Spaces:
Running
Running
nickovchinnikov
commited on
Commit
·
9d61c9b
1
Parent(s):
b1879c0
Init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +183 -0
- config/__init__.py +0 -0
- config/best_speakers_list.py +968 -0
- config/latest_selection.txt +331 -0
- config/phone2idx.json +65 -0
- config/speaker2idx.json +2442 -0
- config/speaker_id_mapping_libri.json +1 -0
- config/speakers.json +1 -0
- config/speakers.tsv +2485 -0
- config/vocab.txt +0 -0
- config/vocab_phonemes.txt +63 -0
- demo/__init__.py +0 -0
- demo/config.py +109 -0
- en_us_cmudict_ipa_forward.pt +3 -0
- epoch=5816-step=390418.ckpt +3 -0
- mocks/audio_example.wav +0 -0
- mocks/data/Alice/0001.pt +3 -0
- mocks/data/Bob/0002.pt +3 -0
- mocks/data/Charlie/0003.pt +3 -0
- mocks/metadata.txt +3 -0
- mocks/speakers.json +5 -0
- mocks/test_compute_yin.npy +3 -0
- models/__init__.py +1 -0
- models/config/__init__.py +3 -0
- models/config/configs.py +438 -0
- models/config/experimental_configs.py +100 -0
- models/config/langs.py +65 -0
- models/config/speakers.py +451 -0
- models/config/stats.json +3 -0
- models/config/symbols.py +98 -0
- models/delightful_hifi.py +59 -0
- models/delightful_univnet.py +60 -0
- models/generators/__init__.py +0 -0
- models/generators/delightful_univnet.py +547 -0
- models/generators/tests/__init__.py +0 -0
- models/generators/tests/test_delightful_univnet.py +30 -0
- models/helpers/__init__.py +2 -0
- models/helpers/acoustic.py +79 -0
- models/helpers/dataloaders.py +141 -0
- models/helpers/initializer.py +335 -0
- models/helpers/tests/__init__.py +0 -0
- models/helpers/tests/test_dataloaders.py +38 -0
- models/helpers/tests/test_pitch_phoneme_averaging.py +36 -0
- models/helpers/tests/test_position_encoding.py +30 -0
- models/helpers/tests/tests_tools/__init__.py +0 -0
- models/helpers/tests/tests_tools/test_calc_same_padding.py +34 -0
- models/helpers/tests/tests_tools/test_get_mask_from_lengths.py +37 -0
- models/helpers/tests/tests_tools/test_initialize_embeddings.py +45 -0
- models/helpers/tests/tests_tools/test_pad.py +36 -0
- models/helpers/tests/tests_tools/test_stride_lens_downsampling.py +52 -0
.gitignore
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
.lh
|
163 |
+
.history
|
164 |
+
.vscode
|
165 |
+
.idea
|
166 |
+
.trunk
|
167 |
+
lightning_logs
|
168 |
+
|
169 |
+
# Ignore generated sounds
|
170 |
+
results/*
|
171 |
+
|
172 |
+
# Mock datasets
|
173 |
+
datasets_cache/**/*
|
174 |
+
|
175 |
+
notebooks/**/*.wav
|
176 |
+
notebooks/**/*.mp3
|
177 |
+
notebooks/**/*.pth
|
178 |
+
|
179 |
+
# Mock audio
|
180 |
+
mocks/wav2vec_aligner/audio
|
181 |
+
|
182 |
+
# Ignore flagged from gradio
|
183 |
+
flagged
|
config/__init__.py
ADDED
File without changes
|
config/best_speakers_list.py
ADDED
@@ -0,0 +1,968 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# chunk_1
|
2 |
+
speaker_ids1 = [
|
3 |
+
32, # US, nan M train-clean-100, min intonation, calm, timbre
|
4 |
+
130, # BR, Peter of Buckinghamshire England M train-other-500, timbre, min intonation, calm, slow
|
5 |
+
164, # US, Ed Good M train-other-500, timbre, intonation, warm and calm, good voice
|
6 |
+
176, # US, Micah Sheppard M train-clean-360, intonation, calm
|
7 |
+
68, # US, Alex Buie M train-clean-100, min intonation, energized
|
8 |
+
15, # US, Chip M train-other-500, intonation, interesting voice
|
9 |
+
145, # US, Mr. Baby Man M train-clean-360, timbre, intonation, interesting voice
|
10 |
+
196, # US, Mike Kauffmann M train-clean-360, min intonation, average calm
|
11 |
+
160, # BR, deadwhitemales M train-clean-100, intonation, energized, interesting voice
|
12 |
+
108, # US, Kevin McAsh M train-clean-360, min intonation, energized
|
13 |
+
99, # US, Stewart Wills M train-clean-100, min intonation, avg energy
|
14 |
+
50, # US, Dan Threetrees M train-clean-360, min intonation, avg energy
|
15 |
+
76, # US, ML Cohen M train-other-500, intonation, energy, timbre
|
16 |
+
142, # US, Michael Sirois M train-other-500, intonation, energy
|
17 |
+
95, # US, Vinny Bove M train-clean-360, intonation, energy, timbre
|
18 |
+
169, # US, Richard Grove M train-other-500, intonation, energy
|
19 |
+
147, # US, Eileen George F train-clean-360, intonation, calm
|
20 |
+
92, # BR vlooi F train-other-500 teenager voice, intonation, energized
|
21 |
+
117, # US, Caitlin Kelly F train-clean-360, intonation, energized, interesting voice
|
22 |
+
89, # US, Paula Berinstein F train-clean-360, min intonation, energized
|
23 |
+
182, # US Katy Preston F train-other-500, intonation, energized
|
24 |
+
105, # US Marian Brown F train-clean-360, min intonation, energized, timbre, quality GOOD
|
25 |
+
11, # BR Linton F train-other-500, min intonation, calm
|
26 |
+
18, # US Sherry Crowther F train-clean-100, intonation, energized, timbre
|
27 |
+
38, # US Kurt Copeland M train-clean-360, intonation, energized
|
28 |
+
52, # US, Cori Samuel F train-other-500, intonation, energized, timbre
|
29 |
+
21, # US, Kelly Bescherer F train-other-500, intonation, energized, timbre
|
30 |
+
48, # US, Rosalind Wills F train-clean-100, intonation, timbre, poor quality, but interesting voice
|
31 |
+
63, # US, Linda Wilcox F train-other-500, very poor quality, but VERY interesting intonation
|
32 |
+
45, # US, Catharine Eastman F train-clean-100, very quality, interesting intonation
|
33 |
+
193, # US, Nomenphile F train-other-500, avg quality, intonation
|
34 |
+
207, # US Sage Tyrtle F train-other-500, avg quality, interesting intonation and timbre
|
35 |
+
73, # US Claire Goget F train-clean-100, avg quality, intonation
|
36 |
+
42, # US Jennifer Crispin F train-clean-360, quality, calm
|
37 |
+
113, # US Alice Elizabeth Still F train-other-500, avg quality, intonation
|
38 |
+
49, # US Kristen McQuillin F train-clean-100, avg quality, interesting intonation and timbre
|
39 |
+
185, # US Kim Braun F train-clean-360, avg quality, avg intonation, but interesting timbre
|
40 |
+
165, # US Elisabeth Shields F train-clean-100, avg quality, interesting intonation, timbre
|
41 |
+
36, # US chriss the girl F train-other-500, interesting intonation, timbre
|
42 |
+
96, # US Kymm Zuckert F train-other-500, avg quality, interesting intonation, timbre of middle age wooman
|
43 |
+
102, # US Maureen S. O'Brien F train-clean-100, avg quality, interesting intonation
|
44 |
+
64, # US Christiane Levesque F train-clean-360, young voice, calm
|
45 |
+
30, # BR, Ophelia Darcy F train-other-500, avg quality, intonation
|
46 |
+
0, # US Kristin LeMoine F train-clean-360, avg quality, intonation, fast-speaker
|
47 |
+
192, # US, Nocturna F train-clean-100, avg quality, intonation
|
48 |
+
146, # US Jim Cadwell M train-other-500, avg quality, intonation
|
49 |
+
80, # US Fox in the Stars F train-clean-100, avg quality, intonation
|
50 |
+
162, # BR Mike Gardom M train-other-500, avg quality, intonation, timbre
|
51 |
+
66, # US Maddie F train-clean-360, intonation, timbre
|
52 |
+
124, # US Steve Karafit M train-clean-100, poor quality, intonation, timbre, COOL
|
53 |
+
123, # US Sean McGaughey M train-clean-360, poor quality, intonation, timbre
|
54 |
+
55, # US, Patricia Oakley F train-clean-360, intonation, timbre
|
55 |
+
91, # BR Chris Goringe M train-other-500, intonation, timbre
|
56 |
+
171, # US Paul Harvey M train-clean-360, avg quality, intonation, timbre
|
57 |
+
61, # US John Greenman M train-other-500, intonation, timbre
|
58 |
+
122, # US carnright M train-clean-100, avg intonation, timbre
|
59 |
+
82, # BR Andy Minter M train-other-500, intonation, GOOD timbre,
|
60 |
+
118, # US Brenda Dayne F train-clean-360, timbre, calm
|
61 |
+
106, # US Mark F. Smith M train-clean-360, GOOD timbre, interesting intonation
|
62 |
+
187, # US Lenny Glionna Jr. M train-other-500, intonation, timbre
|
63 |
+
158, # US Randy Phillips M train-clean-100, avg intonation, timbre
|
64 |
+
83, # US Graham Williams M train-other-500, intonation, timbre
|
65 |
+
181, # BR Jon Ingram M train-other-500, intonation, timbre
|
66 |
+
8, # US Denny Sayers M train-clean-100, timbre
|
67 |
+
205, # US Robert Garrison M train-clean-360, timbre, interesting intonation
|
68 |
+
172, # US Harvey Chinn M train-other-500, great timbre, intonation
|
69 |
+
]
|
70 |
+
# chunk_2
|
71 |
+
speaker_ids2 = [
|
72 |
+
305, # US Michael Crowl M train-clean-360, timbre, intonation
|
73 |
+
417, # US Kiki Baessell F train-clean-360, timbre, intonation
|
74 |
+
241, # US Jean O'Sullivan F train-clean-360, timbre, intonation
|
75 |
+
412, # US Nichole Karl F train-other-500, timbre
|
76 |
+
294, # US Diana Kiesners F train-clean-360, timbre, intonation
|
77 |
+
414, # US Christabel F train-clean-100, great and calm timbre
|
78 |
+
251, # US Aaron Benedict M train-other-500, timbre, intonation
|
79 |
+
218, # US Joy Chan F train-other-500, timbre, intonation, quality
|
80 |
+
259, # BR miette F train-other-500, timbre, intonatio
|
81 |
+
275, # US Zale Schafer (Rose May Chamberlin Memorial Foundat F train-clean-360, timbre, intonation
|
82 |
+
368, # US Susie G. F train-other-500, teenage voice, timbre, intonation
|
83 |
+
327, # BR mjd-s F train-other-500, timbre, intonation
|
84 |
+
366, # US pattymarie F train-clean-360, calm, timbre
|
85 |
+
399, # US entada F train-clean-360, timbre, intonation
|
86 |
+
273, # BR Andrew Lebrun M train-other-500, timbre, intonation
|
87 |
+
352, # US Mur Lafferty F train-clean-360, timbre, enery, young voice
|
88 |
+
283, # US Bethany Simpson F train-clean-360, timbre, intonation
|
89 |
+
248, # BR fieldsofgold M train-other-500, timbre, intonation
|
90 |
+
372, # US Jim Mullins M train-clean-360, timbre, intonation, quality
|
91 |
+
250, # US Quentin M train-clean-360, unique timbre, intonation, quality
|
92 |
+
403, # US Igor Teaforay F train-clean-360, timbre, avg intonation
|
93 |
+
375, # US iscatel M train-clean-360, unique timbre, avg intonation
|
94 |
+
355, # US Lana Taylor F train-clean-100, unique timbre, intonation
|
95 |
+
220, # US Tina Tilney F train-clean-360, unique timbre, high intonation
|
96 |
+
392, # US Brooks Jensen M train-clean-360, timbre, avg speed, avg intonation
