+ 1183, # Evelyn Clarke F train-other-500
133
+ 1438, # Tom Barron M train-other-500
134
+ 1022, # peac M train-clean-100
135
+ 1603, # Christine Rodriguez F train-clean-360
136
+ 1425, # Jonah Cummings M train-clean-360
137
+ 731, # Priya, India F train-other-500
138
+ 782, # Alec Daitsman M train-clean-360
139
+ 1090, # Termin Dyan M train-other-500
140
+ 995, # Parrot M train-other-500
141
+ 923, # Jane Greensmith F train-clean-360
142
+ 766, # Clive Catterall M train-other-500
143
+ 822, # kristiface F train-clean-360
144
+ 897, # Jan Dawn Doronila F train-clean-360
145
+ 1579, # Linda Velwest F train-clean-360
146
+ 964, # Utek M train-clean-360
147
+ 1414, # Preston Scrape M train-other-500
148
+ 834, # Serin F train-other-500
149
+ 1302, # davidb M train-clean-360
150
+ 1135, # Linda Andrus F train-clean-360
151
+ 1440, # P Moscato F train-clean-360
152
+ 870, # Barbara Bulkeley F train-clean-360
153
+ 1256, # Graeme Dunlop M train-other-500
154
+ 1255, # Daniel Paashaus M train-other-500
155
+ 1157, # Bev J Stevens F train-clean-360
156
+ 934, # Darla F train-other-500
157
+ 1281, # garbageman99 M train-clean-360
158
+ 819, # n8evv M train-clean-360
159
+ 1041, # mjbrichant F train-other-500
160
+ 863, # K Hindall F train-clean-360
161
+ 1303, # kiwafruit F train-clean-100
162
+ 1115, # Rachel Gatwood F train-clean-360
163
+ 1539, # Nathan Jordan M train-other-500
164
+ 1428, # Gary Dzierlenga M train-other-500
165
+ 1049, # Diana Solomon F train-other-500
166
+ 1546, # Carrie Heyes F train-other-500
167
+ 1089, # Bill Ruhsam M train-clean-360
168
+ 1142, # Jonathan Burchard M train-other-500
169
+ 1375, # Frank Adams M train-clean-360
170
+ 881, # mpetranech M train-other-500
171
+ 798, # Wyatt M train-other-500
172
+ 1647, # Patrick Reinhart M train-clean-360
173
+ 1587, # Claudia Wilson F train-clean-360
174
+ 830, # musici123 F train-other-500
175
+ 1592, # jerryB M train-other-500
176
+ 839, # Ben Dutton M train-other-500
177
+ 835, # Rachel Lintern F train-other-500
178
+ 1273, # gmiteva F train-other-500
179
+ 932, # Raerity F train-other-500
180
+ 1108, # Paul McCartan M train-other-500
181
+ 732, # Tysto M train-clean-360
182
+ 781, # Megan Kunkel F train-other-500
183
+ 1555, # Andrew Nelson M train-clean-360
184
+ 1437, # Charles RUHE M train-clean-360
185
+ 1402, # Angel5 F train-other-500
186
+ 963, # MichelleHarris F train-clean-360
187
+ 1181, # J. Rebecca Franklin F train-clean-360
188
+ 818, # Matt Warzel F train-clean-360
189
+ 1285, # Ric F M train-clean-100
190
+ 797, # Chris Jones F train-other-500
191
+ 1505, # Rom Maczka M train-clean-360
192
+ 1214, # David Baldwin M train-clean-360
193
+ 1636, # jessecoy M train-other-500
194
+ 929, # Petra F train-other-500
195
+ 1171, # Roberta Carlisle F train-other-500
196
+ 817, # texttalker M train-clean-360
197
+ 1433, # browneyedgirl32382 F train-clean-360
198
+ 1158, # StarrDog M train-other-500
199
+ 1000, # artos M train-other-500
200
+ 848, # senshisteph F train-other-500
201
+ 1596, # Joyce Couch F train-other-500
202
+ 757, # Roger Melin M train-clean-360
203
+ 1168, # Epistomolus M train-clean-100
204
+ 741, # Nick Marsh M train-other-500
205
+ 1649, # Phineas Redux M train-other-500
206
+ 851, # Jennifer Lott F train-clean-360
207
+ 808, # M. J. Boyle F train-other-500
208
+ 1595, # Matthew Reece M train-clean-360
209
+ 1370, # Savanna Herrold F train-other-500
210
+ 1565, # bryan.peterson M train-other-500
211
+ 944, # Sarafina Suransky F train-other-500
212
+ 1268, # A. Janelle Risa F train-clean-100
213
+ 771, # Isosceles F train-clean-360
214
+ 752, # Cat Schirf F train-other-500
215
+ 800, # Jack Farrell M train-clean-360
216
+ 1005, # Beatrice F train-other-500
217
+ 1229, # RoseA F train-clean-360
218
+ 943, # Matthew C. Heckel M train-clean-360
219
+ 891, # anoldfashiongirl F train-other-500
220
+ 1226, # serenitylee F train-clean-360
221
+ 1253, # Caroline Shapiro F train-other-500
222
+ 1204, # Dale A. Bade F train-clean-360
223
+ 1230, # Troy Bond M train-other-500
224
+ 791, # David Kleparek M train-clean-100
225
+ 1184, # Joseph Couves F train-other-500
226
+ 1001, # TriciaG F train-clean-360
227
+ 804, # FirstKnight F train-other-500
228
+ 1641, # Kirsten Wever F train-clean-100
229
+ 1259, # Megan Argo F train-other-500
230
+ 1231, # Abigail Bartels F train-other-500
231
+ 1410, # Zachary Johnson M train-other-500
232
+ 1030, # Ancient mariner M train-other-500
233
+ 1093, # Katie Riley F train-clean-360
234
+ 1254, # Rosie F train-clean-100
235
+ 1365, # Eric Leach M train-clean-360
236
+ 831, # David Federman M train-other-500
237
+ 1989, # Joannemmp F train-clean-100
238
+ 1707, # David Olson M train-other-500
239
+ 1849, # Fred DeBerardinis M train-clean-100
240
+ 1808, # Rebecca King F train-clean-360
241
+ 2292, # Arnold M train-clean-100
242
+ 2415, # Patrick Eaton M train-other-500
243
+ 1656, # Sharon Omi F train-clean-100
244
+ 1676, # Gargoyle M train-clean-360
245
+ 1881, # Julienne F train-other-500
246
+ 2036, # T.K. Kirven F train-other-500
247
+ 1761, # EliMarieHK F train-other-500
248
+ 2115, # Pete Milan M train-other-500
249
+ 1803, # Susan Hanfield F train-clean-360
250
+ 1798, # C. L. W. Rollins F train-other-500
251
+ 1723, # Rachel Bossier F train-other-500
252
+ 2341, # Haili F train-other-500
253
+ 2468, # Erin Schellhase F train-clean-360
254
+ 1725, # Ruth Kidson F train-other-500
255
+ 2010, # Peggy F train-other-500
256
+ 1853, # Ron Altman M train-other-500
257
+ 2359, # Doug Reed M train-other-500
258
+ 2422, # Jude Somers F train-clean-360
259
+ 2234, # Coreena F train-other-500
260
+ 2156, # C F de Rosset F train-other-500
261
+ 2483, # Tammy Porter F train-clean-360
262
+ 1781, # humanode M train-clean-360
263
+ 2275, # NatalieOram F train-other-500
264
+ 2390, # sdaeley17 M train-clean-360
265
+ 2314, # Cheri Jordan F train-clean-360
266
+ 2413, # Joanne Rochon F train-clean-360
267
+ 1697, # Lonelle Yoder F train-other-500
268
+ 1718, # Caroline Driggs F train-other-500
269
+ 2387, # Brett G. Hirsch M train-other-500
270
+ 2331, # Madam Fickle F train-clean-100
271
+ 1783, # Sarah Crampton F train-clean-360
272
+ 2397, # Rebecca Braunert-Plunkett F train-other-500
273
+ 2357, # William Gavula M train-other-500
274
+ 1670, # dmbrought M train-other-500
275
+ 1987, # Andrew White M train-clean-360
276
+ 1755, # Yvonne Smith F train-clean-360
277
+ 2192, # Sammy Bean M train-other-500
278
+ 1716, # EyeBones F train-clean-360
279
+ 1828, # David Wales M train-clean-100
280
+ 2251, # Wiley Combs M train-clean-360
281
+ 2065, # Muriel F train-clean-360
282
+ 2017, # CaprishaPage F train-other-500
283
+ 1947, # Barbara Edelman F train-other-500
284
+ 1738, # Lois C. Johnson F train-clean-360
285
+ 1791, # David Cummings M train-clean-360
286
+ 2045, # Linda Ciano F train-clean-360
287
+ 2452, # Walt Allan M train-other-500
288
+ 2040, # MJ Franck F train-other-500
289
+ 1831, # Nigel Boydell M train-other-500
290
+ 2371, # Alexander Hatton M train-clean-360
291
+ 1954, # Szindbad M train-other-500
292
+ 1836, # Kendall Ashyby F train-other-500
293
+ 2436, # josembi M train-other-500
294
+ 2383, # Emma Joyce F train-other-500
295