|
97 |
+
255, # US Caroline Mercier F train-clean-360, timbre, avg speed, intonation
|
98 |
+
292, # US Tamara R. Schwartz F train-clean-100, timbre, avg speed, intonation
|
99 |
+
258, # US Russ Maxwell M train-clean-360, timbre, intonation, unique voice
|
100 |
+
233, # US mikenkat M train-clean-360, timbre, intonation
|
101 |
+
394, # US swroot F train-clean-360, timbre, intonation, unique voice, good quality
|
102 |
+
382, # US Kelli Robinson F train-clean-360, timbre, intonation, avg quality
|
103 |
+
322, # US Mitchell Dwyer M train-clean-360, timbre, intonation, avg quality, unique voice
|
104 |
+
285, # US koijmonop M train-clean-360, timbre, intonation, avg quality, unique voice
|
105 |
+
290, # US J. M. Smallheer F train-clean-360, timbre, intonation, avg quality
|
106 |
+
383, # US Mike Roop M train-other-500, timbre, intonation, quality, unique voice
|
107 |
+
263, # US Eric S. Piotrowski M train-clean-360, timbre, intonation, avg quality
|
108 |
+
373, # BR Brooks Seveer M train-clean-360, timbre, intonation, avg quality, unique voice
|
109 |
+
340, # US Nick Gallant M train-clean-100, unique timbre
|
110 |
+
331, # BR Luke Venediger M train-other-500, timbre, intonation
|
111 |
+
234, # BR Menno M train-other-500, timbre, intonation, unique voice
|
112 |
+
398, # BR Sam Fold M train-other-500, timbre, intonation
|
113 |
+
254, # BR Rebecca Dittman M train-other-500, timbre, intonation
|
114 |
+
264, # US KentF M train-clean-360, timbre, intonation
|
115 |
+
214, # US Scott Splavec M train-clean-100, timbre, intonation
|
116 |
+
359, # BR Greg Bryant M train-clean-100, timbre, intonation
|
117 |
+
253, # US Frank M train-other-500, timbre, intonation
|
118 |
+
249, # US Bill Stackpole M train-clean-360, timbre, intonation
|
119 |
+
236, # US Matthew Shepherd M train-clean-360, timbre, intonation, unique voice
|
120 |
+
390, # US JimmyLogan M train-clean-360, avg intonation, timbre
|
121 |
+
216, # US Dave Ranson M train-clean-100, unique voice, timbre, intonation
|
122 |
+
215, # US Mark Bradford M train-clean-360, timbre, intonation
|
123 |
+
212, # US Glen Hallstrom M train-other-500, timbre, intonation
|
124 |
+
314, # US Carl Vonnoh, III M train-clean-360, unique voice, timbre, intonation
|
125 |
+
347, # US Anadaxis_Canejia M train-other-500, unique voice, timbre, intonation, good quality
|
126 |
+
330, # US Aaron Andradne M train-clean-360, timbre, intonation
|
127 |
+
393, # US Tim Lundeen M train-clean-360, timbre, intonation
|
128 |
+
40, # BR Justin Brett M train-other-500, unique voice, timbre, intonation, good quality
|
129 |
+
386, # US Michael Kirkpatrick M train-clean-360, unique intonation, timbre
|
130 |
+
315, # US Jean Crevier M train-other-500, unique intonation, timbre
|
131 |
+
349, # US brenthumphries M train-other-500, unique timbre, min intonation
|
132 |
+
242, # US J. Hall M train-other-500, unique timbre, intonation
|
133 |
+
308, # US Eric Connover M train-other-500, timbre, intonation
|
134 |
+
313, # BR Tim Bulkeley M train-other-500, timbre, intonation
|
135 |
+
334, # US mawrtea M train-clean-360, unique voice, timbre, intonation
|
136 |
+
]
|
137 |
+
# chunk_3
|
138 |
+
speaker_ids3 = [
|
139 |
+
469, # US Christian Pecaut M train-clean-360, clear voice, min intonation
|
140 |
+
601, # BR Jonathan Horniblow M train-other-500, clear voice, min intonation
|
141 |
+
482, # US Estragon M train-clean-360, clear voice, min intonation
|
142 |
+
580, # US Kyle M. M train-clean-360, clear voice, min intonation, timbre
|
143 |
+
463, # US Chris Hughes M train-other-500, clear voice, min intonation, timbre, energized
|
144 |
+
472, # BR Tim Makarios M train-other-500, min intonation
|
145 |
+
536, # US Robert Flach M train-other-500, intonation, timbre, unique voice
|
146 |
+
569, # US Arouet M train-clean-360, avg intonation, timbre
|
147 |
+
523, # US Michael Loftus M train-clean-360, avg intonation, timbre
|
148 |
+
454, # US Tim Gregory M train-clean-100, avg intonation
|
149 |
+
425, # US RedToby M train-clean-360, avg intonation, timbre, unique voice
|
150 |
+
574, # US Daniel Shorten M train-clean-100, avg intonation, timbre, clear voice
|
151 |
+
465, # US Leonie Rose F train-clean-100, avg intonation, timbre
|
152 |
+
481, # US Scott Sherris M train-clean-360, intonation, timbre
|
153 |
+
531, # US Fr. Richard Zeile of Detroit M train-other-500, intonation, timbre, unique voice
|
154 |
+
628, # US Bryan Ness M train-clean-100, intonation, timbre, unique voice
|
155 |
+
427, # US John Lieder M train-clean-360, intonation, timbre
|
156 |
+
527, # US Jason Isbell M or F train-clean-360, intonation, timbre
|
157 |
+
468, # US Jenilee F train-other-500, energized, young voice, intonation
|
158 |
+
441, # US roolynninms F train-clean-100, energized, intonation
|
159 |
+
430, # BR Millbeach F train-other-500, intonation, timbre
|
160 |
+
498, # US Chris Gladis M train-clean-100, intonation, timbre
|
161 |
+
435, # US Debra Lynn F train-other-500, intonation, timbre
|
162 |
+
499, # US Tammy Sanders F train-clean-100, intonation, timbre, unique voice
|
163 |
+
429, # US Giles Baker M train-other-500, timbre
|
164 |
+
495, # US Janet Friday F train-clean-360, INTONATION, timbre
|
165 |
+
456, # US Catherine Fitz F train-clean-360, timbre
|
166 |
+
617, # US PJ F train-other-500, timbre
|
167 |
+
445, # US Jennette Selig F train-clean-360, intonation, timbre
|
168 |
+
552, # US Mim Ritty F train-clean-100, intonation, timbre
|
169 |
+
561, # US Lorelle Anderson F train-clean-100, intonation, timbre, quality
|
170 |
+
447, # US Lee Ann Howlett F train-clean-360, intonation, timbre, quality
|
171 |
+
604, # BR Anne-Marie F train-other-500, intonation, timbre
|
172 |
+
450, # US Heather Duncan F train-clean-360, intonation, unique voice
|
173 |
+
502, # US Lee Elliott F train-other-500, intonation
|
174 |
+
517, # US Madame Tusk F train-other-500, intonation
|
175 |
+
605, # BR Classicsfan F train-other-500, intonation, unique voice, timbre
|
176 |
+
426, # US Megan Stemm-Wade F train-clean-100, clear voice, min intonation
|
177 |
+
544, # US Miranda Stinson F train-clean-360, unique voice
|
178 |
+
568, # US Michael Yourshaw M train-other-500, clear voice
|
179 |
+
588, # US Kalynda F train-clean-360, clear voice, timbre
|
180 |
+
477, # US Patti Brugman F train-other-500, clear voice
|
181 |
+
607, # BR Steph F train-other-500, clear voice
|
182 |
+
479, # US Wina Hathaway F train-other-500, intonation, timbre
|
183 |
+
618, # US Linnea F train-other-500, timbre
|
184 |
+
549, # US AmyAG F train-other-500, teenager voice
|
185 |
+
596, # US Jo F train-other-500, timbre, min intonation
|
186 |
+
]
|
187 |
+
# chunk 4
|
188 |
+
speaker_ids4 = [
|
189 |
+
770, # US Pete Williams, Pittsburgh, PA M train-clean-360, clear, calm voice
|
190 |
+
730, # US Nick Gisburne M train-other-500, clear, calm voice
|
191 |
+
680, # US Kevin Kivikko M train-clean-360, min intonation, calm voice, timbre
|
192 |
+
791, # US David Kleparek M train-clean-100, clear, calm voice
|
193 |
+
800, # US Jack Farrell M train-clean-360, clear, calm voice, good low tone
|
194 |
+
839, # BR Ben Dutton M train-other-500, clear, calm voice, min intonation
|
195 |
+
661, # US James Gladwin M train-other-500, calm voice, min intonation
|
196 |
+
648, # US Muhammad Mussnoon M train-other-500, timbre
|
197 |
+
798, # US Wyatt M train-other-50, calm voice, timbre, avg intonation
|
198 |
+
699, # US Michael Macedonia M train-clean-360, calm voice, timbre
|
199 |
+
757, # US Roger Melin M train-clean-360, timbre, avg intonation, unique voice
|
200 |
+
782, # US Alec Daitsman M train-clean-360, timbre, avg intonation
|
201 |
+
816, # US Michael Bradford M train-clean-360, timbre, avg intonation, teenager voice
|
202 |
+
846, # US Gayland Darnell M train-clean-360, senior voice, timbre, avg intonation
|
203 |
+
831, # US David Federman M train-other-500, timbre, avg intonation
|
204 |
+
817, # US texttalker M train-clean-360, timbre, avg intonation
|
205 |
+
819, # US n8evv M train-clean-360, timbre, intonation
|
206 |
+
672, # BR Stuart Bell M train-other-500, timbre, intonation, clear voice
|
207 |
+
837, # US johnb M train-other-500, timbre, intonation
|
208 |
+
775, # US Ralph Volpi M train-clean-360, senior voice, timbre, intonation
|
209 |
+
685, # US Nikki Sullivan F train-clean-100, clear voice, avg intonation, timbre
|
210 |
+
666, # US Kelly Dougherty M train-clean-360, clear voice, avg intonation, timbre
|
211 |
+
809, # US Anna-Maria Viola F train-clean-360, timbre, avg intonation
|
212 |
+
640, # US David A. Stokely M train-other-500, emotional, timbre, intonation, unique voice
|
213 |
+
818, # US Matt Warzel F train-clean-360, timbre, intonation
|
214 |
+
711, # US Julie Bynum F train-clean-360, senior voice, timbre, min intonation
|
215 |
+
766, # US Clive Catterall M train-other-500, avg intonation, timbre
|
216 |
+
649, # US Scarlett! F train-clean-360, intonation, timbre
|
217 |
+
732, # US Tysto M/F train-clean-360, intonation, timbre
|
218 |
+
769, # US, Alan Brown M train-other-500, avg intonation, timbre
|
219 |
+
677, # US Allyson Hester F train-other-500, intonation, timbre, unique voice
|
220 |
+
833, # US Alana Jordan F train-clean-360, intonation, timbre
|
221 |
+
676, # US Jennifer F train-clean-100, intonation, timbre
|
222 |
+
710, # US Sheila Morton F train-clean-100, intonation, timbre, unique voice
|
223 |
+
645, # US Micah F train-other-500, intonation, timbre, unique voice, teenager voice
|
224 |
+
771, # US Isosceles F train-clean-360, intonation, timbre
|
225 |
+
636, # US Matthew Howell F train-other-500, timbre, avg intonation
|
226 |
+
822, # US kristiface F train-clean-360, timbre, intonation, unique voice
|
227 |
+
830, # US musici123 F train-other-500, timbre, intonation, unique voice
|
228 |
+
657, # US Shannon F train-other-500, timbre, intonation
|
229 |
+
797, # US Chris Jones F train-other-500, timbre, intonation, calm voice
|
230 |
+
835, # BR Rachel Lintern F train-other-500, timbre, intonation
|
231 |
+
761, # US Susan Umpleby F train-clean-100, timbre, intonation, unique voice
|
232 |
+
653, # US cucciasv F train-other-500, timbre, avg intonation
|
233 |
+
751, # US Ralph Snelson M train-other-500, timbre, avg intonation, unique voice
|
234 |
+
848, # BR senshisteph F train-other-500, timbre, intonation
|
235 |
+
808, # US M. J. Boyle F train-other-500, timbre, intonation, senior voice
|
236 |
+
840, # US B. Grebe F train-clean-360, timbre, intonation, unique voice
|
237 |
+
742, # US Katherine Holt F train-other-500, timbre, intonation
|
238 |
+
834, # US Serin F train-other-500, unique voice
|
239 |
+
668, # US Jan Baxter F train-clean-360, intoantion, timbre, calm voice
|
240 |
+
752, # US Cat Schirf F train-other-500, intoantion, timbre
|
241 |
+
641, # US Eliza Horne F train-other-500, intoantion, timbre
|
242 |
+
644, # US Cynthia Zocca F train-clean-360, intoantion, timbre
|
243 |
+
781, # US Megan Kunkel F train-other-500, intoantion, timbre, teenager voice
|
244 |
+
727, # US Jodi Krangle F train-clean-360, timbre
|
245 |
+
719, # US Charlene V. Smith F train-other-500, intoantion, timbre
|
246 |
+
804, # BR FirstKnight F train-other-500, unique voice, intoantion, timbre
|
247 |
+
675, # US inkwelldragon F train-clean-360, intoantion, timbre
|
248 |
+
697, # US Jennie Hughes F train-other-500, timbre
|
249 |
+
731, # IND Priya, India F train-other-500, avg intoantion, timbre
|
250 |
+
741, # US Nick Marsh M train-other-500, intoantion, timbre, old man voice, unique voice
|
251 |
+
]
|
252 |
+
# chunk 5
|
253 |
+
speaker_ids5 = [
|
254 |
+
922, # ricell
|
255 |
+
1000, # artos
|
256 |
+
1007, # Mike Conrad
|
257 |
+
858, # Scott Merrill
|
258 |
+
943, # Matthew C. Heckel
|
259 |
+
984, # woggy298
|
260 |
+
936, # BUAES
|
261 |
+
935, # Topaz
|
262 |
+
977, # Logan McCamon
|
263 |
+
946, # Cantor
|
264 |
+
1030, # Ancient mariner
|
265 |
+
1046, # Preston McConkie
|
266 |
+
1022, # peac
|
267 |
+
908, # Quentin Manuel
|
268 |
+
924, # Andrew Coleman
|
269 |
+
964, # Utek
|
270 |
+
950, # davechase
|
271 |
+
1020, # nihilist00
|
272 |
+
1043, # B. G. Oxford
|
273 |
+
881, # mpetranech
|
274 |
+
852, # Steven Proctor
|
275 |
+
995, # Parrot
|
276 |
+
1045, # joi
|
277 |
+
1048, # tornadogrrrl
|
278 |
+
900, # peaceuntoyou
|
279 |
+
932, # Raerity
|
280 |
+
1005, # Beatrice
|
281 |
+
851, # Jennifer Lott
|
282 |
+
897, # Jan Dawn Doronila
|
283 |
+
1041, # mjbrichant
|
284 |
+
863, # K Hindall
|
285 |
+
937, # Sarah Gutierrez
|
286 |
+
1049, # Diana Solomon
|
287 |
+
1001, # TriciaG
|
288 |
+
934, # Darla
|
289 |
+
947, # Larissa Little
|
290 |
+
944, # Sarafina Suransky
|
291 |
+
870, # Barbara Bulkeley
|
292 |
+
923, # Jane Greensmith
|
293 |
+
1047, # Hannah Dowell
|
294 |
+
967, # Stephanie Land
|
295 |
+
929, # Petra
|
296 |
+
963, # MichelleHarris
|
297 |
+
891, # anoldfashiongirl
|
298 |
+
890, # PopularOutcast
|
299 |
+
992, # Fran
|
300 |
+
]
|
301 |
+
# chunk_6
|
302 |
+
speaker_ids6 = [
|
303 |
+
1143, # Keith Henige M train-other-500
|
304 |
+
1159, # Matt Wills M train-clean-360
|
305 |
+
1127, # C.J. Casey M train-other-500
|
306 |
+
1235, # Richard Kilmer M train-other-500
|
307 |
+
1092, # BenW M train-other-500
|
308 |
+
1270, # Brendan Tannam M train-other-500
|
309 |
+
1214, # David Baldwin M train-clean-360
|
310 |
+
1255, # Daniel Paashaus M train-other-500
|
311 |
+
1152, # Brian Keith Barnes M train-clean-360
|
312 |
+
1158, # StarrDog M train-other-500
|
313 |
+
1256, # Graeme Dunlop M train-other-500
|
314 |
+
1215, # Kevin Maxson M train-clean-360
|
315 |
+
1274, # Jud Niven M train-clean-360
|
316 |
+
1168, # Epistomolus M train-clean-100
|
317 |
+
1089, # Bill Ruhsam M train-clean-360
|
318 |
+
1142, # Jonathan Burchard M train-other-500
|
319 |
+
1090, # Termin Dyan M train-other-500
|
320 |
+
1109, # Martin Geeson M train-other-500
|
321 |
+
1230, # Troy Bond M train-other-500
|
322 |
+
1150, # TexasSteve M train-other-500
|
323 |
+
1191, # Denise Lacey F train-other-500
|
324 |
+
1259, # Megan Argo F train-other-500
|
325 |
+
1238, # madmouth F train-other-500
|
326 |
+
1135, # Linda Andrus F train-clean-360
|
327 |
+
1247, # Sarah LuAnn F train-clean-100
|
328 |
+
1115, # Rachel Gatwood F train-clean-360
|
329 |
+
1065, # Bob Sherman M train-other-500
|
330 |
+
1204, # Dale A. Bade F train-clean-360
|
331 |
+
1174, # Frances Marcinkiewicz F train-
|
332 |
+
1257, # Availle F train-other-500
|
333 |
+
1239, # Rachell Lovett F train-clean-360
|
334 |
+
1273, # gmiteva F train-other-500
|
335 |
+
1242, # Richard Ellwood M train-clean-360
|
336 |
+
1093, # Katie Riley F train-clean-360
|
337 |
+
1063, # SuD F train-other-500
|
338 |
+
1098, # Kerry Hiles F train-other-500
|
339 |
+
1254, # Rosie F train-clean-100
|
340 |
+
1157, # Bev J Stevens F train-clean-360
|
341 |
+
1184, # Joseph Couves F train-other-500
|
342 |
+
1253, # Caroline Shapiro F train-other-500
|
343 |
+
1183, # Evelyn Clarke F train-other-500
|
344 |
+
1082, # Symmie F train-clean-360
|
345 |
+
1128, # Linda Ferguson F train-other-500
|
346 |
+
1108, # Paul McCartan M train-other-500
|
347 |
+
1202, # Joy Easton F train-clean-360
|
348 |
+
1226, # serenitylee F train-clean-360
|
349 |
+
1105, # Bridget Gaige F train-clean-360
|
350 |
+
1229, # RoseA F train-clean-360
|
351 |
+
1181, # J. Rebecca Franklin F train-clean-360
|
352 |
+
1231, # Abigail Bartels F train-other-500
|
353 |
+
1182, # tabithat F train-other-500
|
354 |
+
1217, # JimOCR M train-other-500
|
355 |
+
1171, # Roberta Carlisle F train-other-500
|
356 |
+
1268, # A. Janelle Risa F train-clean-100
|
357 |
+
1243, # Rachel P. F train-clean-360
|
358 |
+
1071, # js392 F train-other-500
|
359 |
+
]
|
360 |
+
# chunk_7
|
361 |
+
speaker_ids7 = [
|
362 |
+
1428, # Gary Dzierlenga
|
363 |
+
1315, # John Dennison
|
364 |
+
1376, # mevans
|
365 |
+
1330, # William Peck
|
366 |
+
1400, # scrawl
|
367 |
+
1314, # Michael Wolf
|
368 |
+
1425, # Jonah Cummings
|
369 |
+
1438, # Tom Barron
|
370 |
+
1281, # garbageman99
|
371 |
+
1414, # Preston Scrape
|
372 |
+
1375, # Frank Adams
|
373 |
+
1410, # Zachary Johnson
|
374 |
+
1365, # Eric Leach
|
375 |
+
1302, # davidb
|
376 |
+
1354, # Kristen Zaza
|
377 |
+
1346, # Jeanie
|
378 |
+
1320, # Anita Fleming
|
379 |
+
1370, # Savanna Herrold
|
380 |
+
1290, # Veronica Jenkins
|
381 |
+
1437, # Charles RUHE
|
382 |
+
1297, # May Low
|
383 |
+
1440, # P Moscato
|
384 |
+
1433, # browneyedgirl32382
|
385 |
+
1366, # cher0520
|
386 |
+
1285, # Ric F
|
387 |
+
1399, # Jeanne Luft
|
388 |
+
1402, # Angel5
|
389 |
+
1303, # kiwafruit
|
390 |
+
1301, # Barbara Clements
|
391 |
+
1453, # Anna-Lisa Ott
|
392 |
+
1374, # pachayes
|
393 |
+
1373, # Maria Therese
|
394 |
+
]
|
395 |
+
# chunk 8
|
396 |
+
speaker_ids8 = [
|
397 |
+
1649, # Phineas Redux
|
398 |
+
1691, # sparks0314
|
399 |
+
1672, # Mike Wajda
|
400 |
+
1539, # Nathan Jordan
|
401 |
+
1610, # jgoffena
|
402 |
+
1512, # Matt Soar
|
403 |
+
1526, # Mike Harris
|
404 |
+
1647, # Patrick Reinhart
|
405 |
+
1636, # jessecoy
|
406 |
+
1676, # Gargoyle
|
407 |
+
1595, # Matthew Reece
|
408 |
+
1609, # Jacob Paul Starr
|
409 |
+
1671, # bobbybrill
|
410 |
+
1555, # Andrew Nelson
|
411 |
+
1657, # alwpoe
|
412 |
+
1592, # jerryB
|
413 |
+
1505, # Rom Maczka
|
414 |
+
1565, # bryan.peterson
|
415 |
+
1644, # Christopher Maust
|
416 |
+
1695, # Tina Nuzzi
|
417 |
+
1702, # Sirmelja
|
418 |
+
1697, # Lonelle Yoder
|
419 |
+
1596, # Joyce Couch
|
420 |
+
1660, # Jerry Romero
|
421 |
+
1524, # Elizabeth Barr
|
422 |
+
1643, # Linette Geisel
|
423 |
+
1543, # Lauren McCullough
|
424 |
+
1613, # Elsa Youngsteadt
|
425 |
+
1662, # GabrielleC
|
426 |
+
1587, # Claudia Wilson
|
427 |
+
1641, # Kirsten Wever
|
428 |
+
1614, # Jennifer Dionne
|
429 |
+
1603, # Christine Rodriguez
|
430 |
+
1546, # Carrie Heyes
|
431 |
+
1579, # Linda Velwest
|
432 |
+
1638, # Laura Victoria
|
433 |
+
1651, # Debbie Pieterse
|
434 |
+
1554, # Natalie Sullivan
|
435 |
+
1656, # Sharon Omi
|
436 |
+
1607, # Lynda Sizemore
|
437 |
+
1670, # dmbrought
|
438 |
+
1659, # kelleywyskiel
|
439 |
+
]
|
440 |
+
# chunk_9
|
441 |
+
speaker_ids9 = [
|
442 |
+
1785, # BR TRUEBRIT M train-other-500, timbre, min intonation
|
443 |
+
1776, # US dan_h M train-other-500, avg intoantion, timbre
|
444 |
+
1791, # US David Cummings M train-clean-360, avg intoantion, timbre
|
445 |
+
1707, # US David Olson M train-other-500, unique voice, intoantion, timbre
|
446 |
+
1801, # US John O M train-other-500, unique voice, min intoantion, timbre
|
447 |
+
1903, # US stephenreader M train-other-500, velvet unique voice
|
448 |
+
1856, # BR Craig Gulliver M train-other-500, avg intoantion, timbre
|
449 |
+
1906, # US Tony Russell M train-clean-360, dictor voice, avg intoantion, timbre
|
450 |
+
1806, # US Marc Pizzuti M train-other-500, avg intoantion
|
451 |
+
1828, # US David Wales M train-clean-100, avg intoantion, timbre
|
452 |
+
1849, # US Fred DeBerardinis M train-clean-100, avg intoantion, timbre, unique voice
|
453 |
+
1712, # BR Steve Belleguelle M train-other-500, avg intoantion, timbre
|
454 |
+
1853, # US Ron Altman M train-other-500, intoantion, unique voice, timbre
|
455 |
+
1805, # US Vince Dee M train-clean-100, unique voice, timbre
|
456 |
+
1838, # US Morey Kunin M train-clean-360, young voice, intoantion, timbre
|
457 |
+
1862, # US Alexandre Laplante M train-clean-360, young voice, intoantion, timbre
|
458 |
+
1915, # US T.E. McHenry M train-other-500, unique voice, dictor voice, intoantion, timbre
|
459 |
+
1772, # US haggisreflux M train-clean-360, intoantion, timbre
|
460 |
+
1831, # BR Nigel Boydell M train-other-500, unique voice, intoantion, timbre
|
461 |
+
1706, # BR Deborah Knight F train-clean-100, unique voice, intoantion, timbre
|
462 |
+
1908, # US fshort F train-other-500
|
463 |
+
1783, # US Sarah Crampton F train-clean-360
|
464 |
+
1781, # US humanode M train-clean-360, unique voice
|
465 |
+
1779, # US Wendy Almeida F train-clean-360
|
466 |
+
1839, # US James E. Carson M train-clean-360
|
467 |
+
1724, # US Juliana M. F train-clean-360
|
468 |
+