+ 2278, # Jake Woldstad M train-clean-360
296
+ 1741, # anjieliu F train-other-500
297
+ 1857, # Amanda Friday F train-clean-360
298
+ 2370, # gloriousjob M train-clean-360
299
+ 1907, # Snapdragon F train-other-500
300
+ 2225, # nomorejeffs M train-clean-360
301
+ 2439, # KHand F train-clean-360
302
+ 2239, # amaskill M train-other-500
303
+ 2007, # Art Leung F train-clean-360
304
+ 2283, # Tim Cote M train-clean-360
305
+ 1712, # Steve Belleguelle M train-other-500
306
+ 2094, # Meg Cowan F train-clean-360
307
+ 1772, # haggisreflux M train-clean-360
308
+ 2317, # helengraves F train-clean-360
309
+ 2241, # Steven Reynolds M train-clean-360
310
+ 2011, # pekein M train-clean-360
311
+ 1826, # John Hoerr M train-clean-100
312
+ 1695, # Tina Nuzzi F train-clean-360
313
+ 2451, # DeanOBuchanan M train-clean-100
314
+ 1771, # Chelsea S. F train-other-500
315
+ 2441, # Alison Stewart F train-clean-360
316
+ 1745, # Janet F train-clean-360
317
+ 2358, # Betty Perry F train-clean-360
318
+ 2197, # Mike Nelson M train-other-500
319
+ 2014, # Eden Rea-Hedrick F train-other-500
320
+ 1672, # Mike Wajda M train-clean-360
321
+ 2394, # TinaNygard2 F train-clean-100
322
+ 1657, # alwpoe M train-clean-360
323
+ 1728, # Vinnie Tesla M train-clean-360
324
+ 1805, # Vince Dee M train-clean-100
325
+ 2143, # Suebee F train-clean-360
326
+ 2084, # Eberle Thomas M train-other-500
327
+ 2479, # Daisy Flaim F train-clean-100
328
+ 2152, # Kristel Tretter F train-clean-360
329
+ 2268, # Greg Giordano M train-clean-360
330
+ 1839, # James E. Carson M train-clean-360
331
+ 2056, # acloward M train-clean-360
332
+ 1814, # polkadotish F train-other-500
333
+ 2127, # Ron Lockhart M train-clean-100
334
+ 2114, # Larry Beasley M train-clean-360
335
+ 2469, # Kevin Owens M train-clean-100
336
+ 2447, # Deena Rhoads F train-clean-360
337
+ 1724, # Juliana M. F train-clean-360
338
+ 1869, # NastassiaS F train-other-500
339
+ 2209, # Samantha J Gubitz F train-clean-360
340
+ 2171, # Carolyne F train-other-500
341
+ 2403, # Ian Quinlan M train-clean-360
342
+ 2032, # doonaboon M train-other-500
343
+ 2075, # Joy S Grape F train-clean-360
344
+ ]
345
+
346
+ # Convert the model speaker IDs back to the dataset speaker IDs
347
+ # dataset_speaker_ids: List[int] = [
348
+ # reverse_mapping.get(int(speaker_id)) for speaker_id in selected_speakers
349
+ # ] # type: ignore
350
+
351
+ # Save the selected speaker IDs
352
+ latest_selection: List[int] = [
353
+ 574,
354
+ 649,
355
+ 102,
356
+ 544,
357
+ 653,
358
+ 666,
359
+ 481,
360
+ 248,
361
+ 123,
362
+ 171,
363
+ 604,
364
+ 64,
365
+ 685,
366
+ 52,
367
+ 218,
368
+ 617,
369
+ 414,
370
+ 425,
371
+ 118,
372
+ 50,
373
+ 373,
374
+ 314,
375
+ 710,
376
+ 450,
377
+ 645,
378
+ 517,
379
+ 63,
380
+ 644,
381
+ 80,
382
+ 394,
383
+ 91,
384
+ 108,
385
+ 661,
386
+ 164,
387
+ 308,
388
+ 469,
389
+ 192,
390
+ 417,
391
+ 668,
392
+ 596,
393
+ 1109,
394
+ 770,
395
+ 1247,
396
+ 908,
397
+ 782,
398
+ 995,
399
+ 923,
400
+ 822,
401
+ 1414,
402
+ 1302,
403
+ 1135,
404
+ 1440,
405
+ 1281,
406
+ 1041,
407
+ 1142,
408
+ 881,
409
+ 835,
410
+ 932,
411
+ 732,
412
+ 1402,
413
+ 929,
414
+ 817,
415
+ 1433,
416
+ 1596,
417
+ 851,
418
+ 1370,
419
+ 1204,
420
+ 1230,
421
+ 791,
422
+ 804,
423
+ 1808,
424
+ 1656,
425
+ 2115,
426
+ 2341,
427
+ 2468,
428
+ 1718,
429
+ 1783,
430
+ 1755,
431
+ 2192,
432
+ 2371,
433
+ 1836,
434
+ 1741,
435
+ 2439,
436
+ 1712,
437
+ 2197,
438
+ 1728,
439
+ 1805,
440
+ 2143,
441
+ 2084,
442
+ 2056,
443
+ 2114,
444
+ 2447,
445
+ 1869,
446
+ 2209,
447
+ ]
448
+
449
+ dataset_speaker_ids: List[int] = [
450
+ reverse_mapping.get(int(speaker_id)) for speaker_id in latest_selection
451
+ ] # type: ignore
models/config/stats.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pitch": [85.0, 255.0]
3
+ }
models/config/symbols.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # NOTE: for the backward comp.
2
+ # Prepare the phonemes list and dictionary for the embedding
3
+ phoneme_basic_symbols = [
4
+ # IPA symbols
5
+ "a",
6
+ "b",
7
+ "d",
8
+ "e",
9
+ "f",
10
+ "g",
11
+ "h",
12
+ "i",
13
+ "j",
14
+ "k",
15
+ "l",
16
+ "m",
17
+ "n",
18
+ "o",
19
+ "p",
20
+ "r",
21
+ "s",
22
+ "t",
23
+ "u",
24
+ "v",
25
+ "w",
26
+ "x",
27
+ "y",
28
+ "z",
29
+ "æ",
30
+ "ç",
31
+ "ð",
32
+ "ø",
33
+ "ŋ",
34
+ "œ",
35
+ "ɐ",
36
+ "ɑ",
37
+ "ɔ",
38
+ "ə",
39
+ "ɛ",
40
+ "ɝ",
41
+ "ɹ",
42
+ "ɡ",
43
+ "ɪ",
44
+ "ʁ",
45
+ "ʃ",
46
+ "ʊ",
47
+ "ʌ",
48
+ "ʏ",
49
+ "ʒ",
50
+ "ʔ",
51
+ "ˈ",
52
+ "ˌ",
53
+ "ː",
54
+ "̃",
55
+ "̍",
56
+ "̥",
57
+ "̩",
58
+ "̯",
59
+ "͡",
60
+ "θ",
61
+ # Punctuation
62
+ "!",
63
+ "?",
64
+ ",",
65
+ ".",
66
+ "-",
67
+ ":",
68
+ ";",
69
+ '"',
70
+ "'",
71
+ "(",
72
+ ")",
73
+ " ",
74
+ ]
75
+
76
+ # TODO: add support for other languages
77
+ # _letters_accented = "µßàáâäåæçèéêëìíîïñòóôöùúûüąćęłńœśşźżƒ"
78
+ # _letters_cyrilic = "абвгдежзийклмнопрстуфхцчшщъыьэюяёєіїґӧ"
79
+ # _pad = "$"
80
+
81
+ # This is the list of symbols from StyledTTS2
82
+ _punctuation = ';:,.!?¡¿—…"«»“”'
83
+ _letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
84
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
85
+
86
+ # Combine all symbols
87
+ symbols = list(_punctuation) + list(_letters) + list(_letters_ipa)
88
+
89
+ # Add only unique symbols
90
+ phones = phoneme_basic_symbols + [
91
+ symbol for symbol in symbols if symbol not in phoneme_basic_symbols
92
+ ]
93
+
94
+ # TODO: Need to understand how to replace this
95
+ # len(phones) == 184, leave it as is at this point
96
+ symbols = [str(el) for el in range(256)]
97
+ symbol2id = {s: i for i, s in enumerate(symbols)}
98
+ id2symbol = {i: s for i, s in enumerate(symbols)}
models/delightful_hifi.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lightning.pytorch.core import LightningModule
2
+ from torch import Tensor
3
+
4
+ from models.config import PreprocessingConfigHifiGAN as PreprocessingConfig
5
+ from models.tts.delightful_tts.delightful_tts import DelightfulTTS
6
+ from models.vocoder.hifigan import HifiGan
7
+
8
+
9
+ class DelightfulHiFi(LightningModule):
10
+ def __init__(
11
+ self,
12
+ delightful_checkpoint_path: str,
13
+ hifi_checkpoint_path: str,
14
+ lang: str = "en",
15
+ sampling_rate: int = 44100,
16
+ ):
17
+ super().__init__()
18
+
19
+ self.sampling_rate = sampling_rate
20
+
21
+ self.preprocess_config = PreprocessingConfig(
22
+ "multilingual",
23
+ sampling_rate=sampling_rate,
24
+ )
25
+
26
+ self.delightful_tts = DelightfulTTS.load_from_checkpoint(
27
+ delightful_checkpoint_path,
28
+ # kwargs to be used in the model
29
+ lang=lang,
30
+ sampling_rate=sampling_rate,
31
+ preprocess_config=self.preprocess_config,
32
+ )
33
+ self.delightful_tts.freeze()
34
+
35
+ self.hifi_gan = HifiGan.load_from_checkpoint(
36
+ hifi_checkpoint_path,
37
+ )
38
+ self.hifi_gan.freeze()
39
+
40
+ def forward(
41
+ self,
42
+ text: str,
43
+ speaker_idx: Tensor,
44
+ ) -> Tensor:
45
+ r"""Performs a forward pass through the AcousticModel.
46
+ This code must be run only with the loaded weights from the checkpoint!
47
+
48
+ Args:
49
+ text (str): The input text.
50
+ speaker_idx (Tensor): The index of the speaker.
51
+
52
+ Returns:
53
+ Tensor: The generated waveform with hifi-gan.