1728, # US Vinnie Tesla M train-clean-360
|
469 |
+
1907, # US Snapdragon F train-other-500
|
470 |
+
1881, # US Julienne F train-other-500
|
471 |
+
1802, # US selway F train-other-500
|
472 |
+
1826, # US John Hoerr M train-clean-100
|
473 |
+
1725, # BR Ruth Kidson F train-other-500
|
474 |
+
1764, # US ReadWriteLib F train-clean-360
|
475 |
+
1794, # US Michelle Remington F train-clean-360
|
476 |
+
1880, # US Christine Nendza F train-clean-360
|
477 |
+
1848, # US Monica Knuppe F train-clean-360
|
478 |
+
1736, # US Spike Holcomb F train-other-500
|
479 |
+
1841, # US Elena F train-clean-360
|
480 |
+
1836, # US Kendall Ashyby F train-other-500
|
481 |
+
1741, # US anjieliu F train-other-500
|
482 |
+
1803, # US Susan Hanfield F train-clean-360
|
483 |
+
1761, # US EliMarieHK F train-other-500
|
484 |
+
1745, # US Janet F train-clean-360
|
485 |
+
1713, # US dobsonfly F train-clean-100
|
486 |
+
1716, # US EyeBones F train-clean-360
|
487 |
+
1814, # US polkadotish F train-other-500
|
488 |
+
1709, # US CrowGirl F train-other-500
|
489 |
+
1763, # US Gen Jones F train-clean-360
|
490 |
+
1808, # US Rebecca King F train-clean-360
|
491 |
+
1811, # US Michelle Day F train-clean-360
|
492 |
+
1857, # US Amanda Friday F train-clean-360
|
493 |
+
1893, # US KirksVoice M train-other-500
|
494 |
+
1820, # US Feyaza F train-other-500
|
495 |
+
1771, # US Chelsea S. F train-other-500
|
496 |
+
1718, # US Caroline Driggs F train-other-500
|
497 |
+
1752, # US Shana Cohen F train-clean-360
|
498 |
+
1869, # US NastassiaS F train-other-500
|
499 |
+
1863, # US Tika Sabu F train-other-500
|
500 |
+
1723, # US Rachel Bossier F train-other-500
|
501 |
+
1798, # US C. L. W. Rollins F train-other-500
|
502 |
+
1755, # US Yvonne Smith F train-clean-360
|
503 |
+
1738, # US Lois C. Johnson F train-clean-360
|
504 |
+
1887, # US Jenna Lanman F train-clean-360
|
505 |
+
]
|
506 |
+
# chunk 10/11
|
507 |
+
speaker_ids10_11 = [
|
508 |
+
1956, # Thomas Meaney
|
509 |
+
2049, # AdrianBisson
|
510 |
+
1978, # John Trevithick
|
511 |
+
2001, # Wesseling
|
512 |
+
2114, # Larry Beasley
|
513 |
+
2032, # doonaboon
|
514 |
+
2087, # James Bendall
|
515 |
+
2011, # pekein
|
516 |
+
2056, # acloward
|
517 |
+
2007, # Art Leung
|
518 |
+
2084, # Eberle Thomas
|
519 |
+
2115, # Pete Milan
|
520 |
+
1987, # Andrew White
|
521 |
+
1959, # DVoice
|
522 |
+
1954, # Szindbad
|
523 |
+
2036, # T.K. Kirven
|
524 |
+
1947, # Barbara Edelman
|
525 |
+
2045, # Linda Ciano
|
526 |
+
1979, # roeg11
|
527 |
+
2075, # Joy S Grape
|
528 |
+
2091, # Caroline Hemmerly Kunkle
|
529 |
+
2023, # Vickie Ranz
|
530 |
+
2014, # Eden Rea-Hedrick
|
531 |
+
1965, # redhed3095
|
532 |
+
1989, # Joannemmp
|
533 |
+
2040, # MJ Franck
|
534 |
+
1996, # Mary in Arkansas
|
535 |
+
1957, # Sarika Pawar
|
536 |
+
2100, # Katherine
|
537 |
+
2069, # Asta1234
|
538 |
+
2096, # Tara Dow
|
539 |
+
2095, # Diana Dolan
|
540 |
+
1995, # Jill Janovetz
|
541 |
+
2017, # CaprishaPage
|
542 |
+
2010, # Peggy
|
543 |
+
1998, # voicebynatalie
|
544 |
+
1952, # Katalina Watt
|
545 |
+
2094, # Meg Cowan
|
546 |
+
2065, # Muriel
|
547 |
+
2312, # Jon Kerfoot
|
548 |
+
2217, # Jesse Crisp-Sears
|
549 |
+
2197, # Mike Nelson
|
550 |
+
2282, # Robert Snoza
|
551 |
+
2192, # Sammy Bean
|
552 |
+
2268, # Greg Giordano
|
553 |
+
2278, # Jake Woldstad
|
554 |
+
2241, # Steven Reynolds
|
555 |
+
2239, # amaskill
|
556 |
+
2225, # nomorejeffs
|
557 |
+
2283, # Tim Cote
|
558 |
+
2230, # Sam Naishtat
|
559 |
+
2151, # MaxSitting
|
560 |
+
2141, # KateC
|
561 |
+
2314, # Cheri Jordan
|
562 |
+
2127, # Ron Lockhart
|
563 |
+
2147, # Shawn Bayern
|
564 |
+
2251, # Wiley Combs
|
565 |
+
2195, # Lynne Thompson
|
566 |
+
2272, # JamesMcAndrew
|
567 |
+
2156, # C F de Rosset
|
568 |
+
2292, # Arnold
|
569 |
+
2143, # Suebee
|
570 |
+
2333, # Anita Slusser
|
571 |
+
2233, # Alexis Castro
|
572 |
+
2305, # Brooke Cunningham
|
573 |
+
2247, # Lois Browne
|
574 |
+
2171, # Carolyne
|
575 |
+
2172, # Demosthenes
|
576 |
+
2291, # lewildesen
|
577 |
+
2194, # Iridescat
|
578 |
+
2331, # Madam Fickle
|
579 |
+
2317, # helengraves
|
580 |
+
2234, # Coreena
|
581 |
+
2209, # Samantha J Gubitz
|
582 |
+
2152, # Kristel Tretter
|
583 |
+
2267, # Frances Brown
|
584 |
+
2275, # NatalieOram
|
585 |
+
2298, # Sheila Wood
|
586 |
+
2138, # Jeannie Tirado
|
587 |
+
2220, # Loveday
|
588 |
+
]
|
589 |
+
# chunk_12
|
590 |
+
speaker_ids12 = [
|
591 |
+
2403, # Ian Quinlan M train-clean-360
|
592 |
+
2436, # IND josembi M train-other-500
|
593 |
+
2387, # Brett G. Hirsch M train-other-500
|
594 |
+
2444, # dsilber01 M train-clean-360
|
595 |
+
2419, # Gary Dana M train-clean-100
|
596 |
+
2453, # Krzysztof Rowinski M train-clean-360
|
597 |
+
2451, # DeanOBuchanan M train-clean-100
|
598 |
+
2473, # Eric Metzler M train-clean-360
|
599 |
+
2415, # Patrick Eaton M train-other-500
|
600 |
+
2379, # pjhoury M train-other-500
|
601 |
+
2377, # Jon Kissack M train-clean-100
|
602 |
+
2355, # yeknod M train-other-500
|
603 |
+
2452, # Walt Allan M train-other-500
|
604 |
+
2401, # Matt Parker M train-clean-360
|
605 |
+
2359, # Doug Reed M train-other-500
|
606 |
+
2425, # noblesavage M train-clean-100
|
607 |
+
2390, # sdaeley17 M train-clean-360
|
608 |
+
2461, # ScottReyonoldsVoice M train-clean-360
|
609 |
+
2371, # Alexander Hatton M train-clean-360
|
610 |
+
2479, # Daisy Flaim F train-clean-100
|
611 |
+
2483, # Tammy Porter F train-clean-360
|
612 |
+
2372, # Lynne Ray F train-clean-360
|
613 |
+
2422, # Jude Somers F train-clean-360
|
614 |
+
2357, # William Gavula M train-other-500
|
615 |
+
2439, # KHand F train-clean-360
|
616 |
+
2441, # Alison Stewart F train-clean-360
|
617 |
+
2413, # Joanne Rochon F train-clean-360
|
618 |
+
2383, # Emma Joyce F train-other-500
|
619 |
+
2378, # Jackie Drown F train-clean-360
|
620 |
+
2352, # Jaimie Noy F train-clean-100
|
621 |
+
2397, # Rebecca Braunert-Plunkett F train-other-500
|
622 |
+
2394, # TinaNygard2 F train-clean-100
|
623 |
+
2447, # Deena Rhoads F train-clean-360
|
624 |
+
2358, # Betty Perry F train-clean-360
|
625 |
+
2471, # MariaS F train-other-500
|
626 |
+
2468, # Erin Schellhase F train-clean-360
|
627 |
+
2370, # gloriousjob M train-clean-360
|
628 |
+
2341, # Haili F train-other-500
|
629 |
+
2469, # Kevin Owens M train-clean-100
|
630 |
+
2448, # Emily Maynard F train-clean-360
|
631 |
+
2351, # Nick Bulka M train-other-500
|
632 |
+
]
|
633 |
+
|
634 |
+
speaker_ids = speaker_ids1 + speaker_ids2 + speaker_ids3 + speaker_ids4 + speaker_ids5 + speaker_ids6 + speaker_ids7 + speaker_ids8 + speaker_ids9 + speaker_ids10_11 + speaker_ids12
|
635 |
+
|
636 |
+
# Selected for the fine-tuning
|
637 |
+
selected_speakers = [
|
638 |
+
574, # Daniel Shorten M train-clean-100
|
639 |
+
242, # J. Hall M train-other-500
|
640 |
+
536, # Robert Flach M train-other-500
|
641 |
+
82, # Andy Minter M train-other-500
|
642 |
+
672, # Stuart Bell M train-other-500
|
643 |
+
315, # Jean Crevier M train-other-500
|
644 |
+
628, # Bryan Ness M train-clean-100
|
645 |
+
61, # John Greenman M train-other-500
|
646 |
+
649, # Scarlett! F train-clean-360
|
647 |
+
105, # Marian Brown F train-clean-360
|
648 |
+
399, # entada F train-clean-360
|
649 |
+
89, # Paula Berinstein F train-clean-360
|
650 |
+
502, # Lee Elliott F train-other-500
|
651 |
+
102, # Maureen S. O'Brien F train-clean-100
|
652 |
+
544, # Miranda Stinson F train-clean-360
|
653 |
+
653, # cucciasv F train-other-500
|
654 |
+
465, # Leonie Rose F train-clean-100
|
655 |
+
96, # Kymm Zuckert F train-other-500
|
656 |
+
447, # Lee Ann Howlett F train-clean-360
|
657 |
+
165, # Elisabeth Shields F train-clean-100
|
658 |
+
430, # Millbeach F train-other-500
|
659 |
+
214, # Scott Splavec M train-clean-100
|
660 |
+
666, # Kelly Dougherty M train-clean-360
|
661 |
+
481, # Scott Sherris M train-clean-360
|
662 |
+
463, # Chris Hughes M train-other-500
|
663 |
+
273, # Andrew Lebrun M train-other-500
|
664 |
+
172, # Harvey Chinn M train-other-500
|
665 |
+
83, # Graham Williams M train-other-500
|
666 |
+
523, # Michael Loftus M train-clean-360
|
667 |
+
38, # Kurt Copeland M train-clean-360
|
668 |
+
248, # fieldsofgold M train-other-500
|
669 |
+
234, # Menno M train-other-500
|
670 |
+
145, # Mr. Baby Man M train-clean-360
|
671 |
+
250, # Quentin M train-clean-360
|
672 |
+
498, # Chris Gladis M train-clean-100
|
673 |
+
123, # Sean McGaughey M train-clean-360
|
674 |
+
171, # Paul Harvey M train-clean-360
|
675 |
+
49, # Kristen McQuillin F train-clean-100
|
676 |
+
588, # Kalynda F train-clean-360
|
677 |
+
117, # Caitlin Kelly F train-clean-360
|
678 |
+
657, # Shannon F train-other-500
|
679 |
+
275, # Zale Schafer (Rose May Chamberlin Memorial Foundat F train-clean-360
|
680 |
+
604, # Anne-Marie F train-other-500
|
681 |
+
64, # Christiane Levesque F train-clean-360
|
682 |
+
685, # Nikki Sullivan F train-clean-100
|
683 |
+
355, # Lana Taylor F train-clean-100
|
684 |
+
185, # Kim Braun F train-clean-360
|
685 |
+
52, # Cori Samuel F train-other-500
|
686 |
+
218, # Joy Chan F train-other-500
|
687 |
+
549, # AmyAG F train-other-500
|
688 |
+
617, # PJ F train-other-500
|
689 |
+
414, # Christabel F train-clean-100
|
690 |
+
382, # Kelli Robinson F train-clean-360
|
691 |
+
76, # ML Cohen M train-other-500
|
692 |
+
176, # Micah Sheppard M train-clean-360
|
693 |
+
233, # mikenkat M train-clean-360
|
694 |
+
390, # JimmyLogan M train-clean-360
|
695 |
+
393, # Tim Lundeen M train-clean-360
|
696 |
+
425, # RedToby M train-clean-360
|
697 |
+
398, # Sam Fold M train-other-500
|
698 |
+
372, # Jim Mullins M train-clean-360
|
699 |
+
99, # Stewart Wills M train-clean-100
|
700 |
+
340, # Nick Gallant M train-clean-100
|
701 |
+
40, # JemmaBlythe F train-other-500
|
702 |
+
118, # Brenda Dayne F train-clean-360
|
703 |
+
640, # David A. Stokely M train-other-500
|
704 |
+
50, # Dan Threetrees M train-clean-360
|
705 |
+
373, # Brooks Seveer M train-clean-360
|
706 |
+
124, # Steve Karafit M train-clean-100
|
707 |
+
314, # Carl Vonnoh, III M train-clean-360
|
708 |
+