54
+ """
55
+ mel_pred = self.delightful_tts.forward(text, speaker_idx)
56
+
57
+ wav = self.hifi_gan.generator.forward(mel_pred)
58
+
59
+ return wav
models/delightful_univnet.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lightning.pytorch.core import LightningModule
2
+ from torch import Tensor
3
+
4
+ from models.config import AcousticENModelConfig
5
+ from models.config import PreprocessingConfigUnivNet as PreprocessingConfig
6
+ from models.tts.delightful_tts.delightful_tts import DelightfulTTS
7
+ from models.vocoder.univnet import UnivNet
8
+
9
+
10
+ class DelightfulUnivnet(LightningModule):
11
+ def __init__(
12
+ self,
13
+ delightful_checkpoint_path: str,
14
+ lang: str = "en",
15
+ sampling_rate: int = 22050,
16
+ ):
17
+ super().__init__()
18
+
19
+ self.sampling_rate = sampling_rate
20
+
21
+ self.preprocess_config = PreprocessingConfig(
22
+ "english_only",
23
+ sampling_rate=sampling_rate,
24
+ )
25
+
26
+ self.delightful_tts = DelightfulTTS.load_from_checkpoint(
27
+ delightful_checkpoint_path,
28
+ strict=False,
29
+ # kwargs to be used in the model
30
+ preprocess_config=self.preprocess_config,
31
+ model_config=AcousticENModelConfig(),
32
+ lang=lang,
33
+ sampling_rate=sampling_rate,
34
+ )
35
+ self.delightful_tts.freeze()
36
+
37
+ # Don't need to use separated checkpoint, prev checkpoint used
38
+ self.univnet = UnivNet()
39
+ self.univnet.freeze()
40
+
41
+ def forward(
42
+ self,
43
+ text: str,
44
+ speaker_idx: Tensor,
45
+ ) -> Tensor:
46
+ r"""Performs a forward pass through the AcousticModel.
47
+ This code must be run only with the loaded weights from the checkpoint!
48
+
49
+ Args:
50
+ text (str): The input text.
51
+ speaker_idx (Tensor): The index of the speaker.
52
+
53
+ Returns:
54
+ Tensor: The generated waveform with hifi-gan.
55
+ """
56
+ mel_pred = self.delightful_tts.forward(text, speaker_idx)
57
+
58
+ wav = self.univnet.forward(mel_pred)
59
+
60
+ return wav
models/generators/__init__.py ADDED
File without changes
models/generators/delightful_univnet.py ADDED
@@ -0,0 +1,547 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ from lightning.pytorch.core import LightningModule
4
+ import torch
5
+ from torch.optim import AdamW, Optimizer, swa_utils
6
+ from torch.optim.lr_scheduler import ExponentialLR
7
+ from torch.utils.data import DataLoader
8
+
9
+ from models.config import (
10
+ AcousticENModelConfig,
11
+ AcousticFinetuningConfig,
12
+ AcousticPretrainingConfig,
13
+ AcousticTrainingConfig,
14
+ VocoderFinetuningConfig,
15
+ VocoderModelConfig,
16
+ VocoderPretrainingConfig,
17
+ VoicoderTrainingConfig,
18
+ get_lang_map,
19
+ lang2id,
20
+ )
21
+ from models.config import (
22
+ PreprocessingConfigUnivNet as PreprocessingConfig,
23
+ )
24
+ from models.helpers.dataloaders import train_dataloader
25
+ from models.helpers.tools import get_mask_from_lengths
26
+
27
+ # Models
28
+ from models.tts.delightful_tts.acoustic_model import AcousticModel
29
+ from models.vocoder.univnet.discriminator import Discriminator
30
+ from models.vocoder.univnet.generator import Generator
31
+ from training.loss import FastSpeech2LossGen, UnivnetLoss
32
+ from training.preprocess.normalize_text import NormalizeText
33
+
34
+ # Updated version of the tokenizer
35
+ from training.preprocess.tokenizer_ipa_espeak import TokenizerIpaEspeak as TokenizerIPA
36
+
37
+
38
+ class DelightfulUnivnet(LightningModule):
39
+ r"""DEPRECATED: This idea is basically wrong. The model should synthesis pretty well mel spectrograms and then use them to generate the waveform based on the good quality mel-spec.
40
+
41
+ Trainer for the acoustic model.
42
+
43
+ Args:
44
+ fine_tuning (bool, optional): Whether to use fine-tuning mode or not. Defaults to False.
45
+ lang (str): Language of the dataset.
46
+ n_speakers (int): Number of speakers in the dataset.generation during training.
47
+ batch_size (int): The batch size.
48
+ acc_grad_steps (int): The number of gradient accumulation steps.
49
+ swa_steps (int): The number of steps for the SWA update.
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ fine_tuning: bool = True,
55
+ lang: str = "en",
56
+ n_speakers: int = 5392,
57
+ batch_size: int = 12,
58
+ acc_grad_steps: int = 5,
59
+ swa_steps: int = 1000,
60
+ ):
61
+ super().__init__()
62
+
63
+ # Switch to manual optimization
64
+ self.automatic_optimization = False
65
+ self.acc_grad_steps = acc_grad_steps
66
+ self.swa_steps = swa_steps
67
+
68
+ self.lang = lang
69
+ self.fine_tuning = fine_tuning
70
+ self.batch_size = batch_size
71
+
72
+ lang_map = get_lang_map(lang)
73
+ normilize_text_lang = lang_map.nemo
74
+
75
+ self.tokenizer = TokenizerIPA(lang)
76
+ self.normilize_text = NormalizeText(normilize_text_lang)
77
+
78
+ # Acoustic model
79
+ self.train_config_acoustic: AcousticTrainingConfig
80
+
81
+ if self.fine_tuning:
82
+ self.train_config_acoustic = AcousticFinetuningConfig()
83
+ else:
84
+ self.train_config_acoustic = AcousticPretrainingConfig()
85
+
86
+ self.preprocess_config = PreprocessingConfig("english_only")
87
+ self.model_config_acoustic = AcousticENModelConfig()
88
+
89
+ # TODO: fix the arguments!
90
+ self.acoustic_model = AcousticModel(
91
+ preprocess_config=self.preprocess_config,
92
+ model_config=self.model_config_acoustic,
93
+ # NOTE: this parameter may be hyperparameter that you can define based on the demands
94
+ n_speakers=n_speakers,
95
+ )
96
+
97
+ # Initialize SWA
98
+ self.swa_averaged_acoustic = swa_utils.AveragedModel(self.acoustic_model)
99
+
100
+ # NOTE: in case of training from 0 bin_warmup should be True!
101
+ self.loss_acoustic = FastSpeech2LossGen(bin_warmup=False)
102
+
103
+ # Vocoder models
104
+ self.model_config_vocoder = VocoderModelConfig()
105
+
106
+ self.train_config: VoicoderTrainingConfig = (
107
+ VocoderFinetuningConfig() if fine_tuning else VocoderPretrainingConfig()
108
+ )
109
+
110
+ self.univnet = Generator(
111
+ model_config=self.model_config_vocoder,
112
+ preprocess_config=self.preprocess_config,
113
+ )
114
+ self.swa_averaged_univnet = swa_utils.AveragedModel(self.univnet)
115
+
116
+ self.discriminator = Discriminator(model_config=self.model_config_vocoder)
117
+ self.swa_averaged_discriminator = swa_utils.AveragedModel(self.discriminator)
118
+
119
+ self.loss_univnet = UnivnetLoss()
120
+
121
+ def forward(
122
+ self, text: str, speaker_idx: torch.Tensor, lang: str = "en"
123
+ ) -> torch.Tensor:
124
+ r"""Performs a forward pass through the AcousticModel.
125
+ This code must be run only with the loaded weights from the checkpoint!
126
+
127
+ Args:
128
+ text (str): The input text.
129
+ speaker_idx (torch.Tensor): The index of the speaker.
130
+ lang (str): The language.
131
+
132
+ Returns:
133
+ torch.Tensor: The output of the AcousticModel.
134
+ """
135
+ normalized_text = self.normilize_text(text)
136
+ _, phones = self.tokenizer(normalized_text)
137
+
138
+ # Convert to tensor
139
+ x = torch.tensor(
140
+ phones,
141
+ dtype=torch.int,
142
+ device=speaker_idx.device,
143
+ ).unsqueeze(0)
144
+
145
+ speakers = speaker_idx.repeat(x.shape[1]).unsqueeze(0)
146
+
147
+ langs = (
148
+ torch.tensor(
149
+ [lang2id[lang]],
150
+ dtype=torch.int,
151
+ device=speaker_idx.device,
152
+ )
153
+ .repeat(x.shape[1])
154
+ .unsqueeze(0)
155
+ )
156
+
157
+ y_pred = self.acoustic_model.forward(
158
+ x=x,
159
+ speakers=speakers,
160
+ langs=langs,
161
+ )
162
+
163
+ mel_lens = torch.tensor(
164
+ [y_pred.shape[2]],
165
+ dtype=torch.int32,
166
+ device=y_pred.device,
167
+ )
168
+
169
+ wav = self.univnet.infer(y_pred, mel_lens)
170
+
171
+ return wav
172
+
173
+ # TODO: don't forget about torch.no_grad() !
174
+ # default used by the Trainer
175
+ # trainer = Trainer(inference_mode=True)
176
+ # Use `torch.no_grad` instead
177
+ # trainer = Trainer(inference_mode=False)
178
+ def training_step(self, batch: List, batch_idx: int):
179
+ r"""Performs a training step for the model.
180
+
181
+ Args:
182
+ batch (List): The batch of data for training. The batch should contain:
183
+ - ids: List of indexes.
184
+ - raw_texts: Raw text inputs.
185
+ - speakers: Speaker identities.
186
+ - texts: Text inputs.
187
+ - src_lens: Lengths of the source sequences.
188
+ - mels: Mel spectrogram targets.
189
+ - pitches: Pitch targets.
190
+ - pitches_stat: Statistics of the pitches.
191
+ - mel_lens: Lengths of the mel spectrograms.
192
+ - langs: Language identities.
193
+ - attn_priors: Prior attention weights.
194
+ - wavs: Waveform targets.
195
+ - energies: Energy targets.
196
+ batch_idx (int): Index of the batch.
197
+
198
+ Returns:
199
+ - 'loss': The total loss for the training step.
200
+ """
201
+ (
202
+ _,
203
+ _,
204
+ speakers,
205
+ texts,
206
+ src_lens,
207
+ mels,
208
+ pitches,
209
+ _,
210
+ mel_lens,
211
+ langs,
212
+ attn_priors,
213
+ audio,
214
+ energies,
215
+ ) = batch
216
+
217
+ #####################################
218
+ ## Acoustic model train step ##
219
+ #####################################
220
+
221
+ outputs = self.acoustic_model.forward_train(
222
+ x=texts,
223
+ speakers=speakers,
224
+ src_lens=src_lens,
225
+ mels=mels,
226
+ mel_lens=mel_lens,
227
+ pitches=pitches,
228
+ langs=langs,
229
+ attn_priors=attn_priors,
230
+ energies=energies,
231
+ )
232
+
233
+ y_pred = outputs["y_pred"]
234
+ log_duration_prediction = outputs["log_duration_prediction"]
235
+ p_prosody_ref = outputs["p_prosody_ref"]
236
+ p_prosody_pred = outputs["p_prosody_pred"]
237
+ pitch_prediction = outputs["pitch_prediction"]
238
+ energy_pred = outputs["energy_pred"]
239
+ energy_target = outputs["energy_target"]
240
+
241
+ src_mask = get_mask_from_lengths(src_lens)
242
+ mel_mask = get_mask_from_lengths(mel_lens)
243
+
244
+ (
245
+ acc_total_loss,
246
+ acc_mel_loss,
247
+ acc_ssim_loss,
248
+ acc_duration_loss,
249
+ acc_u_prosody_loss,
250
+ acc_p_prosody_loss,
251
+ acc_pitch_loss,
252
+ acc_ctc_loss,
253
+ acc_bin_loss,
254
+ acc_energy_loss,
255
+ ) = self.loss_acoustic.forward(
256
+ src_masks=src_mask,
257
+ mel_masks=mel_mask,
258
+ mel_targets=mels,
259
+ mel_predictions=y_pred,
260
+ log_duration_predictions=log_duration_prediction,
261
+ u_prosody_ref=outputs["u_prosody_ref"],
262
+ u_prosody_pred=outputs["u_prosody_pred"],
263
+ p_prosody_ref=p_prosody_ref,
264
+ p_prosody_pred=p_prosody_pred,
265
+ pitch_predictions=pitch_prediction,
266
+ p_targets=outputs["pitch_target"],
267
+ durations=outputs["attn_hard_dur"],
268
+ attn_logprob=outputs["attn_logprob"],
269
+ attn_soft=outputs["attn_soft"],
270
+ attn_hard=outputs["attn_hard"],
271
+ src_lens=src_lens,
272
+ mel_lens=mel_lens,
273
+ energy_pred=energy_pred,
274
+ energy_target=energy_target,
275
+ step=self.trainer.global_step,
276
+ )
277
+
278
+ self.log(
279
+ "acc_total_loss", acc_total_loss, sync_dist=True, batch_size=self.batch_size
280
+ )
281
+ self.log(
282
+ "acc_mel_loss", acc_mel_loss, sync_dist=True, batch_size=self.batch_size
283
+ )
284
+ self.log(
285
+ "acc_ssim_loss", acc_ssim_loss, sync_dist=True, batch_size=self.batch_size
286
+ )
287
+ self.log(
288
+ "acc_duration_loss",
289
+ acc_duration_loss,
290
+ sync_dist=True,
291
+ batch_size=self.batch_size,
292
+ )
293
+ self.log(
294
+ "acc_u_prosody_loss",
295
+ acc_u_prosody_loss,
296
+ sync_dist=True,
297
+ batch_size=self.batch_size,
298
+ )
299
+ self.log(
300
+ "acc_p_prosody_loss",
301
+ acc_p_prosody_loss,
302
+ sync_dist=True,
303
+ batch_size=self.batch_size,
304
+ )
305
+ self.log(
306
+ "acc_pitch_loss", acc_pitch_loss, sync_dist=True, batch_size=self.batch_size
307
+ )
308
+ self.log(
309
+ "acc_ctc_loss", acc_ctc_loss, sync_dist=True, batch_size=self.batch_size
310
+ )
311
+ self.log(
312
+ "acc_bin_loss", acc_bin_loss, sync_dist=True, batch_size=self.batch_size
313
+ )
314
+ self.log(
315
+ "acc_energy_loss",
316
+ acc_energy_loss,
317
+ sync_dist=True,
318
+ batch_size=self.batch_size,
319
+ )
320
+
321
+ #####################################
322
+ ## Univnet model train step ##
323
+ #####################################
324
+ fake_audio = self.univnet.forward(y_pred)
325
+
326
+ res_fake, period_fake = self.discriminator(fake_audio.detach())
327
+ res_real, period_real = self.discriminator(audio)
328
+
329
+ (
330
+ voc_total_loss_gen,
331
+ voc_total_loss_disc,
332
+ voc_stft_loss,
333
+ voc_score_loss,
334
+ voc_esr_loss,
335
+ voc_snr_loss,
336
+ ) = self.loss_univnet.forward(
337
+ audio,
338
+ fake_audio,
339
+ res_fake,
340
+ period_fake,
341
+ res_real,
342
+ period_real,
343
+ )
344
+
345
+ self.log(
346
+ "voc_total_loss_gen",
347
+ voc_total_loss_gen,
348
+ sync_dist=True,
349
+ batch_size=self.batch_size,
350
+ )
351
+ self.log(
352
+ "voc_total_loss_disc",
353
+ voc_total_loss_disc,
354
+ sync_dist=True,
355
+ batch_size=self.batch_size,
356
+ )
357
+ self.log(
358
+ "voc_stft_loss", voc_stft_loss, sync_dist=True, batch_size=self.batch_size
359
+ )
360
+ self.log(
361
+ "voc_score_loss", voc_score_loss, sync_dist=True, batch_size=self.batch_size
362
+ )
363
+ self.log(
364
+ "voc_esr_loss", voc_esr_loss, sync_dist=True, batch_size=self.batch_size
365
+ )
366
+ self.log(
367
+ "voc_snr_loss", voc_snr_loss, sync_dist=True, batch_size=self.batch_size
368
+ )
369
+
370
+ # Manual optimizer
371
+ # Access your optimizers
372
+ optimizers = self.optimizers()
373
+ schedulers = self.lr_schedulers()
374
+
375
+ ####################################
376
+ # Acoustic model manual optimizer ##
377
+ ####################################
378
+ opt_acoustic: Optimizer = optimizers[0] # type: ignore
379
+ sch_acoustic: ExponentialLR = schedulers[0] # type: ignore
380
+
381
+ opt_univnet: Optimizer = optimizers[0] # type: ignore
382
+ sch_univnet: ExponentialLR = schedulers[0] # type: ignore
383
+
384
+ opt_discriminator: Optimizer = optimizers[1] # type: ignore
385
+ sch_discriminator: ExponentialLR = schedulers[1] # type: ignore
386
+
387
+ # Backward pass for the acoustic model
388
+ # NOTE: the loss is divided by the accumulated gradient steps
389
+ self.manual_backward(acc_total_loss / self.acc_grad_steps, retain_graph=True)
390
+
391
+ # Perform manual optimization univnet
392
+ self.manual_backward(
393
+ voc_total_loss_gen / self.acc_grad_steps, retain_graph=True
394
+ )
395
+ self.manual_backward(
396
+ voc_total_loss_disc / self.acc_grad_steps, retain_graph=True
397
+ )
398
+
399
+ # accumulate gradients of N batches
400
+ if (batch_idx + 1) % self.acc_grad_steps == 0:
401
+ # Acoustic model optimizer step
402
+ # clip gradients
403
+ self.clip_gradients(
404
+ opt_acoustic, gradient_clip_val=0.5, gradient_clip_algorithm="norm"
405
+ )
406
+
407
+ # optimizer step
408
+ opt_acoustic.step()
409
+ # Scheduler step
410
+ sch_acoustic.step()
411
+ # zero the gradients
412
+ opt_acoustic.zero_grad()
413
+
414
+ # Univnet model optimizer step
415
+ # clip gradients
416
+ self.clip_gradients(
417
+ opt_univnet, gradient_clip_val=0.5, gradient_clip_algorithm="norm"
418
+ )
419
+ self.clip_gradients(
420
+ opt_discriminator, gradient_clip_val=0.5, gradient_clip_algorithm="norm"
421
+ )
422
+
423
+ # optimizer step
424
+ opt_univnet.step()
425
+ opt_discriminator.step()
426
+
427
+ # Scheduler step
428
+ sch_univnet.step()
429
+ sch_discriminator.step()
430
+
431
+ # zero the gradients
432
+ opt_univnet.zero_grad()
433
+ opt_discriminator.zero_grad()
434
+
435
+ # Update SWA model every swa_steps
436
+ if self.trainer.global_step % self.swa_steps == 0:
437
+ self.swa_averaged_acoustic.update_parameters(self.acoustic_model)
438
+ self.swa_averaged_univnet.update_parameters(self.univnet)
439
+ self.swa_averaged_discriminator.update_parameters(self.discriminator)
440
+
441
+ def on_train_epoch_end(self):
442
+ r"""Updates the averaged model after each optimizer step with SWA."""
443
+ self.swa_averaged_acoustic.update_parameters(self.acoustic_model)
444
+ self.swa_averaged_univnet.update_parameters(self.univnet)
445
+ self.swa_averaged_discriminator.update_parameters(self.discriminator)
446
+
447
+ def configure_optimizers(self):
448
+ r"""Configures the optimizer used for training.
449
+
450
+ Returns
451
+ tuple: A tuple containing three dictionaries. Each dictionary contains the optimizer and learning rate scheduler for one of the models.