531, # Fr. Richard Zeile of Detroit M train-other-500
|
709 |
+
383, # Mike Roop M train-other-500
|
710 |
+
710, # Sheila Morton F train-clean-100
|
711 |
+
450, # Heather Duncan F train-clean-360
|
712 |
+
645, # Micah M train-other-500
|
713 |
+
517, # Madame Tusk F train-other-500
|
714 |
+
479, # Wina Hathaway F train-other-500
|
715 |
+
30, # Ophelia Darcy F train-other-500
|
716 |
+
220, # Tina Tilney F train-clean-360
|
717 |
+
63, # Linda Wilcox F train-other-500
|
718 |
+
283, # Bethany Simpson F train-clean-360
|
719 |
+
644, # Cynthia Zocca F train-clean-360
|
720 |
+
677, # Allyson Hester F train-other-500
|
721 |
+
21, # Kelly Bescherer F train-other-500
|
722 |
+
552, # Mim Ritty F train-clean-100
|
723 |
+
80, # Fox in the Stars F train-clean-100
|
724 |
+
394, # swroot F train-clean-360
|
725 |
+
426, # Megan Stemm-Wade F train-clean-100
|
726 |
+
91, # Chris Goringe M train-other-500
|
727 |
+
108, # Kevin McAsh M train-clean-360
|
728 |
+
130, # Peter of Buckinghamshire England M train-other-500
|
729 |
+
661, # James Gladwin M train-other-500
|
730 |
+
216, # Dave Ranson M train-clean-100
|
731 |
+
164, # Ed Good M train-other-500
|
732 |
+
308, # Eric Connover M train-other-500
|
733 |
+
569, # Arouet M train-clean-360
|
734 |
+
313, # Tim Bulkeley M train-other-500
|
735 |
+
212, # Glen Hallstrom M train-other-500
|
736 |
+
15, # Chip M train-other-500
|
737 |
+
469, # Christian Pecaut M train-clean-360
|
738 |
+
294, # Diana Kiesners F train-clean-360
|
739 |
+
192, # Nocturna F train-clean-100
|
740 |
+
73, # Claire Goget F train-clean-100
|
741 |
+
417, # Kiki Baessell F train-clean-360
|
742 |
+
636, # Matthew Howell F train-other-500
|
743 |
+
36, # chriss the girl F train-other-500
|
744 |
+
668, # Jan Baxter F train-clean-360
|
745 |
+
403, # Igor Teaforay F train-clean-360
|
746 |
+
618, # Linnea F train-other-500
|
747 |
+
596, # Jo F train-other-500
|
748 |
+
499, # Tammy Sanders F train-clean-100
|
749 |
+
207, # Sage Tyrtle F train-other-500
|
750 |
+
1346, # Jeanie F train-other-500
|
751 |
+
1109, # Martin Geeson M train-other-500
|
752 |
+
770, # Pete Williams, Pittsburgh, PA M train-clean-360
|
753 |
+
1247, # Sarah LuAnn F train-clean-100
|
754 |
+
1526, # Mike Harris M train-other-500
|
755 |
+
908, # Quentin Manuel M train-clean-360
|
756 |
+
1183, # Evelyn Clarke F train-other-500
|
757 |
+
1438, # Tom Barron M train-other-500
|
758 |
+
1022, # peac M train-clean-100
|
759 |
+
1603, # Christine Rodriguez F train-clean-360
|
760 |
+
1425, # Jonah Cummings M train-clean-360
|
761 |
+
731, # Priya, India F train-other-500
|
762 |
+
782, # Alec Daitsman M train-clean-360
|
763 |
+
1090, # Termin Dyan M train-other-500
|
764 |
+
995, # Parrot M train-other-500
|
765 |
+
923, # Jane Greensmith F train-clean-360
|
766 |
+
766, # Clive Catterall M train-other-500
|
767 |
+
822, # kristiface F train-clean-360
|
768 |
+
897, # Jan Dawn Doronila F train-clean-360
|
769 |
+
1579, # Linda Velwest F train-clean-360
|
770 |
+
964, # Utek M train-clean-360
|
771 |
+
1414, # Preston Scrape M train-other-500
|
772 |
+
834, # Serin F train-other-500
|
773 |
+
1302, # davidb M train-clean-360
|
774 |
+
1135, # Linda Andrus F train-clean-360
|
775 |
+
1440, # P Moscato F train-clean-360
|
776 |
+
870, # Barbara Bulkeley F train-clean-360
|
777 |
+
1256, # Graeme Dunlop M train-other-500
|
778 |
+
1255, # Daniel Paashaus M train-other-500
|
779 |
+
1157, # Bev J Stevens F train-clean-360
|
780 |
+
934, # Darla F train-other-500
|
781 |
+
1281, # garbageman99 M train-clean-360
|
782 |
+
819, # n8evv M train-clean-360
|
783 |
+
1041, # mjbrichant F train-other-500
|
784 |
+
863, # K Hindall F train-clean-360
|
785 |
+
1303, # kiwafruit F train-clean-100
|
786 |
+
1115, # Rachel Gatwood F train-clean-360
|
787 |
+
1539, # Nathan Jordan M train-other-500
|
788 |
+
1428, # Gary Dzierlenga M train-other-500
|
789 |
+
1049, # Diana Solomon F train-other-500
|
790 |
+
1546, # Carrie Heyes F train-other-500
|
791 |
+
1089, # Bill Ruhsam M train-clean-360
|
792 |
+
1142, # Jonathan Burchard M train-other-500
|
793 |
+
1375, # Frank Adams M train-clean-360
|
794 |
+
881, # mpetranech M train-other-500
|
795 |
+
798, # Wyatt M train-other-500
|
796 |
+
1647, # Patrick Reinhart M train-clean-360
|
797 |
+
1587, # Claudia Wilson F train-clean-360
|
798 |
+
830, # musici123 F train-other-500
|
799 |
+
1592, # jerryB M train-other-500
|
800 |
+
839, # Ben Dutton M train-other-500
|
801 |
+
835, # Rachel Lintern F train-other-500
|
802 |
+
1273, # gmiteva F train-other-500
|
803 |
+
932, # Raerity F train-other-500
|
804 |
+
1108, # Paul McCartan M train-other-500
|
805 |
+
732, # Tysto M train-clean-360
|
806 |
+
781, # Megan Kunkel F train-other-500
|
807 |
+
1555, # Andrew Nelson M train-clean-360
|
808 |
+
1437, # Charles RUHE M train-clean-360
|
809 |
+
1402, # Angel5 F train-other-500
|
810 |
+
963, # MichelleHarris F train-clean-360
|
811 |
+
1181, # J. Rebecca Franklin F train-clean-360
|
812 |
+
818, # Matt Warzel F train-clean-360
|
813 |
+
1285, # Ric F M train-clean-100
|
814 |
+
797, # Chris Jones F train-other-500
|
815 |
+
1505, # Rom Maczka M train-clean-360
|
816 |
+
1214, # David Baldwin M train-clean-360
|
817 |
+
1636, # jessecoy M train-other-500
|
818 |
+
929, # Petra F train-other-500
|
819 |
+
1171, # Roberta Carlisle F train-other-500
|
820 |
+
817, # texttalker M train-clean-360
|
821 |
+
1433, # browneyedgirl32382 F train-clean-360
|
822 |
+
1158, # StarrDog M train-other-500
|
823 |
+
1000, # artos M train-other-500
|
824 |
+
848, # senshisteph F train-other-500
|
825 |
+
1596, # Joyce Couch F train-other-500
|
826 |
+
757, # Roger Melin M train-clean-360
|
827 |
+
1168, # Epistomolus M train-clean-100
|
828 |
+
741, # Nick Marsh M train-other-500
|
829 |
+
1649, # Phineas Redux M train-other-500
|
830 |
+
851, # Jennifer Lott F train-clean-360
|
831 |
+
808, # M. J. Boyle F train-other-500
|
832 |
+
1595, # Matthew Reece M train-clean-360
|
833 |
+
1370, # Savanna Herrold F train-other-500
|
834 |
+
1565, # bryan.peterson M train-other-500
|
835 |
+
944, # Sarafina Suransky F train-other-500
|
836 |
+
1268, # A. Janelle Risa F train-clean-100
|
837 |
+
771, # Isosceles F train-clean-360
|
838 |
+
752, # Cat Schirf F train-other-500
|
839 |
+
800, # Jack Farrell M train-clean-360
|
840 |
+
1005, # Beatrice F train-other-500
|
841 |
+
1229, # RoseA F train-clean-360
|
842 |
+
943, # Matthew C. Heckel M train-clean-360
|
843 |
+
891, # anoldfashiongirl F train-other-500
|
844 |
+
1226, # serenitylee F train-clean-360
|
845 |
+
1253, # Caroline Shapiro F train-other-500
|
846 |
+
1204, # Dale A. Bade F train-clean-360
|
847 |
+
1230, # Troy Bond M train-other-500
|
848 |
+
791, # David Kleparek M train-clean-100
|
849 |
+
1184, # Joseph Couves F train-other-500
|
850 |
+
1001, # TriciaG F train-clean-360
|
851 |
+
804, # FirstKnight F train-other-500
|
852 |
+
1641, # Kirsten Wever F train-clean-100
|
853 |
+
1259, # Megan Argo F train-other-500
|
854 |
+
1231, # Abigail Bartels F train-other-500
|
855 |
+
1410, # Zachary Johnson M train-other-500
|
856 |
+
1030, # Ancient mariner M train-other-500
|
857 |
+
1093, # Katie Riley F train-clean-360
|
858 |
+
1254, # Rosie F train-clean-100
|
859 |
+
1365, # Eric Leach M train-clean-360
|
860 |
+
831, # David Federman M train-other-500
|
861 |
+
1989, # Joannemmp F train-clean-100
|
862 |
+
1707, # David Olson M train-other-500
|
863 |
+
1849, # Fred DeBerardinis M train-clean-100
|
864 |
+
1808, # Rebecca King F train-clean-360
|
865 |
+
2292, # Arnold M train-clean-100
|
866 |
+
2415, # Patrick Eaton M train-other-500
|
867 |
+
1656, # Sharon Omi F train-clean-100
|
868 |
+
1676, # Gargoyle M train-clean-360
|
869 |
+
1881, # Julienne F train-other-500
|
870 |
+
2036, # T.K. Kirven F train-other-500
|
871 |
+
1761, # EliMarieHK F train-other-500
|
872 |
+
2115, # Pete Milan M train-other-500
|
873 |
+
1803, # Susan Hanfield F train-clean-360
|
874 |
+
1798, # C. L. W. Rollins F train-other-500
|
875 |
+
1723, # Rachel Bossier F train-other-500
|
876 |
+
2341, # Haili F train-other-500
|
877 |
+
2468, # Erin Schellhase F train-clean-360
|
878 |
+
1725, # Ruth Kidson F train-other-500
|
879 |
+
2010, # Peggy F train-other-500
|
880 |
+
1853, # Ron Altman M train-other-500
|
881 |
+
2359, # Doug Reed M train-other-500
|
882 |
+
2422, # Jude Somers F train-clean-360
|
883 |
+
2234, # Coreena F train-other-500
|
884 |
+
2156, # C F de Rosset F train-other-500
|
885 |
+
2483, # Tammy Porter F train-clean-360
|
886 |
+
1781, # humanode M train-clean-360
|
887 |
+
2275, # NatalieOram F train-other-500
|
888 |
+
2390, # sdaeley17 M train-clean-360
|
889 |
+
2314, # Cheri Jordan F train-clean-360
|
890 |
+
2413, # Joanne Rochon F train-clean-360
|
891 |
+
1697, # Lonelle Yoder F train-other-500
|
892 |
+
1718, # Caroline Driggs F train-other-500
|
893 |
+
2387, # Brett G. Hirsch M train-other-500
|
894 |
+
2331, # Madam Fickle F train-clean-100
|
895 |
+
1783, # Sarah Crampton F train-clean-360
|
896 |
+
2397, # Rebecca Braunert-Plunkett F train-other-500
|
897 |
+
2357, # William Gavula M train-other-500
|
898 |
+
1670, # dmbrought M train-other-500
|
899 |
+
1987, # Andrew White M train-clean-360
|
900 |
+
1755, # Yvonne Smith F train-clean-360
|
901 |
+
2192, # Sammy Bean M train-other-500
|
902 |
+
1716, # EyeBones F train-clean-360
|
903 |
+
1828, # David Wales M train-clean-100
|
904 |
+
2251, # Wiley Combs M train-clean-360
|
905 |
+
2065, # Muriel F train-clean-360
|
906 |
+
2017, # CaprishaPage F train-other-500
|
907 |
+
1947, # Barbara Edelman F train-other-500
|
908 |
+
1738, # Lois C. Johnson F train-clean-360
|
909 |
+
1791, # David Cummings M train-clean-360
|
910 |
+
2045, # Linda Ciano F train-clean-360
|
911 |
+
2452, # Walt Allan M train-other-500
|
912 |
+
2040, # MJ Franck F train-other-500
|
913 |
+
1831, # Nigel Boydell M train-other-500
|
914 |
+
2371, # Alexander Hatton M train-clean-360
|
915 |
+
1954, # Szindbad M train-other-500
|
916 |
+
1836, # Kendall Ashyby F train-other-500
|
917 |
+
2436, # josembi M train-other-500