452
+ """
453
+ ####################################
454
+ # Acoustic model optimizer config ##
455
+ ####################################
456
+ # Compute the gamma and initial learning rate based on the current step
457
+ lr_decay = self.train_config_acoustic.optimizer_config.lr_decay
458
+ default_lr = self.train_config_acoustic.optimizer_config.learning_rate
459
+
460
+ init_lr = (
461
+ default_lr
462
+ if self.trainer.global_step == 0
463
+ else default_lr * (lr_decay**self.trainer.global_step)
464
+ )
465
+
466
+ optimizer_acoustic = AdamW(
467
+ self.acoustic_model.parameters(),
468
+ lr=init_lr,
469
+ betas=self.train_config_acoustic.optimizer_config.betas,
470
+ eps=self.train_config_acoustic.optimizer_config.eps,
471
+ weight_decay=self.train_config_acoustic.optimizer_config.weight_decay,
472
+ )
473
+
474
+ scheduler_acoustic = ExponentialLR(optimizer_acoustic, gamma=lr_decay)
475
+
476
+ ####################################
477
+ # Univnet model optimizer config ##
478
+ ####################################
479
+ optim_univnet = AdamW(
480
+ self.univnet.parameters(),
481
+ self.train_config.learning_rate,
482
+ betas=(self.train_config.adam_b1, self.train_config.adam_b2),
483
+ )
484
+ scheduler_univnet = ExponentialLR(
485
+ optim_univnet,
486
+ gamma=self.train_config.lr_decay,
487
+ last_epoch=-1,
488
+ )
489
+
490
+ ####################################
491
+ # Discriminator optimizer config ##
492
+ ####################################
493
+ optim_discriminator = AdamW(
494
+ self.discriminator.parameters(),
495
+ self.train_config.learning_rate,
496
+ betas=(self.train_config.adam_b1, self.train_config.adam_b2),
497
+ )
498
+ scheduler_discriminator = ExponentialLR(
499
+ optim_discriminator,
500
+ gamma=self.train_config.lr_decay,
501
+ last_epoch=-1,
502
+ )
503
+
504
+ return (
505
+ {"optimizer": optimizer_acoustic, "lr_scheduler": scheduler_acoustic},
506
+ {"optimizer": optim_univnet, "lr_scheduler": scheduler_univnet},
507
+ {"optimizer": optim_discriminator, "lr_scheduler": scheduler_discriminator},
508
+ )
509
+
510
+ def on_train_end(self):
511
+ # Update SWA models after training
512
+ swa_utils.update_bn(self.train_dataloader(), self.swa_averaged_acoustic)
513
+ swa_utils.update_bn(self.train_dataloader(), self.swa_averaged_univnet)
514
+ swa_utils.update_bn(self.train_dataloader(), self.swa_averaged_discriminator)
515
+
516
+ def train_dataloader(
517
+ self,
518
+ num_workers: int = 5,
519
+ root: str = "datasets_cache/LIBRITTS",
520
+ cache: bool = True,
521
+ cache_dir: str = "datasets_cache",
522
+ mem_cache: bool = False,
523
+ url: str = "train-960",
524
+ ) -> DataLoader:
525
+ r"""Returns the training dataloader, that is using the LibriTTS dataset.
526
+
527
+ Args:
528
+ num_workers (int): The number of workers.
529
+ root (str): The root directory of the dataset.
530
+ cache (bool): Whether to cache the preprocessed data.
531
+ cache_dir (str): The directory for the cache.
532
+ mem_cache (bool): Whether to use memory cache.
533
+ url (str): The URL of the dataset.
534
+
535
+ Returns:
536
+ Tupple[DataLoader, DataLoader]: The training and validation dataloaders.
537
+ """
538
+ return train_dataloader(
539
+ batch_size=self.batch_size,
540
+ num_workers=num_workers,
541
+ root=root,
542
+ cache=cache,
543
+ cache_dir=cache_dir,
544
+ mem_cache=mem_cache,
545
+ url=url,
546
+ lang=self.lang,
547
+ )
models/generators/tests/__init__.py ADDED
File without changes
models/generators/tests/test_delightful_univnet.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import os
2
+ # import unittest
3
+
4
+ # from lightning.pytorch import Trainer
5
+
6
+ # from models.generators.delightful_univnet import DelightfulUnivnet
7
+
8
+ # checkpoint = "checkpoints/logs_new_training_libri-360_energy_epoch=263-step=45639.ckpt"
9
+
10
+ # # NOTE: this is needed to avoid CUDA_LAUNCH_BLOCKING error
11
+ # os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
12
+
13
+ # DEPRECATED
14
+ # class TestDelightfulUnivnet(unittest.TestCase):
15
+ # def test_train_steps(self):
16
+ # default_root_dir = "checkpoints/acoustic"
17
+
18
+ # trainer = Trainer(
19
+ # default_root_dir=default_root_dir,
20
+ # limit_train_batches=1,
21
+ # max_epochs=1,
22
+ # accelerator="cpu",
23
+ # )
24
+
25
+ # module = DelightfulUnivnet(batch_size=1, acc_grad_steps=1, swa_steps=1)
26
+
27
+ # train_dataloader = module.train_dataloader(2, cache=False, mem_cache=False)
28
+
29
+ # result = trainer.fit(model=module, train_dataloaders=train_dataloader)
30
+ # self.assertIsNone(result)
models/helpers/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .acoustic import *
2
+ from .tools import *
models/helpers/acoustic.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+
5
+
6
+ def positional_encoding(
7
+ d_model: int, length: int,
8
+ ) -> torch.Tensor:
9
+ r"""Function to calculate positional encoding for transformer model.
10
+
11
+ Args:
12
+ d_model (int): Dimension of the model (often corresponds to embedding size).
13
+ length (int): Length of sequences.
14
+
15
+ Returns:
16
+ torch.Tensor: Tensor having positional encodings.
17
+ """
18
+ # Initialize placeholder for positional encoding
19
+ pe = torch.zeros(length, d_model)
20
+
21
+ # Generate position indices and reshape to have shape (length, 1)
22
+ position = torch.arange(0, length, dtype=torch.float).unsqueeze(1)
23
+
24
+ # Calculate term for division
25
+ div_term = torch.exp(
26
+ torch.arange(0, d_model, 2).float()
27
+ * -(math.log(10000.0) / d_model),
28
+ )
29
+
30
+ # Assign sin of position * div_term to even indices in the encoding matrix
31
+ pe[:, 0::2] = torch.sin(position * div_term)
32
+
33
+ # Assign cos of position * div_term to odd indices in the encoding matrix
34
+ pe[:, 1::2] = torch.cos(position * div_term)
35
+
36
+ # Add an extra dimension to match expected output shape
37
+ return pe.unsqueeze(0)
38
+
39
+
40
+ def pitch_phoneme_averaging(
41
+ durations: torch.Tensor,
42
+ pitches: torch.Tensor,
43
+ max_phoneme_len: int) -> torch.Tensor:
44
+ r"""Function to compute the average pitch values over the duration of each phoneme.
45
+
46
+ Args:
47
+ durations (torch.Tensor): Duration of each phoneme for each sample in a batch.
48
+ Shape: (batch_size, n_phones)
49
+ pitches (torch.Tensor): Per-frame pitch values for each sample in a batch.
50
+ Shape: (batch_size, n_mel_timesteps)
51
+ max_phoneme_len (int): Maximum length of the phoneme sequence in a batch.
52
+
53
+ Returns:
54
+ pitches_averaged (torch.Tensor): Tensor containing the averaged pitch values
55
+ for each phoneme. Shape: (batch_size, max_phoneme_len)
56
+ """
57
+ # Initialize placeholder for averaged pitch values, filling with zeros
58
+ pitches_averaged = torch.zeros(
59
+ (pitches.shape[0], max_phoneme_len), device=pitches.device,
60
+ )
61
+ # Loop over each sample in the batch
62
+ for batch_idx in range(durations.shape[0]):
63
+ # Set the starting index of pitch sequence
64
+ start_idx = 0
65
+ # Loop over each phoneme duration
66
+ for i, duration in enumerate(durations[batch_idx]):
67
+ # Convert duration to integer
68
+ duration = duration.int().item()
69
+ # If the duration is not zero
70
+ if duration != 0:
71
+ # Calculate the mean pitch value for the duration of the current phoneme
72
+ mean = torch.mean(pitches[batch_idx, start_idx : start_idx + duration])
73
+ # Store the averaged pitch value
74
+ pitches_averaged[batch_idx][i] = mean
75
+ # Update the starting index for the next phoneme
76
+ start_idx += duration
77
+
78
+ # Return tensor with the averaged pitch values
79
+ return pitches_averaged
models/helpers/dataloaders.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple
2
+
3
+ from sklearn.model_selection import train_test_split
4
+ from torch.utils.data import DataLoader, SequentialSampler
5
+
6
+ from training.datasets import LibriTTSDatasetAcoustic
7
+
8
+
9
+ def train_dataloader(
10
+ batch_size: int = 6,
11
+ num_workers: int = 5,
12
+ root: str = "datasets_cache/LIBRITTS",
13
+ cache: bool = True,
14
+ cache_dir: str = "datasets_cache",
15
+ mem_cache: bool = False,
16
+ url: str = "train-clean-360",
17
+ lang: str = "en",
18
+ selected_speaker_ids: Optional[List[int]] = None,
19
+ ) -> DataLoader:
20
+ r"""Returns the training dataloader, that is using the LibriTTS dataset.
21
+
22
+ Args:
23
+ batch_size (int): The batch size.
24
+ num_workers (int): The number of workers.
25
+ root (str): The root directory of the dataset.
26
+ cache (bool): Whether to cache the preprocessed data.
27
+ cache_dir (str): The directory for the cache.
28
+ mem_cache (bool): Whether to use memory cache.
29
+ url (str): The URL of the dataset.
30
+ lang (str): The language of the dataset.
31
+ selected_speaker_ids (Optional[List[int]]): A list of selected speakers.
32
+
33
+ Returns:
34
+ DataLoader: The training and validation dataloaders.
35
+ """
36
+ dataset = LibriTTSDatasetAcoustic(
37
+ root=root,
38
+ lang=lang,
39
+ cache=cache,
40
+ cache_dir=cache_dir,
41
+ mem_cache=mem_cache,
42
+ url=url,
43
+ selected_speaker_ids=selected_speaker_ids,
44
+ )
45
+
46
+ train_loader = DataLoader(
47
+ dataset,
48
+ # 4x80Gb max 10 sec audio
49
+ # batch_size=20, # self.train_config.batch_size,
50
+ # 4*80Gb max ~20.4 sec audio
51
+ batch_size=batch_size,
52
+ # TODO: find the optimal num_workers
53
+ num_workers=num_workers,
54
+ persistent_workers=True,
55
+ pin_memory=True,
56
+ shuffle=False,
57
+ collate_fn=dataset.collate_fn,
58
+ )
59
+
60
+ return train_loader
61
+
62
+
63
+ def train_val_dataloader(
64
+ batch_size: int = 6,
65
+ num_workers: int = 5,
66
+ root: str = "datasets_cache/LIBRITTS",
67
+ cache: bool = True,
68
+ cache_dir: str = "datasets_cache",
69
+ mem_cache: bool = False,
70
+ url: str = "train-clean-360",
71
+ lang: str = "en",
72
+ validation_split: float = 0.02, # Percentage of data to use for validation
73
+ ) -> Tuple[DataLoader, DataLoader]:
74
+ r"""Returns the training dataloader, that is using the LibriTTS dataset.
75
+
76
+ Args:
77
+ batch_size (int): The batch size.
78
+ num_workers (int): The number of workers.
79
+ root (str): The root directory of the dataset.
80
+ cache (bool): Whether to cache the preprocessed data.
81
+ cache_dir (str): The directory for the cache.
82
+ mem_cache (bool): Whether to use memory cache.
83
+ url (str): The URL of the dataset.
84
+ lang (str): The language of the dataset.
85
+ validation_split (float): The percentage of data to use for validation.
86
+
87
+ Returns:
88
+ Tupple[DataLoader, DataLoader]: The training and validation dataloaders.
89
+ """
90
+ dataset = LibriTTSDatasetAcoustic(
91
+ root=root,
92
+ lang=lang,
93
+ cache=cache,
94
+ cache_dir=cache_dir,
95
+ mem_cache=mem_cache,
96
+ url=url,
97
+ )
98
+
99
+ # Split dataset into train and validation
100
+ train_indices, val_indices = train_test_split(
101
+ list(range(len(dataset))),
102
+ test_size=validation_split,
103
+ random_state=42,
104
+ )
105
+
106
+ # Create Samplers
107
+ train_sampler = SequentialSampler(train_indices)
108
+ val_sampler = SequentialSampler(val_indices)
109
+
110
+ # dataset = LibriTTSMMDatasetAcoustic("checkpoints/libri_preprocessed_data.pt")
111
+ train_loader = DataLoader(
112
+ dataset,
113
+ # 4x80Gb max 10 sec audio
114
+ # batch_size=20, # self.train_config.batch_size,
115
+ # 4*80Gb max ~20.4 sec audio
116
+ batch_size=batch_size,
117
+ # TODO: find the optimal num_workers
118
+ num_workers=num_workers,
119
+ sampler=train_sampler,
120
+ persistent_workers=True,
121
+ pin_memory=True,
122
+ shuffle=False,
123
+ collate_fn=dataset.collate_fn,
124
+ )
125
+
126
+ val_loader = DataLoader(
127
+ dataset,
128
+ # 4x80Gb max 10 sec audio
129
+ # batch_size=20, # self.train_config.batch_size,
130
+ # 4*80Gb max ~20.4 sec audio
131
+ batch_size=batch_size,
132
+ # TODO: find the optimal num_workers
133
+ num_workers=num_workers,
134
+ sampler=val_sampler,
135
+ persistent_workers=True,
136
+ pin_memory=True,
137
+ shuffle=False,
138
+ collate_fn=dataset.collate_fn,
139
+ )
140
+
141
+ return train_loader, val_loader
models/helpers/initializer.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Tuple
3
+
4
+ import torch
5
+
6
+ from models.config import (
7
+ SUPPORTED_LANGUAGES,
8
+ AcousticENModelConfig,
9
+ AcousticModelConfigType,
10
+ AcousticPretrainingConfig,
11
+ )
12
+ from models.config import (
13
+ PreprocessingConfigUnivNet as PreprocessingConfig,
14
+ )
15
+ from models.helpers import positional_encoding, tools
16
+ from models.tts.delightful_tts.acoustic_model import AcousticModel
17
+ from models.tts.delightful_tts.attention.conformer import Conformer
18
+
19
+
20
+ @dataclass
21
+ class ConformerConfig:
22
+ dim: int
23
+ n_layers: int
24
+ n_heads: int
25
+ embedding_dim: int
26
+ p_dropout: float
27
+ kernel_size_conv_mod: int
28
+ with_ff: bool
29
+
30
+
31
+ def get_test_configs(
32
+ srink_factor: int = 4,
33
+ ) -> Tuple[PreprocessingConfig, AcousticENModelConfig, AcousticPretrainingConfig]:
34
+ r"""Returns a tuple of configuration objects for testing purposes.
35
+
36
+ Args:
37
+ srink_factor (int, optional): The shrink factor to apply to the model configuration. Defaults to 4.
38
+
39
+ Returns:
40
+ Tuple[PreprocessingConfig, AcousticENModelConfig, AcousticPretrainingConfig]: A tuple of configuration objects for testing purposes.
41
+
42
+ This function returns a tuple of configuration objects for testing purposes. The configuration objects are as follows:
43
+ - `PreprocessingConfig`: A configuration object for preprocessing.
44
+ - `AcousticENModelConfig`: A configuration object for the acoustic model.
45
+ - `AcousticPretrainingConfig`: A configuration object for acoustic pretraining.
46
+
47
+ The `srink_factor` parameter is used to shrink the dimensions of the model configuration to prevent out of memory issues during testing.
48
+ """
49
+ preprocess_config = PreprocessingConfig("english_only")
50
+ model_config = AcousticENModelConfig()
51
+
52
+ model_config.speaker_embed_dim = model_config.speaker_embed_dim // srink_factor
53
+ model_config.encoder.n_hidden = model_config.encoder.n_hidden // srink_factor
54
+ model_config.decoder.n_hidden = model_config.decoder.n_hidden // srink_factor
55
+ model_config.variance_adaptor.n_hidden = (
56
+ model_config.variance_adaptor.n_hidden // srink_factor
57
+ )
58
+
59
+ acoustic_pretraining_config = AcousticPretrainingConfig()
60
+
61
+ return (preprocess_config, model_config, acoustic_pretraining_config)
62
+
63
+
64
+ # Function to initialize a Conformer with a given AcousticModelConfigType configuration
65
+ def init_conformer(
66
+ model_config: AcousticModelConfigType,
67
+ ) -> Tuple[Conformer, ConformerConfig]:
68
+ r"""Function to initialize a `Conformer` with a given `AcousticModelConfigType` configuration.
69
+
70
+ Args:
71
+ model_config (AcousticModelConfigType): The object that holds the configuration details.
72
+
73
+ Returns:
74
+ Conformer: Initialized Conformer object.
75
+
76
+ The function sets the details of the `Conformer` object based on the `model_config` parameter.
77
+ The `Conformer` configuration is set as follows:
78
+ - dim: The number of hidden units, taken from the encoder part of the `model_config.encoder.n_hidden`.
79
+ - n_layers: The number of layers, taken from the encoder part of the `model_config.encoder.n_layers`.
80
+ - n_heads: The number of attention heads, taken from the encoder part of the `model_config.encoder.n_heads`.
81
+ - embedding_dim: The sum of dimensions of speaker embeddings and language embeddings.
82
+ The speaker_embed_dim and lang_embed_dim are a part of the `model_config.speaker_embed_dim`.
83
+ - p_dropout: Dropout rate taken from the encoder part of the `model_config.encoder.p_dropout`.
84
+ It adds a regularization parameter to prevent overfitting.
85
+ - kernel_size_conv_mod: The kernel size for the convolution module taken from the encoder part of the `model_config.encoder.kernel_size_conv_mod`.
86
+ - with_ff: A Boolean value denoting if feedforward operation is involved, taken from the encoder part of the `model_config.encoder.with_ff`.
87
+
88
+ """
89
+ conformer_config = ConformerConfig(
90
+ dim=model_config.encoder.n_hidden,
91
+ n_layers=model_config.encoder.n_layers,
92
+ n_heads=model_config.encoder.n_heads,
93
+ embedding_dim=model_config.speaker_embed_dim
94
+ + model_config.lang_embed_dim, # speaker_embed_dim + lang_embed_dim = 385
95
+ p_dropout=model_config.encoder.p_dropout,
96
+ kernel_size_conv_mod=model_config.encoder.kernel_size_conv_mod,
97
+ with_ff=model_config.encoder.with_ff,
98
+ )
99
+
100
+ model = Conformer(**vars(conformer_config))
101
+
102
+ return model, conformer_config
103
+
104
+
105
+ @dataclass
106
+ class AcousticModelConfig:
107
+ preprocess_config: PreprocessingConfig
108
+ model_config: AcousticENModelConfig
109
+ n_speakers: int
110
+
111
+
112
+ def init_acoustic_model(
113
+ preprocess_config: PreprocessingConfig,
114
+ model_config: AcousticENModelConfig,
115
+ n_speakers: int = 10,
116
+ ) -> Tuple[AcousticModel, AcousticModelConfig]:
117
+ r"""Function to initialize an `AcousticModel` with given preprocessing and model configurations.
118
+
119
+ Args:
120
+ preprocess_config (PreprocessingConfig): Configuration object for pre-processing.
121
+ model_config (AcousticENModelConfig): Configuration object for English Acoustic model.
122
+ n_speakers (int, optional): Number of speakers. Defaults to 10.
123
+
124
+ Returns:
125
+ AcousticModel: Initialized Acoustic Model.
126
+
127
+ The function creates an `AcousticModelConfig` instance which is then used to initialize the `AcousticModel`.
128
+ The `AcousticModelConfig` is configured as follows:
129
+ - preprocess_config: Pre-processing configuration.
130
+ - model_config: English Acoustic model configuration.
131
+ - fine_tuning: Boolean flag set to True indicating the model is for fine-tuning.
132
+ - n_speakers: Number of speakers.