|
918 |
+
2383, # Emma Joyce F train-other-500
|
919 |
+
2278, # Jake Woldstad M train-clean-360
|
920 |
+
1741, # anjieliu F train-other-500
|
921 |
+
1857, # Amanda Friday F train-clean-360
|
922 |
+
2370, # gloriousjob M train-clean-360
|
923 |
+
1907, # Snapdragon F train-other-500
|
924 |
+
2225, # nomorejeffs M train-clean-360
|
925 |
+
2439, # KHand F train-clean-360
|
926 |
+
2239, # amaskill M train-other-500
|
927 |
+
2007, # Art Leung F train-clean-360
|
928 |
+
2283, # Tim Cote M train-clean-360
|
929 |
+
1712, # Steve Belleguelle M train-other-500
|
930 |
+
2094, # Meg Cowan F train-clean-360
|
931 |
+
1772, # haggisreflux M train-clean-360
|
932 |
+
2317, # helengraves F train-clean-360
|
933 |
+
2241, # Steven Reynolds M train-clean-360
|
934 |
+
2011, # pekein M train-clean-360
|
935 |
+
1826, # John Hoerr M train-clean-100
|
936 |
+
1695, # Tina Nuzzi F train-clean-360
|
937 |
+
2451, # DeanOBuchanan M train-clean-100
|
938 |
+
1771, # Chelsea S. F train-other-500
|
939 |
+
2441, # Alison Stewart F train-clean-360
|
940 |
+
1745, # Janet F train-clean-360
|
941 |
+
2358, # Betty Perry F train-clean-360
|
942 |
+
2197, # Mike Nelson M train-other-500
|
943 |
+
2014, # Eden Rea-Hedrick F train-other-500
|
944 |
+
1672, # Mike Wajda M train-clean-360
|
945 |
+
2394, # TinaNygard2 F train-clean-100
|
946 |
+
1657, # alwpoe M train-clean-360
|
947 |
+
1728, # Vinnie Tesla M train-clean-360
|
948 |
+
1805, # Vince Dee M train-clean-100
|
949 |
+
2143, # Suebee F train-clean-360
|
950 |
+
2084, # Eberle Thomas M train-other-500
|
951 |
+
2479, # Daisy Flaim F train-clean-100
|
952 |
+
2152, # Kristel Tretter F train-clean-360
|
953 |
+
2268, # Greg Giordano M train-clean-360
|
954 |
+
1839, # James E. Carson M train-clean-360
|
955 |
+
2056, # acloward M train-clean-360
|
956 |
+
1814, # polkadotish F train-other-500
|
957 |
+
2127, # Ron Lockhart M train-clean-100
|
958 |
+
2114, # Larry Beasley M train-clean-360
|
959 |
+
2469, # Kevin Owens M train-clean-100
|
960 |
+
2447, # Deena Rhoads F train-clean-360
|
961 |
+
1724, # Juliana M. F train-clean-360
|
962 |
+
1869, # NastassiaS F train-other-500
|
963 |
+
2209, # Samantha J Gubitz F train-clean-360
|
964 |
+
2171, # Carolyne F train-other-500
|
965 |
+
2403, # Ian Quinlan M train-clean-360
|
966 |
+
2032, # doonaboon M train-other-500
|
967 |
+
2075, # Joy S Grape F train-clean-360
|
968 |
+
]
|
config/latest_selection.txt
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
id name Nikita Andrey Alexey Result OR Result AND Count Yes > 1
|
2 |
+
574 Daniel Shorten Yes No Yes TRUE FALSE TRUE
|
3 |
+
242 J. Hall No No No FALSE FALSE FALSE
|
4 |
+
536 Robert Flach Yes No No TRUE FALSE FALSE
|
5 |
+
82 Andy Minter No No No FALSE FALSE FALSE
|
6 |
+
672 Stuart Bell Yes No No TRUE FALSE FALSE
|
7 |
+
315 Jean Crevier Yes No No TRUE FALSE FALSE
|
8 |
+
628 Bryan Ness Yes No No TRUE FALSE FALSE
|
9 |
+
61 John Greenman No No No FALSE FALSE FALSE
|
10 |
+
649 Scarlett! Yes Yes Yes TRUE TRUE TRUE
|
11 |
+
105 Marian Brown No No No FALSE FALSE FALSE
|
12 |
+
399 entada No No No FALSE FALSE FALSE
|
13 |
+
89 Paula Berinstein No No Yes TRUE FALSE FALSE
|
14 |
+
502 Lee Elliott No No No FALSE FALSE FALSE
|
15 |
+
102 Maureen S. O'Brien Yes Yes No TRUE FALSE TRUE
|
16 |
+
544 Miranda Stinson Yes Yes Yes TRUE TRUE TRUE
|
17 |
+
653 cucciasv Yes Yes Yes TRUE TRUE TRUE
|
18 |
+
465 Leonie Rose No No No FALSE FALSE FALSE
|
19 |
+
96 Kymm Zuckert Yes No No TRUE FALSE FALSE
|
20 |
+
447 Lee Ann Howlett No No No FALSE FALSE FALSE
|
21 |
+
165 Elisabeth Shields Yes No No TRUE FALSE FALSE
|
22 |
+
430 Millbeach No No No FALSE FALSE FALSE
|
23 |
+
214 Scott Splavec No Yes No TRUE FALSE FALSE
|
24 |
+
666 Kelly Dougherty Yes Yes No TRUE FALSE TRUE
|
25 |
+
481 Scott Sherris Yes No Yes TRUE FALSE TRUE
|
26 |
+
463 Chris Hughes No No No FALSE FALSE FALSE
|
27 |
+
273 Andrew Lebrun Yes No No TRUE FALSE FALSE
|
28 |
+
172 Harvey Chinn Yes No No TRUE FALSE FALSE
|
29 |
+
83 Graham Williams No No No FALSE FALSE FALSE
|
30 |
+
523 Michael Loftus No No No FALSE FALSE FALSE
|
31 |
+
38 Kurt Copeland No No No FALSE FALSE FALSE
|
32 |
+
248 fieldsofgold Yes Yes No TRUE FALSE TRUE
|
33 |
+
234 Menno No No No FALSE FALSE FALSE
|
34 |
+
145 Mr. Baby Man Yes No No TRUE FALSE FALSE
|
35 |
+
250 Quentin No No No FALSE FALSE FALSE
|
36 |
+
498 Chris Gladis No No No FALSE FALSE FALSE
|
37 |
+
123 Sean McGaughey Yes Yes No TRUE FALSE TRUE
|
38 |
+
171 Paul Harvey Yes Yes No TRUE FALSE TRUE
|
39 |
+
49 Kristen McQuillin No No No FALSE FALSE FALSE
|
40 |
+
588 Kalynda No No No FALSE FALSE FALSE
|
41 |
+
117 Caitlin Kelly Yes No No TRUE FALSE FALSE
|
42 |
+
657 Shannon No No No FALSE FALSE FALSE
|
43 |
+
275 Zale Schafer (Rose May Chamberlin Memorial Foundat No No No FALSE FALSE FALSE
|
44 |
+
604 Anne-Marie Yes Yes Yes TRUE TRUE TRUE
|
45 |
+
64 Christiane Levesque Yes Yes No TRUE FALSE TRUE
|
46 |
+
685 Nikki Sullivan Yes No Yes TRUE FALSE TRUE
|
47 |
+
355 Lana Taylor No No No FALSE FALSE FALSE
|
48 |
+
185 Kim Braun No No No FALSE FALSE FALSE
|
49 |
+
52 Cori Samuel Yes No Yes TRUE FALSE TRUE
|
50 |
+
218 Joy Chan Yes Yes Yes TRUE TRUE TRUE
|
51 |
+
549 AmyAG No No No FALSE FALSE FALSE
|
52 |
+
617 PJ Yes Yes Yes TRUE TRUE TRUE
|
53 |
+
414 Christabel Yes No Yes TRUE FALSE TRUE
|
54 |
+
382 Kelli Robinson No No No FALSE FALSE FALSE
|
55 |
+
76 ML Cohen No No Yes TRUE FALSE FALSE
|
56 |
+
176 Micah Sheppard Yes No No TRUE FALSE FALSE
|
57 |
+
233 mikenkat No Yes No TRUE FALSE FALSE
|
58 |
+
390 JimmyLogan Yes No No TRUE FALSE FALSE
|
59 |
+
393 Tim Lundeen No No No FALSE FALSE FALSE
|
60 |
+
425 RedToby Yes No Yes TRUE FALSE TRUE
|
61 |
+
398 Sam Fold No No No FALSE FALSE FALSE
|
62 |
+
372 Jim Mullins Yes No No TRUE FALSE FALSE
|
63 |
+
99 Stewart Wills No No No FALSE FALSE FALSE
|
64 |
+
340 Nick Gallant No No No FALSE FALSE FALSE
|
65 |
+
40 JemmaBlythe No No No FALSE FALSE FALSE
|
66 |
+
118 Brenda Dayne Yes Yes Yes TRUE TRUE TRUE
|
67 |
+
640 David A. Stokely Yes No No TRUE FALSE FALSE
|
68 |
+
50 Dan Threetrees Yes No Yes TRUE FALSE TRUE
|
69 |
+
373 Brooks Seveer Yes Yes No TRUE FALSE TRUE
|
70 |
+
124 Steve Karafit No No No FALSE FALSE FALSE
|
71 |
+
314 Carl Vonnoh, III Yes Yes Yes TRUE TRUE TRUE
|
72 |
+
531 Fr. Richard Zeile of Detroit Yes No No TRUE FALSE FALSE
|
73 |
+
383 Mike Roop Yes No No TRUE FALSE FALSE
|
74 |
+
710 Sheila Morton Yes No Yes TRUE FALSE TRUE
|
75 |
+
450 Heather Duncan Yes No Yes TRUE FALSE TRUE
|
76 |
+
645 Micah Yes Yes No TRUE FALSE TRUE
|
77 |
+
517 Madame Tusk Yes Yes No TRUE FALSE TRUE
|
78 |
+
479 Wina Hathaway Yes No No TRUE FALSE FALSE
|
79 |
+
30 Ophelia Darcy No No No FALSE FALSE FALSE
|
80 |
+
220 Tina Tilney No No No FALSE FALSE FALSE
|
81 |
+
63 Linda Wilcox Yes Yes No TRUE FALSE TRUE
|
82 |
+
283 Bethany Simpson Yes No No TRUE FALSE FALSE
|
83 |
+
644 Cynthia Zocca Yes Yes No TRUE FALSE TRUE
|
84 |
+
677 Allyson Hester No No No FALSE FALSE FALSE
|
85 |
+
21 Kelly Bescherer Yes No No TRUE FALSE FALSE
|
86 |
+
552 Mim Ritty No No No FALSE FALSE FALSE
|
87 |
+
80 Fox in the Stars Yes No Yes TRUE FALSE TRUE
|
88 |
+
394 swroot Yes Yes No TRUE FALSE TRUE
|
89 |
+
426 Megan Stemm-Wade Yes No No TRUE FALSE FALSE
|
90 |
+
91 Chris Goringe Yes No Yes TRUE FALSE TRUE
|
91 |
+
108 Kevin McAsh Yes No Yes TRUE FALSE TRUE
|
92 |
+
130 Peter of Buckinghamshire England Yes No No TRUE FALSE FALSE
|
93 |
+
661 James Gladwin Yes Yes Yes TRUE TRUE TRUE
|
94 |
+
216 Dave Ranson No No No FALSE FALSE FALSE
|
95 |
+
164 Ed Good Yes Yes Yes TRUE TRUE TRUE
|
96 |
+
308 Eric Connover Yes Yes Yes TRUE TRUE TRUE
|
97 |
+
569 Arouet Yes No No TRUE FALSE FALSE
|
98 |
+
313 Tim Bulkeley No No No FALSE FALSE FALSE
|
99 |
+
212 Glen Hallstrom No No No FALSE FALSE FALSE
|
100 |
+
15 Chip Yes No No TRUE FALSE FALSE
|
101 |
+
469 Christian Pecaut Yes Yes No TRUE FALSE TRUE
|
102 |
+
294 Diana Kiesners No No No FALSE FALSE FALSE
|
103 |
+
192 Nocturna Yes Yes No TRUE FALSE TRUE
|
104 |
+
73 Claire Goget Yes No No TRUE FALSE FALSE
|
105 |
+
417 Kiki Baessell Yes No Yes TRUE FALSE TRUE
|
106 |
+
636 Matthew Howell Yes No No TRUE FALSE FALSE
|
107 |
+
36 chriss the girl Yes No No TRUE FALSE FALSE
|
108 |
+
668 Jan Baxter Yes Yes Yes TRUE TRUE TRUE
|
109 |
+
403 Igor Teaforay No No No FALSE FALSE FALSE
|
110 |
+
618 Linnea No No No FALSE FALSE FALSE
|
111 |
+
596 Jo Yes No Yes TRUE FALSE TRUE
|
112 |
+
499 Tammy Sanders No No No FALSE FALSE FALSE
|
113 |
+
207 Sage Tyrtle No No No FALSE FALSE FALSE
|
114 |
+
1346 Jeanie No No No FALSE FALSE FALSE
|
115 |
+
1109 Martin Geeson Yes No Yes TRUE FALSE TRUE
|
116 |
+
770 Pete Williams, Pittsburgh, PA Yes No Yes TRUE FALSE TRUE
|
117 |
+
1247 Sarah LuAnn Yes Yes No TRUE FALSE TRUE
|
118 |
+
1526 Mike Harris No No No FALSE FALSE FALSE
|
119 |
+
908 Quentin Manuel Yes No Yes TRUE FALSE TRUE
|
120 |
+
1183 Evelyn Clarke Yes No No TRUE FALSE FALSE
|
121 |
+
1438 Tom Barron Yes No No TRUE FALSE FALSE
|
122 |
+
1022 peac No No No FALSE FALSE FALSE
|
123 |
+
1603 Christine Rodriguez No No No FALSE FALSE FALSE
|
124 |
+
1425 Jonah Cummings No No No FALSE FALSE FALSE
|
125 |
+
731 Priya, India Yes No No TRUE FALSE FALSE
|
126 |
+
782 Alec Daitsman Yes Yes No TRUE FALSE TRUE
|
127 |
+
1090 Termin Dyan Yes No No TRUE FALSE FALSE
|
128 |
+
995 Parrot Yes Yes No TRUE FALSE TRUE
|
129 |
+
923 Jane Greensmith Yes No Yes TRUE FALSE TRUE
|
130 |
+
766 Clive Catterall No No No FALSE FALSE FALSE
|
131 |
+
822 kristiface Yes Yes Yes TRUE TRUE TRUE
|
132 |
+
897 Jan Dawn Doronila Yes No No TRUE FALSE FALSE
|
133 |
+
1579 Linda Velwest No No No FALSE FALSE FALSE
|
134 |
+
964 Utek No No No FALSE FALSE FALSE
|
135 |
+
1414 Preston Scrape Yes No Yes TRUE FALSE TRUE
|
136 |
+
834 Serin No No No FALSE FALSE FALSE
|
137 |
+
1302 davidb Yes No Yes TRUE FALSE TRUE
|
138 |
+
1135 Linda Andrus Yes No Yes TRUE FALSE TRUE
|
139 |
+
1440 P Moscato Yes Yes No TRUE FALSE TRUE
|
140 |
+
870 Barbara Bulkeley No Yes No TRUE FALSE FALSE
|
141 |
+
1256 Graeme Dunlop Yes No No TRUE FALSE FALSE
|
142 |
+
1255 Daniel Paashaus No No No FALSE FALSE FALSE