133
+
134
+ """
135
+ # Create an AcousticModelConfig instance
136
+ acoustic_model_config = AcousticModelConfig(
137
+ preprocess_config=preprocess_config,
138
+ model_config=model_config,
139
+ n_speakers=n_speakers,
140
+ )
141
+
142
+ model = AcousticModel(**vars(acoustic_model_config))
143
+
144
+ return model, acoustic_model_config
145
+
146
+
147
+ @dataclass
148
+ class ForwardTrainParams:
149
+ x: torch.Tensor
150
+ speakers: torch.Tensor
151
+ src_lens: torch.Tensor
152
+ mels: torch.Tensor
153
+ mel_lens: torch.Tensor
154
+ enc_len: torch.Tensor
155
+ pitches: torch.Tensor
156
+ pitches_range: Tuple[float, float]
157
+ energies: torch.Tensor
158
+ langs: torch.Tensor
159
+ attn_priors: torch.Tensor
160
+ use_ground_truth: bool = True
161
+
162
+
163
+ def init_forward_trains_params(
164
+ model_config: AcousticENModelConfig,
165
+ acoustic_pretraining_config: AcousticPretrainingConfig,
166
+ preprocess_config: PreprocessingConfig,
167
+ n_speakers: int = 10,
168
+ ) -> ForwardTrainParams:
169
+ r"""Function to initialize the parameters for forward propagation during training.
170
+
171
+ Args:
172
+ model_config (AcousticENModelConfig): Configuration object for English Acoustic model.
173
+ acoustic_pretraining_config (AcousticPretrainingConfig): Configuration object for acoustic pretraining.
174
+ preprocess_config (PreprocessingConfig): Configuration object for pre-processing.
175
+ n_speakers (int, optional): Number of speakers. Defaults to 10.
176
+
177
+ Returns:
178
+ ForwardTrainParams: Initialized parameters for forward propagation during training.
179
+
180
+ The function initializes the ForwardTrainParams object with the following parameters:
181
+ - x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size]
182
+ - speakers: Tensor containing the speaker indices. Shape: [speaker_embed_dim, batch_size]
183
+ - src_lens: Tensor containing the lengths of source sequences. Shape: [batch_size]
184
+ - mels: Tensor containing the mel spectrogram. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
185
+ - mel_lens: Tensor containing the lengths of mel sequences. Shape: [batch_size]
186
+ - pitches: Tensor containing the pitch values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
187
+ - energies: Tensor containing the energy values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
188
+ - langs: Tensor containing the language indices. Shape: [speaker_embed_dim, batch_size]
189
+ - attn_priors: Tensor containing the attention priors. Shape: [batch_size, speaker_embed_dim, speaker_embed_dim]
190
+ - use_ground_truth: Boolean flag indicating if ground truth values should be used or not.
191
+
192
+ All the Tensors are initialized with random values.
193
+ """
194
+ return ForwardTrainParams(
195
+ # x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size]
196
+ x=torch.randint(
197
+ 1,
198
+ 255,
199
+ (
200
+ model_config.speaker_embed_dim,
201
+ acoustic_pretraining_config.batch_size,
202
+ ),
203
+ ),
204
+ pitches_range=(0.0, 1.0),
205
+ # speakers: Tensor containing the speaker indices. Shape: [speaker_embed_dim, batch_size]
206
+ speakers=torch.randint(
207
+ 1,
208
+ n_speakers - 1,
209
+ (
210
+ model_config.speaker_embed_dim,
211
+ acoustic_pretraining_config.batch_size,
212
+ ),
213
+ ),
214
+ # src_lens: Tensor containing the lengths of source sequences. Shape: [speaker_embed_dim]
215
+ src_lens=torch.cat(
216
+ [
217
+ # torch.tensor([self.model_config.speaker_embed_dim]),
218
+ torch.randint(
219
+ 1,
220
+ acoustic_pretraining_config.batch_size + 1,
221
+ (model_config.speaker_embed_dim,),
222
+ ),
223
+ ],
224
+ dim=0,
225
+ ),
226
+ # mels: Tensor containing the mel spectrogram. Shape: [batch_size, stft.n_mel_channels, encoder.n_hidden]
227
+ mels=torch.randn(
228
+ model_config.speaker_embed_dim,
229
+ preprocess_config.stft.n_mel_channels,
230
+ model_config.encoder.n_hidden,
231
+ ),
232
+ # enc_len: Tensor containing the lengths of mel sequences. Shape: [speaker_embed_dim]
233
+ enc_len=torch.cat(
234
+ [
235
+ torch.randint(
236
+ 1,
237
+ model_config.speaker_embed_dim,
238
+ (model_config.speaker_embed_dim - 1,),
239
+ ),
240
+ torch.tensor([model_config.speaker_embed_dim]),
241
+ ],
242
+ dim=0,
243
+ ),
244
+ # mel_lens: Tensor containing the lengths of mel sequences. Shape: [batch_size]
245
+ mel_lens=torch.cat(
246
+ [
247
+ torch.randint(
248
+ 1,
249
+ model_config.speaker_embed_dim,
250
+ (model_config.speaker_embed_dim - 1,),
251
+ ),
252
+ torch.tensor([model_config.speaker_embed_dim]),
253
+ ],
254
+ dim=0,
255
+ ),
256
+ # pitches: Tensor containing the pitch values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
257
+ pitches=torch.randn(
258
+ # acoustic_pretraining_config.batch_size,
259
+ model_config.speaker_embed_dim,
260
+ # model_config.speaker_embed_dim,
261
+ model_config.encoder.n_hidden,
262
+ ),
263
+ # energies: Tensor containing the energy values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
264
+ energies=torch.randn(
265
+ model_config.speaker_embed_dim,
266
+ 1,
267
+ model_config.encoder.n_hidden,
268
+ ),
269
+ # langs: Tensor containing the language indices. Shape: [speaker_embed_dim, batch_size]
270
+ langs=torch.randint(
271
+ 1,
272
+ len(SUPPORTED_LANGUAGES) - 1,
273
+ (
274
+ model_config.speaker_embed_dim,
275
+ acoustic_pretraining_config.batch_size,
276
+ ),
277
+ ),
278
+ # attn_priors: Tensor containing the attention priors. Shape: [batch_size, speaker_embed_dim, speaker_embed_dim]
279
+ attn_priors=torch.randn(
280
+ model_config.speaker_embed_dim,
281
+ model_config.speaker_embed_dim,
282
+ acoustic_pretraining_config.batch_size,
283
+ ),
284
+ use_ground_truth=True,
285
+ )
286
+
287
+
288
+ def init_mask_input_embeddings_encoding_attn_mask(
289
+ acoustic_model: AcousticModel,
290
+ forward_train_params: ForwardTrainParams,
291
+ model_config: AcousticENModelConfig,
292
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
293
+ r"""Function to initialize masks for padding positions, input sequences, embeddings, positional encoding and attention masks.
294
+
295
+ Args:
296
+ acoustic_model (AcousticModel): Initialized Acoustic Model.
297
+ forward_train_params (ForwardTrainParams): Parameters for the forward training process.
298
+ model_config (AcousticENModelConfig): Configuration object for English Acoustic model.
299
+
300
+ Returns:
301
+ Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing the following elements:
302
+ - src_mask: Tensor containing the masks for padding positions in the source sequences. Shape: [1, batch_size]
303
+ - x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim]
304
+ - embeddings: Tensor containing the embeddings. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim + lang_embed_dim]
305
+ - encoding: Tensor containing the positional encoding. Shape: [lang_embed_dim, max(forward_train_params.mel_lens), model_config.encoder.n_hidden]
306
+ - attn_maskЖ Tensor containing the attention masks. Shape: [1, 1, 1, batch_size]
307
+
308
+ The function starts by generating masks for padding positions in the source and mel sequences.
309
+ Then, it uses the acoustic model to get the input sequences and embeddings.
310
+ Finally, it computes the positional encoding.
311
+
312
+ """
313
+ # Generate masks for padding positions in the source sequences and mel sequences
314
+ # src_mask: Tensor containing the masks for padding positions in the source sequences. Shape: [1, batch_size]
315
+ src_mask = tools.get_mask_from_lengths(forward_train_params.src_lens)
316
+
317
+ # x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim]
318
+ # embeddings: Tensor containing the embeddings. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim + lang_embed_dim]
319
+ x, embeddings = acoustic_model.get_embeddings(
320
+ token_idx=forward_train_params.x,
321
+ speaker_idx=forward_train_params.speakers,
322
+ src_mask=src_mask,
323
+ lang_idx=forward_train_params.langs,
324
+ )
325
+
326
+ # encoding: Tensor containing the positional encoding
327
+ # Shape: [lang_embed_dim, max(forward_train_params.mel_lens), encoder.n_hidden]
328
+ encoding = positional_encoding(
329
+ model_config.encoder.n_hidden,
330
+ max(x.shape[1], int(forward_train_params.mel_lens.max().item())),
331
+ )
332
+
333
+ attn_mask = src_mask.view((src_mask.shape[0], 1, 1, src_mask.shape[1]))
334
+
335
+ return src_mask, x, embeddings, encoding, attn_mask
models/helpers/tests/__init__.py ADDED
File without changes
models/helpers/tests/test_dataloaders.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ from unittest.mock import patch
3
+
4
+ from torch.utils.data import DataLoader
5
+
6
+ from models.helpers.dataloaders import train_dataloader, train_val_dataloader
7
+
8
+
9
+ class TestDataLoader(unittest.TestCase):
10
+ def test_train_dataloader(self):
11
+ train_loader = train_dataloader(
12
+ batch_size=2,
13
+ num_workers=2,
14
+ cache=False,
15
+ mem_cache=False,
16
+ )
17
+
18
+ # Assertions
19
+ self.assertIsInstance(train_loader, DataLoader)
20
+
21
+ for batch in train_loader:
22
+ self.assertEqual(len(batch), 13)
23
+ break
24
+
25
+ def test_train_val_dataloader(self):
26
+ train_loader, val_loader = train_val_dataloader(
27
+ batch_size=2,
28
+ num_workers=2,
29
+ cache=False,
30
+ mem_cache=False,
31
+ )
32
+
33
+ # Assertions
34
+ self.assertIsInstance(train_loader, DataLoader)
35
+ self.assertIsInstance(val_loader, DataLoader)
36
+
37
+ if __name__ == "__main__":
38
+ unittest.main()
models/helpers/tests/test_pitch_phoneme_averaging.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+
3
+ import torch
4
+
5
+ from models.helpers import (
6
+ pitch_phoneme_averaging,
7
+ )
8
+
9
+
10
+ class TestPitchPhonemeAveraging(unittest.TestCase):
11
+ def test_pitch_phoneme_averaging(self):
12
+ # Initialize inputs
13
+ durations = torch.tensor([[5, 1, 3, 0], [2, 4, 0, 0]], dtype=torch.float32)
14
+ num_phonemes = durations.shape[-1]
15
+ max_length = int(torch.sum(durations, dim=1).int().max().item())
16
+ pitches = torch.rand(2, max_length)
17
+
18
+ max_phoneme_len = num_phonemes
19
+
20
+ # Call the pitch_phoneme_averaging method
21
+ result = pitch_phoneme_averaging(durations, pitches, max_phoneme_len)
22
+
23
+ # Assert output type
24
+ self.assertIsInstance(result, torch.Tensor)
25
+
26
+ # Assert output shape
27
+ expected_shape = durations.shape
28
+ self.assertEqual(result.shape, expected_shape)
29
+
30
+ # Assert all pitch values are within [0,1] since input pitch values were from a uniform distribution over [0,1]
31
+ self.assertTrue(torch.all((result >= 0) & (result <= 1)))
32
+
33
+
34
+ # Run tests
35
+ if __name__ == "__main__":
36
+ unittest.main()
models/helpers/tests/test_position_encoding.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Required Libraries
2
+ import unittest
3
+
4
+ import torch
5
+
6
+ from models.helpers import positional_encoding
7
+
8
+
9
+ class TestPositionalEncoding(unittest.TestCase):
10
+ def test_positional_encoding(self):
11
+ # Test with d_model=128, length=10
12
+ d_model = 128
13
+ length = 10
14
+ result = positional_encoding(d_model, length)
15
+
16
+ # Assert that output is a torch.Tensor
17
+ self.assertIsInstance(result, torch.Tensor)
18
+
19
+ # Assert the output tensor shape is correct
20
+ # The extra dimension from unsqueeze is considered
21
+ expected_shape = (1, length, d_model)
22
+ self.assertEqual(result.shape, expected_shape)
23
+
24
+ # Assert that values lie in the range [-1, 1]
25
+ self.assertTrue(torch.all((result >= -1) & (result <= 1)))
26
+
27
+
28
+ # Run tests
29
+ if __name__ == "__main__":
30
+ unittest.main()
models/helpers/tests/tests_tools/__init__.py ADDED
File without changes
models/helpers/tests/tests_tools/test_calc_same_padding.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+
3
+ from models.helpers.tools import calc_same_padding
4
+
5
+
6
+ class TestCalcSamePadding(unittest.TestCase):
7
+ def test_odd_kernel_size(self):
8
+ """Test that the padding returns correct tuple for odd-sized kernel."""
9
+ kernel_size = 3 # an odd-sized kernel
10
+ pad = calc_same_padding(kernel_size)
11
+ self.assertEqual(pad, (1, 1)) # we expect padding of size 1 on both sides
12
+
13
+ def test_even_kernel_size(self):
14
+ """Test that the padding returns correct tuple for even-sized kernel."""
15
+ kernel_size = 4 # an even-sized kernel
16
+ pad = calc_same_padding(kernel_size)
17
+ self.assertEqual(
18
+ pad, (2, 1),
19
+ ) # we expect padding of size 2 on one side, and size 1 on the other side
20
+
21
+ def test_one_kernel_size(self):
22
+ """Test that the padding returns correct tuple for kernel of size 1."""
23
+ kernel_size = 1 # kernel of size 1
24
+ pad = calc_same_padding(kernel_size)
25
+ self.assertEqual(pad, (0, 0)) # we expect no padding on both sides
26
+
27
+ def test_zero_kernel_size(self):
28
+ """Test that the padding raises ValueError for invalid kernel size of zero."""
29
+ with self.assertRaises(ValueError):
30
+ calc_same_padding(0) # a kernel of size 0 is not valid
31
+
32
+
33
+ if __name__ == "__main__":
34
+ unittest.main()
models/helpers/tests/tests_tools/test_get_mask_from_lengths.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+
3
+ import torch
4
+
5
+ from models.helpers.tools import get_mask_from_lengths
6
+
7
+
8
+ class TestGetMaskFromLengths(unittest.TestCase):
9
+ def setUp(self):
10
+ # Test cases: [2, 3, 1, 4]
11
+ self.input_lengths = torch.tensor([2, 3, 1, 4])
12
+
13
+ def test_get_mask_from_lengths(self):
14
+ expected_output = torch.tensor(
15
+ [
16
+ [False, False, True, True],
17
+ [False, False, False, True],
18
+ [False, True, True, True],
19
+ [False, False, False, False],
20
+ ],
21
+ )
22
+
23
+ # Call the function with the test cases
24
+ output = get_mask_from_lengths(self.input_lengths)
25
+
26
+ # Check if the output is a tensor
27
+ self.assertIsInstance(output, torch.Tensor)
28
+
29
+ # Check if the output shape is as expected
30
+ self.assertEqual(output.shape, expected_output.shape)
31
+
32
+ # Check if the output values are as expected
33
+ self.assertTrue(torch.all(output.eq(expected_output)))
34
+
35
+
36
+ if __name__ == "__main__":
37
+ unittest.main()
models/helpers/tests/tests_tools/test_initialize_embeddings.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+
3
+ import numpy as np
4
+ import torch
5
+
6
+ from models.helpers.tools import initialize_embeddings
7
+
8
+
9
+ class TestInitializeEmbeddings(unittest.TestCase):
10
+ def test_initialize_embeddings(self):
11
+ # Test with correct input shape
12
+ shape = (5, 10)
13
+ result = initialize_embeddings(shape)
14
+ # Assert output is torch.Tensor
15
+ self.assertIsInstance(result, torch.Tensor)
16
+ # Assert output shape
17
+ self.assertEqual(result.shape, shape)
18
+ # Assert type of elements
19
+ self.assertEqual(result.dtype, torch.float32)
20
+
21
+ # Assert standard deviation is close to expected (within some tolerance)
22
+ expected_stddev = np.sqrt(2 / shape[1])
23
+ tolerance = 0.1
24
+ self.assertLessEqual(abs(result.std().item() - expected_stddev), tolerance)
25
+
26
+ # Test with incorrect number of dimensions in shape
27
+ incorrect_shape = (5, 10, 15)
28
+ with self.assertRaises(AssertionError) as context:
29
+ initialize_embeddings(incorrect_shape)
30
+ self.assertEqual(
31
+ str(context.exception), "Can only initialize 2-D embedding matrices ...",
32
+ )
33
+
34
+ # Test with zero dimensions in shape
35
+ zero_dim_shape = ()
36
+ with self.assertRaises(AssertionError) as context:
37
+ initialize_embeddings(zero_dim_shape)
38
+ self.assertEqual(
39
+ str(context.exception), "Can only initialize 2-D embedding matrices ...",
40
+ )
41
+
42
+
43
+ # Run tests
44
+ if __name__ == "__main__":
45
+ unittest.main()
models/helpers/tests/tests_tools/test_pad.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+
3
+ import torch
4
+
5
+ from models.helpers.tools import pad
6
+
7
+
8
+ class TestPad(unittest.TestCase):
9
+ def test_1D_tensors_pad(self):
10
+ # 1D tensor inputs
11
+ tensors = [torch.ones(n) for n in range(1, 11)]
12
+ # Ten 1D tensors of length 1 to 10
13
+ max_len = max(t.numel() for t in tensors)
14
+
15
+ # Call the function
16
+ result = pad(tensors, max_len)
17
+
18
+ # Check the output shape is as expected
19
+ self.assertTrue(all(t.numel() == max_len for t in result))
20
+
21
+ def test_2D_tensors_pad(self):
22
+ # 2D tensor inputs
23
+ tensors = [torch.ones(n, 5) for n in range(1, 11)]
24
+ max_len = max(t.size(0) for t in tensors)
25
+
26
+ # Call the function
27
+ result = pad(tensors, max_len)
28
+
29
+ # Check the output shape is as expected
30
+ self.assertTrue(all(t.size(0) == max_len for t in result))
31
+ # Make sure second dimension wasn't changed
32
+ self.assertTrue(all(t.size(1) == 5 for t in result))
33
+
34
+
35
+ if __name__ == "__main__":
36
+ unittest.main()
models/helpers/tests/tests_tools/test_stride_lens_downsampling.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+
3
+ import torch
4
+
5
+ from models.helpers import (
6
+ stride_lens_downsampling,
7
+ )
8
+
9
+
10
+ class TestStrideLens(unittest.TestCase):
11
+ def test_stride_lens(self):
12
+ # Define test case inputs
13
+ input_lengths = torch.tensor([5, 7, 10, 12])
14
+ stride = 2
15
+
16
+ # Correct output for this would be ceil([5, 7, 10, 12] / 2) => [3, 4, 5, 6]
17
+ expected_output = torch.tensor([3, 4, 5, 6])
18
+
19
+ # Call the function with the test cases
20
+ output = stride_lens_downsampling(input_lengths, stride)
21
+
22
+ # Check if the output is a tensor
23
+ self.assertIsInstance(output, torch.Tensor)
24
+
25
+ # Check if the output shape is as expected
26
+ self.assertEqual(output.shape, expected_output.shape)
27
+
28
+ # Check if the output values are as expected
29
+ self.assertTrue(torch.all(output.eq(expected_output)))
30
+
31
+ def test_stride_lens_default_stride(self):
32
+ # Define test case inputs. Here, we do not provide the stride.
33
+ input_lengths = torch.tensor([10, 20, 4, 11])
34
+
35
+ # Correct output for this would be ceil([10, 20, 4, 11] / 2) => [5, 10, 2, 6]
36
+ expected_output = torch.tensor([5, 10, 2, 6])
37
+
38
+ # Call the function with the test cases
39
+ output = stride_lens_downsampling(input_lengths)
40
+
41
+ # Check if the output is a tensor
42
+ self.assertIsInstance(output, torch.Tensor)
43
+
44
+ # Check if the output shape is as expected
45
+ self.assertEqual(output.shape, expected_output.shape)
46
+
47
+ # Check if the output values are as expected
48
+ self.assertTrue(torch.all(output.eq(expected_output)))
49
+
50
+
51
+ if __name__ == "__main__":
52
+ unittest.main()