|
143 |
+
1157 Bev J Stevens No No No FALSE FALSE FALSE
|
144 |
+
934 Darla No No Yes TRUE FALSE FALSE
|
145 |
+
1281 garbageman99 Yes No Yes TRUE FALSE TRUE
|
146 |
+
819 n8evv Yes No No TRUE FALSE FALSE
|
147 |
+
1041 mjbrichant Yes No Yes TRUE FALSE TRUE
|
148 |
+
863 K Hindall No No No FALSE FALSE FALSE
|
149 |
+
1303 kiwafruit No No No FALSE FALSE FALSE
|
150 |
+
1115 Rachel Gatwood No No No FALSE FALSE FALSE
|
151 |
+
1539 Nathan Jordan No No No FALSE FALSE FALSE
|
152 |
+
1428 Gary Dzierlenga No No No FALSE FALSE FALSE
|
153 |
+
1049 Diana Solomon No No No FALSE FALSE FALSE
|
154 |
+
1546 Carrie Heyes No No No FALSE FALSE FALSE
|
155 |
+
1089 Bill Ruhsam No No No FALSE FALSE FALSE
|
156 |
+
1142 Jonathan Burchard Yes No Yes TRUE FALSE TRUE
|
157 |
+
1375 Frank Adams Yes No No TRUE FALSE FALSE
|
158 |
+
881 mpetranech Yes No Yes TRUE FALSE TRUE
|
159 |
+
798 Wyatt No No No FALSE FALSE FALSE
|
160 |
+
1647 Patrick Reinhart No No No FALSE FALSE FALSE
|
161 |
+
1587 Claudia Wilson Yes No No TRUE FALSE FALSE
|
162 |
+
830 musici123 Yes No No TRUE FALSE FALSE
|
163 |
+
1592 jerryB No No No FALSE FALSE FALSE
|
164 |
+
839 Ben Dutton No No No FALSE FALSE FALSE
|
165 |
+
835 Rachel Lintern Yes No Yes TRUE FALSE TRUE
|
166 |
+
1273 gmiteva Yes No No TRUE FALSE FALSE
|
167 |
+
932 Raerity Yes Yes No TRUE FALSE TRUE
|
168 |
+
1108 Paul McCartan No No No FALSE FALSE FALSE
|
169 |
+
732 Tysto Yes Yes No TRUE FALSE TRUE
|
170 |
+
781 Megan Kunkel No No No FALSE FALSE FALSE
|
171 |
+
1555 Andrew Nelson No No No FALSE FALSE FALSE
|
172 |
+
1437 Charles RUHE No No No FALSE FALSE FALSE
|
173 |
+
1402 Angel5 Yes No Yes TRUE FALSE TRUE
|
174 |
+
963 MichelleHarris No No No FALSE FALSE FALSE
|
175 |
+
1181 J. Rebecca Franklin No No No FALSE FALSE FALSE
|
176 |
+
818 Matt Warzel No No No FALSE FALSE FALSE
|
177 |
+
1285 Ric F Yes No No TRUE FALSE FALSE
|
178 |
+
797 Chris Jones Yes No No TRUE FALSE FALSE
|
179 |
+
1505 Rom Maczka Yes No No TRUE FALSE FALSE
|
180 |
+
1214 David Baldwin No No No FALSE FALSE FALSE
|
181 |
+
1636 jessecoy No No No FALSE FALSE FALSE
|
182 |
+
929 Petra Yes Yes No TRUE FALSE TRUE
|
183 |
+
1171 Roberta Carlisle No No No FALSE FALSE FALSE
|
184 |
+
817 texttalker Yes Yes No TRUE FALSE TRUE
|
185 |
+
1433 browneyedgirl32382 Yes Yes Yes TRUE TRUE TRUE
|
186 |
+
1158 StarrDog Yes No No TRUE FALSE FALSE
|
187 |
+
1000 artos No No No FALSE FALSE FALSE
|
188 |
+
848 senshisteph Yes No No TRUE FALSE FALSE
|
189 |
+
1596 Joyce Couch Yes Yes No TRUE FALSE TRUE
|
190 |
+
757 Roger Melin Yes No No TRUE FALSE FALSE
|
191 |
+
1168 Epistomolus Yes No No TRUE FALSE FALSE
|
192 |
+
741 Nick Marsh Yes No No TRUE FALSE FALSE
|
193 |
+
1649 Phineas Redux No No No FALSE FALSE FALSE
|
194 |
+
851 Jennifer Lott Yes Yes Yes TRUE TRUE TRUE
|
195 |
+
808 M. J. Boyle No No No FALSE FALSE FALSE
|
196 |
+
1595 Matthew Reece No No No FALSE FALSE FALSE
|
197 |
+
1370 Savanna Herrold Yes Yes Yes TRUE TRUE TRUE
|
198 |
+
1565 bryan.peterson No Yes No TRUE FALSE FALSE
|
199 |
+
944 Sarafina Suransky Yes No No TRUE FALSE FALSE
|
200 |
+
1268 A. Janelle Risa Yes No No TRUE FALSE FALSE
|
201 |
+
771 Isosceles No No No FALSE FALSE FALSE
|
202 |
+
752 Cat Schirf No No No FALSE FALSE FALSE
|
203 |
+
800 Jack Farrell No No No FALSE FALSE FALSE
|
204 |
+
1005 Beatrice Yes No No TRUE FALSE FALSE
|
205 |
+
1229 RoseA No No No FALSE FALSE FALSE
|
206 |
+
943 Matthew C. Heckel No No No FALSE FALSE FALSE
|
207 |
+
891 anoldfashiongirl Yes No No TRUE FALSE FALSE
|
208 |
+
1226 serenitylee No No No FALSE FALSE FALSE
|
209 |
+
1253 Caroline Shapiro Yes No No TRUE FALSE FALSE
|
210 |
+
1204 Dale A. Bade Yes No Yes TRUE FALSE TRUE
|
211 |
+
1230 Troy Bond Yes Yes No TRUE FALSE TRUE
|
212 |
+
791 David Kleparek Yes Yes No TRUE FALSE TRUE
|
213 |
+
1184 Joseph Couves No No No FALSE FALSE FALSE
|
214 |
+
1001 TriciaG No No No FALSE FALSE FALSE
|
215 |
+
804 FirstKnight Yes Yes No TRUE FALSE TRUE
|
216 |
+
1641 Kirsten Wever No No No FALSE FALSE FALSE
|
217 |
+
1259 Megan Argo No No No FALSE FALSE FALSE
|
218 |
+
1231 Abigail Bartels No No No FALSE FALSE FALSE
|
219 |
+
1410 Zachary Johnson Yes No No TRUE FALSE FALSE
|
220 |
+
1030 Ancient mariner Yes No No TRUE FALSE FALSE
|
221 |
+
1093 Katie Riley No No No FALSE FALSE FALSE
|
222 |
+
1254 Rosie No No No FALSE FALSE FALSE
|
223 |
+
1365 Eric Leach Yes No No TRUE FALSE FALSE
|
224 |
+
831 David Federman No No No FALSE FALSE FALSE
|
225 |
+
1989 Joannemmp No No No FALSE FALSE FALSE
|
226 |
+
1707 David Olson No No No FALSE FALSE FALSE
|
227 |
+
1849 Fred DeBerardinis Yes No No TRUE FALSE FALSE
|
228 |
+
1808 Rebecca King Yes No Yes TRUE FALSE TRUE
|
229 |
+
2292 Arnold No No No FALSE FALSE FALSE
|
230 |
+
2415 Patrick Eaton No No No FALSE FALSE FALSE
|
231 |
+
1656 Sharon Omi Yes Yes No TRUE FALSE TRUE
|
232 |
+
1676 Gargoyle No Yes No TRUE FALSE FALSE
|
233 |
+
1881 Julienne No No Yes TRUE FALSE FALSE
|
234 |
+
2036 T.K. Kirven No No No FALSE FALSE FALSE
|
235 |
+
1761 EliMarieHK Yes No No TRUE FALSE FALSE
|
236 |
+
2115 Pete Milan Yes Yes Yes TRUE TRUE TRUE
|
237 |
+
1803 Susan Hanfield Yes No No TRUE FALSE FALSE
|
238 |
+
1798 C. L. W. Rollins Yes No No TRUE FALSE FALSE
|
239 |
+
1723 Rachel Bossier Yes No No TRUE FALSE FALSE
|
240 |
+
2341 Haili Yes No Yes TRUE FALSE TRUE
|
241 |
+
2468 Erin Schellhase Yes Yes No TRUE FALSE TRUE
|
242 |
+
1725 Ruth Kidson Yes No No TRUE FALSE FALSE
|
243 |
+
2010 Peggy Yes No No TRUE FALSE FALSE
|
244 |
+
1853 Ron Altman Yes No No TRUE FALSE FALSE
|
245 |
+
2359 Doug Reed No No No FALSE FALSE FALSE
|
246 |
+
2422 Jude Somers No No No FALSE FALSE FALSE
|
247 |
+
2234 Coreena No No No FALSE FALSE FALSE
|
248 |
+
2156 C F de Rosset No No Yes TRUE FALSE FALSE
|
249 |
+
2483 Tammy Porter No No No FALSE FALSE FALSE
|
250 |
+
1781 humanode No No No FALSE FALSE FALSE
|
251 |
+
2275 NatalieOram No No No FALSE FALSE FALSE
|
252 |
+
2390 sdaeley17 No No No FALSE FALSE FALSE
|
253 |
+
2314 Cheri Jordan No No No FALSE FALSE FALSE
|
254 |
+
2413 Joanne Rochon No No No FALSE FALSE FALSE
|
255 |
+
1697 Lonelle Yoder No No No FALSE FALSE FALSE
|
256 |
+
1718 Caroline Driggs Yes Yes No TRUE FALSE TRUE
|
257 |
+
2387 Brett G. Hirsch No No No FALSE FALSE FALSE
|
258 |
+
2331 Madam Fickle No No No FALSE FALSE FALSE
|
259 |
+
1783 Sarah Crampton Yes Yes Yes TRUE TRUE TRUE
|
260 |
+
2397 Rebecca Braunert-Plunkett No No No FALSE FALSE FALSE
|
261 |
+
2357 William Gavula No No No FALSE FALSE FALSE
|
262 |
+
1670 dmbrought No No No FALSE FALSE FALSE
|
263 |
+
1987 Andrew White No No No FALSE FALSE FALSE
|
264 |
+
1755 Yvonne Smith Yes Yes No TRUE FALSE TRUE
|
265 |
+
2192 Sammy Bean Yes Yes No TRUE FALSE TRUE
|
266 |
+
1716 EyeBones Yes No No TRUE FALSE FALSE
|
267 |
+
1828 David Wales No No No FALSE FALSE FALSE
|
268 |
+
2251 Wiley Combs No No No FALSE FALSE FALSE
|
269 |
+
2065 Muriel No No No FALSE FALSE FALSE
|
270 |
+
2017 CaprishaPage Yes No No TRUE FALSE FALSE
|
271 |
+
1947 Barbara Edelman No No Yes TRUE FALSE FALSE
|
272 |
+
1738 Lois C. Johnson No No No FALSE FALSE FALSE
|
273 |
+
1791 David Cummings No Yes No TRUE FALSE FALSE
|
274 |
+
2045 Linda Ciano No No No FALSE FALSE FALSE
|
275 |
+
2452 Walt Allan No No Yes TRUE FALSE FALSE
|
276 |
+
2040 MJ Franck No No No FALSE FALSE FALSE
|
277 |
+
1831 Nigel Boydell Yes No No TRUE FALSE FALSE
|
278 |
+
2371 Alexander Hatton Yes Yes No TRUE FALSE TRUE
|
279 |
+
1954 Szindbad No No No FALSE FALSE FALSE
|
280 |
+
1836 Kendall Ashyby Yes Yes No TRUE FALSE TRUE
|
281 |
+
2436 josembi No No No FALSE FALSE FALSE
|
282 |
+
2383 Emma Joyce No No No FALSE FALSE FALSE
|
283 |
+
2278 Jake Woldstad No No No FALSE FALSE FALSE
|
284 |
+
1741 anjieliu Yes Yes No TRUE FALSE TRUE
|
285 |
+
1857 Amanda Friday Yes No No TRUE FALSE FALSE
|
286 |
+
2370 gloriousjob No No No FALSE FALSE FALSE
|
287 |
+
1907 Snapdragon No No No FALSE FALSE FALSE
|
288 |
+
2225 nomorejeffs No Yes No TRUE FALSE FALSE
|
289 |
+
2439 KHand Yes Yes No TRUE FALSE TRUE
|
290 |
+
2239 amaskill No Yes No TRUE FALSE FALSE
|
291 |
+
2007 Art Leung No No No FALSE FALSE FALSE
|
292 |
+
2283 Tim Cote No No No FALSE FALSE FALSE
|
293 |
+
1712 Steve Belleguelle Yes Yes Yes TRUE TRUE TRUE
|
294 |
+
2094 Meg Cowan Yes No No TRUE FALSE FALSE
|
295 |
+
1772 haggisreflux No No No FALSE FALSE FALSE
|
296 |
+
2317 helengraves Yes No No TRUE FALSE FALSE
|
297 |
+
2241 Steven Reynolds No No No FALSE FALSE FALSE
|
298 |
+
2011 pekein Yes No No TRUE FALSE FALSE
|
299 |
+
1826 John Hoerr Yes No No TRUE FALSE FALSE
|
300 |
+
1695 Tina Nuzzi Yes No No TRUE FALSE FALSE
|
301 |
+
2451 DeanOBuchanan Yes No No TRUE FALSE FALSE
|
302 |
+
1771 Chelsea S. Yes No No TRUE FALSE FALSE
|
303 |
+
2441 Alison Stewart No No No FALSE FALSE FALSE
|
304 |
+
1745 Janet No No No FALSE FALSE FALSE
|
305 |
+
2358 Betty Perry No No No FALSE FALSE FALSE
|
306 |
+
2197 Mike Nelson Yes Yes Yes TRUE TRUE TRUE
|
307 |
+
2014 Eden Rea-Hedrick Yes No No TRUE FALSE FALSE
|
308 |
+
1672 Mike Wajda No No No FALSE FALSE FALSE
|
309 |
+
2394 TinaNygard2 No Yes No TRUE FALSE FALSE
|
310 |
+
1657 alwpoe No No No FALSE FALSE FALSE
|
311 |
+
1728 Vinnie Tesla Yes Yes No TRUE FALSE TRUE
|
312 |
+
1805 Vince Dee Yes No Yes TRUE FALSE TRUE
|
313 |
+
2143 Suebee Yes Yes No TRUE FALSE TRUE
|
314 |
+
2084 Eberle Thomas Yes No Yes TRUE FALSE TRUE
|
315 |
+
2479 Daisy Flaim No No No FALSE FALSE FALSE
|
316 |
+
2152 Kristel Tretter No No No FALSE FALSE FALSE
|
317 |
+
2268 Greg Giordano No No No FALSE FALSE FALSE
|
318 |
+
1839 James E. Carson No No No FALSE FALSE FALSE
|
319 |
+
2056 acloward Yes Yes No TRUE FALSE TRUE
|
320 |
+
1814 polkadotish No No No FALSE FALSE FALSE
|
321 |
+
2127 Ron Lockhart No No No FALSE FALSE FALSE
|
322 |
+
2114 Larry Beasley No Yes Yes TRUE FALSE TRUE
|
323 |
+
2469 Kevin Owens Yes No No TRUE FALSE FALSE
|
324 |
+
2447 Deena Rhoads Yes Yes No TRUE FALSE TRUE
|
325 |
+
1724 Juliana M. Yes No No TRUE FALSE FALSE
|
326 |
+
1869 NastassiaS Yes Yes Yes TRUE TRUE TRUE
|
327 |
+
2209 Samantha J Gubitz Yes Yes Yes TRUE TRUE TRUE
|
328 |
+
2171 Carolyne No Yes No TRUE FALSE FALSE
|
329 |
+
2403 Ian Quinlan Yes No No TRUE FALSE FALSE
|
330 |
+
2032 doonaboon Yes No No TRUE FALSE FALSE
|
331 |
+
x Joy S Grape No No No FALSE FALSE FALSE
|
config/phone2idx.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<mask>": 1,
|
3 |
+
"<pad>": 0,
|
4 |
+
"<unk>": 2,
|
5 |
+
"[COMMA]": 17,
|
6 |
+
"[EXCLAMATION MARK]": 50,
|
7 |
+
"[FULL STOP]": 30,
|
8 |
+
"[QUESTION MARK]": 54,
|
9 |
+
"[SEMICOLON]": 56,
|
10 |
+
"[SILENCE]": 3,
|
11 |
+
"a\u026a": 26,
|
12 |
+
"a\u028a": 46,
|
13 |
+
"b": 21,
|
14 |
+
"d": 19,
|
15 |
+
"d\u0292": 42,
|
16 |
+
"e\u026a": 4,
|
17 |
+
"f": 27,
|
18 |
+
"h": 38,
|
19 |
+
"i": 8,
|
20 |
+
"j": 31,
|
21 |
+
"k": 23,
|
22 |
+
"l": 22,
|
23 |
+
"m": 10,
|
24 |
+
"n": 15,
|
25 |
+
"o\u028a": 32,
|
26 |
+
"p": 11,
|
27 |
+
"s": 28,
|
28 |
+
"t": 13,
|
29 |
+
"t\u0283": 43,
|
30 |
+
"u": 24,
|
31 |
+
"v": 5,
|
32 |
+
"w": 29,
|
33 |
+
"z": 20,
|
34 |
+
"\u00e6": 18,
|
35 |
+
"\u00f0": 34,
|
36 |
+
"\u014b": 36,
|
37 |
+
"\u0251": 39,
|
38 |
+
"\u0254": 12,
|
39 |
+
"\u0254\u026a": 16,
|
40 |
+
"\u025b": 6,
|
41 |
+
"\u025c\u02de": 37,
|
42 |
+
"\u0261": 33,
|
43 |
+
"\u026a": 9,
|
44 |
+
"\u0279": 7,
|
45 |
+
"\u0283": 35,
|
46 |
+
"\u028a": 49,
|
47 |
+
"\u028c": 14,
|
48 |
+
"\u0292": 25,
|
49 |
+
"\u02cca\u026a": 52,
|
50 |
+
"\u02cca\u028a": 60,
|
51 |
+
"\u02cce\u026a": 58,
|
52 |
+
"\u02cci": 44,
|
53 |
+
"\u02cco\u028a": 45,
|
54 |
+
"\u02ccu": 51,
|
55 |
+
"\u02cc\u00e6": 59,
|
56 |
+
"\u02cc\u0251": 61,
|
57 |
+
"\u02cc\u0254": 57,
|
58 |
+
"\u02cc\u0254\u026a": 62,
|
59 |
+
"\u02cc\u025b": 53,
|
60 |
+
"\u02cc\u025c\u02de": 47,
|
61 |
+
"\u02cc\u026a": 40,
|
62 |
+
"\u02cc\u028a": 48,
|
63 |
+
"\u02cc\u028c": 55,
|
64 |
+
"\u03b8": 41
|
65 |
+
}
|
config/speaker2idx.json
ADDED
@@ -0,0 +1,2442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"100": 1017,
|
3 |
+
"1006": 1635,
|
4 |
+
"101": 718,
|
5 |
+
"1012": 706,
|
6 |
+
"1018": 688,
|
7 |
+
"102": 2191,
|
8 |
+
"1025": 588,
|
9 |
+
"1027": 591,
|
10 |
+
"1028": 291,
|
11 |
+
"103": 15,
|
12 |
+
"1034": 182,
|
13 |
+
"104": 1979,
|
14 |
+
"1040": 195,
|
15 |
+
"1046": 459,
|
16 |
+
"1049": 2264,
|
17 |
+
"1050": 819,
|
18 |
+
"1051": 2174,
|
19 |
+
"1052": 374,
|
20 |
+
"1053": 878,
|
21 |
+
"1054": 864,
|
22 |
+
"1060": 1001,
|
23 |
+
"1061": 576,
|
24 |
+
"1065": 1420,
|
25 |
+
"1066": 366,
|
26 |
+
"1069": 210,
|
27 |
+
"107": 1333,
|
28 |
+
"1079": 381,
|
29 |
+
"1081": 190,
|
30 |
+
"1084": 1514,
|
31 |
+
"1085": 1288,
|
32 |
+
"1088": 107,
|
33 |
+
"1089": 2383,
|
34 |
+
"1092": 1555,
|
35 |
+
"1093": 480,
|
36 |
+
"1094": 1588,
|
37 |
+
"1096": 1339,
|
38 |
+
"1097": 1311,
|
39 |
+
"1098": 92,
|
40 |
+
"110": 1506,
|
41 |
+
"1100": 1080,
|
42 |
+
"1107": 1355,
|
43 |
+
"111": 1659,
|
44 |
+
"1110": 1540,
|
45 |
+
"1112": 489,
|
46 |
+
"1116": 54,
|
47 |
+
"112": 560,
|
48 |
+
"1121": 755,
|
49 |
+
"1124": 2160,
|
50 |
+
"1132": 1837,
|
51 |
+
"114": 1044,
|
52 |
+
"115": 1088,
|
53 |
+
"1152": 1417,
|
54 |
+
"1154": 1936,
|
55 |
+
"116": 2354,
|
56 |
+
"1160": 252,
|
57 |
+
"1161": 1405,
|
58 |
+
"1165": 694,
|
59 |
+
"1166": 2026,
|
60 |
+
"1168": 1516,
|
61 |
+
"1171": 1940,
|
62 |
+
"1179": 1547,
|
63 |
+
"118": 235,
|
64 |
+
"1182": 621,
|
65 |
+
"1183": 188,
|
66 |
+
"1184": 2107,
|
67 |
+
"1187": 1648,
|
68 |
+
"1188": 2404,
|
69 |
+
"119": 435,
|
70 |
+
"1195": 774,
|
71 |
+
"1200": 1382,
|
72 |
+
"121": 2384,
|
73 |
+
"1212": 1018,
|
74 |
+
"122": 490,
|
75 |
+
"1221": 2401,
|
76 |
+
"1222": 520,
|
77 |
+
"1224": 545,
|
78 |
+
"1225": 2065,
|
79 |
+
"1226": 396,
|
80 |
+
"123": 1319,
|
81 |
+
"1230": 1682,
|
82 |
+
"1235": 212,
|
83 |
+
"1239": 1670,
|
84 |
+
"1241": 991,
|
85 |
+
"1246": 135,
|
86 |
+
"125": 97,
|
87 |
+
"1250": 2037,
|
88 |
+
"1252": 1488,
|
89 |
+
"1255": 2342,
|
90 |
+
"1258": 2222,
|
91 |
+
"1259": 286,
|
92 |
+
"126": 712,
|
93 |
+
"1260": 1808,
|
94 |
+
"1261": 2275,
|
95 |
+
"1263": 3,
|
96 |
+
"1264": 1035,
|
97 |
+
"1265": 660,
|
98 |
+
"1266": 1235,
|
99 |
+
"127": 1182,
|
100 |
+
"1271": 812,
|
101 |
+
"1272": 2324,
|
102 |
+
"1274": 1287,
|
103 |
+
"128": 1343,
|
104 |
+
"1280": 1774,
|
105 |
+
"1283": 658,
|
106 |
+
"1284": 2377,
|
107 |
+
"1289": 1099,
|
108 |
+
"1290": 1033,
|
109 |
+
"1291": 2002,
|
110 |
+
"1296": 699,
|
111 |
+
"1298": 1560,
|
112 |
+
"1311": 734,
|
113 |
+
"1313": 323,
|
114 |
+
"1316": 1113,
|
115 |
+
"1320": 2390,
|
116 |
+
"1322": 890,
|
117 |
+
"1323": 365,
|
118 |
+
"133": 2129,
|
119 |
+
"1331": 1811,
|
120 |
+
"1334": 49,
|
121 |
+
"1335": 427,
|
122 |
+
"1336": 818,
|
123 |
+
"1337": 865,
|
124 |
+
"1341": 2082,
|
125 |
+
"1342": 1232,
|
126 |
+
"1343": 811,
|
127 |
+
"1347": 2070,
|
128 |
+
"1348": 849,
|
129 |
+
"1349": 501,
|
130 |
+
"1353": 1361,
|
131 |
+
"1355": 242,
|
132 |
+
"1363": 147,
|
133 |
+
"1365": 722,
|
134 |
+
"1367": 1415,
|
135 |
+
"1370": 1384,
|
136 |
+
"1373": 2018,
|
137 |
+
"1374": 2009,
|
138 |
+
"1379": 728,
|
139 |
+
"1382": 1066,
|
140 |
+
"1383": 1032,
|
141 |
+
"1384": 1300,
|
142 |
+
"1387": 580,
|
143 |
+
"1390": 1056,
|
144 |
+
"1392": 391,
|
145 |
+
"14": 1090,
|
146 |
+
"1401": 967,
|
147 |
+
"1403": 1735,
|
148 |
+
"1413": 894,
|
149 |
+
"1414": 1806,
|
150 |
+
"1417": 565,
|
151 |
+
"1421": 1545,
|
152 |
+
"1422": 461,
|
153 |
+
"1425": 806,
|
154 |
+
"1430": 1718,
|
155 |
+
"1444": 1934,
|
156 |
+
"1445": 413,
|
157 |
+
"1446": 907,
|
158 |
+
"1447": 130,
|
159 |
+
"1448": 333,
|
160 |
+
"1455": 216,
|
161 |
+
"1460": 715,
|
162 |
+
"1462": 2298,
|
163 |
+
"1463": 462,
|
164 |
+
"1469": 1144,
|
165 |
+
"147": 2180,
|
166 |
+
"1472": 1045,
|
167 |
+
"1473": 962,
|
168 |
+
"1474": 1308,
|
169 |
+
"1482": 1089,
|
170 |
+
"1485": 1589,
|
171 |
+
"1487": 277,
|
172 |
+
"1492": 1981,
|
173 |
+
"1494": 1641,
|
174 |
+
"1495": 1403,
|
175 |
+
"1498": 340,
|
176 |
+
"150": 207,
|
177 |
+
"1502": 56,
|
178 |
+
"1505": 1145,
|
179 |
+
"1509": 248,
|
180 |
+
"1513": 371,
|
181 |
+
"152": 1457,
|
182 |
+
"153": 1702,
|
183 |
+
"1535": 502,
|
184 |
+
"1536": 437,
|
185 |
+
"154": 402,
|
186 |
+
"1544": 2039,
|
187 |
+
"1545": 1483,
|
188 |
+
"1547": 604,
|
189 |
+
"1552": 493,
|
190 |
+
"1553": 167,
|
191 |
+
"1556": 736,
|
192 |
+
"1559": 2027,
|
193 |
+
"1563": 2050,
|
194 |
+
"1564": 1503,
|
195 |
+
"1566": 1826,
|
196 |
+
"1569": 1796,
|
197 |
+
"157": 899,
|
198 |
+
"1571": 825,
|
199 |
+
"1572": 1884,
|
200 |
+
"1578": 36,
|
201 |
+
"1579": 1360,
|
202 |
+
"1580": 2387,
|
203 |
+
"1585": 2363,
|
204 |
+
"159": 777,
|
205 |
+
"1593": 1631,
|
206 |
+
"1594": 52,
|
207 |
+
"1595": 1472,
|
208 |
+
"16": 534,
|
209 |
+
"1601": 1900,
|
210 |
+
"1603": 650,
|
211 |
+
"1607": 814,
|
212 |
+
"161": 1911,
|
213 |
+
"1614": 1777,
|
214 |
+
"1618": 1351,
|
215 |
+
"1621": 2086,
|
216 |
+
"1624": 38,
|
217 |
+
"1629": 980,
|
218 |
+
"163": 106,
|
219 |
+
"1630": 2365,
|
220 |
+
"1633": 1400,
|
221 |
+
"1636": 1548,
|
222 |
+
"1638": 884,
|
223 |
+
"1639": 341,
|
224 |
+
"1641": 257,
|
225 |
+
"1643": 1799,
|
226 |
+
"1645": 696,
|
227 |
+
"1646": 1667,
|
228 |
+
"1647": 1272,
|
229 |
+
"1648": 1684,
|
230 |
+
"1649": 929,
|
231 |
+
"1650": 2367,
|
232 |
+
"1651": 2341,
|
233 |
+
"1653": 1766,
|
234 |
+
"166": 1094,
|
235 |
+
"1664": 2153,
|
236 |
+
"1665": 1734,
|
237 |
+
"1668": 704,
|
238 |
+
"167": 2038,
|
239 |
+
"1673": 2313,
|
240 |
+
"1674": 1281,
|
241 |
+
"1678": 1125,
|
242 |
+
"1679": 1170,
|
243 |
+
"168": 1452,
|
244 |
+
"1680": 1717,
|
245 |
+
"1681": 1991,
|
246 |
+
"1685": 1204,
|
247 |
+
"1686": 2362,
|
248 |
+
"1688": 2432,
|
249 |
+
"1690": 1791,
|
250 |
+
"1691": 1871,
|
251 |
+
"1693": 1315,
|
252 |
+
"1695": 1908,
|
253 |
+
"1696": 1743,
|
254 |
+
"1699": 1500,
|
255 |
+
"17": 934,
|
256 |
+
"1701": 2345,
|
257 |
+
"1704": 1963,
|
258 |
+
"1705": 581,
|
259 |
+
"1708": 1499,
|
260 |
+
"1710": 2214,
|
261 |
+
"1714": 1539,
|
262 |
+
"1717": 1662,
|
263 |
+
"1721": 1328,
|
264 |
+
"1724": 933,
|
265 |
+
"1726": 2146,
|
266 |
+
"173": 1848,
|
267 |
+
"1731": 626,
|
268 |
+
"1733": 1931,
|
269 |
+
"1734": 867,
|
270 |
+
"1736": 1152,
|
271 |
+
"1737": 122,
|
272 |
+
"174": 2316,
|
273 |
+
"1740": 999,
|
274 |
+
"1743": 115,
|
275 |
+
"1746": 1410,
|
276 |
+
"1748": 361,
|
277 |
+
"175": 506,
|
278 |
+
"1750": 1525,
|
279 |
+
"1752": 846,
|
280 |
+
"1754": 529,
|
281 |
+
"1756": 2103,
|
282 |
+
"1757": 1825,
|
283 |
+
"176": 546,
|
284 |
+
"1760": 1285,
|
285 |
+
"1765": 1953,
|
286 |
+
"1767": 2020,
|
287 |
+
"1769": 799,
|
288 |
+
"177": 1926,
|
289 |
+
"1772": 1278,
|
290 |
+
"1773": 1397,
|
291 |
+
"1776": 904,
|
292 |
+
"1777": 563,
|
293 |
+
"1779": 403,
|
294 |
+
"1780": 1151,
|
295 |
+
"1784": 1517,
|
296 |
+
"1789": 445,
|
297 |
+
"1795": 1523,
|
298 |
+
"1801": 383,
|
299 |
+
"1804": 2063,
|
300 |
+
"1806": 926,
|
301 |
+
"1809": 1879,
|
302 |
+
"1811": 835,
|
303 |
+
"1813": 2220,
|
304 |
+
"1815": 1370,
|
305 |
+
"1819": 1439,
|
306 |
+
"1825": 264,
|
307 |
+
"1826": 772,
|
308 |
+
"1827": 1060,
|
309 |
+
"1828": 1805,
|
310 |
+
"1841": 81,
|
311 |
+
"1844": 1567,
|
312 |
+
"1845": 1110,
|
313 |
+
"1846": 1293,
|
314 |
+
"1849": 349,
|
315 |
+
"1851": 447,
|
316 |
+
"1859": 398,
|
317 |
+
"1863": 1496,
|
318 |
+
"1867": 78,
|
319 |
+
"1868": 1910,
|
320 |
+
"1870": 2029,
|
321 |
+
"1874": 372,
|
322 |
+
"1878": 1642,
|
323 |
+
"188": 679,
|
324 |
+
"1885": 615,
|
325 |
+
"1898": 153,
|
326 |
+
"19": 200,
|
327 |
+
"1901": 1873,
|
328 |
+
"1903": 465,
|
329 |
+
"1913": 515,
|
330 |
+
"1914": 1059,
|
331 |
+
"1919": 2314,
|
332 |
+
"192": 1013,
|
333 |
+
"1920": 2261,
|
334 |
+
"1923": 633,
|
335 |
+
"1924": 2081,
|
336 |
+
"1926": 133,
|
337 |
+
"1931": 1758,
|
338 |
+
"1933": 882,
|
339 |
+
"1938": 1990,
|
340 |
+
"1943": 412,
|
341 |
+
"1944": 375,
|
342 |
+
"1958": 913,
|
343 |
+
"196": 39,
|
344 |
+
"1961": 961,
|
345 |
+
"1963": 154,
|
346 |
+
"1968": 1449,
|
347 |
+
"1970": 20,
|
348 |
+
"1974": 289,
|
349 |
+
"1977": 2132,
|
350 |
+
"198": 65,
|
351 |
+
"1985": 2112,
|
352 |
+
"1987": 516,
|
353 |
+
"1988": 2325,
|
354 |
+
"1989": 1888,
|
355 |
+
"199": 1291,
|
356 |
+
"1992": 105,
|
357 |
+
"1993": 2320,
|
358 |
+
"1995": 2380,
|
359 |
+
"1998": 2434,
|
360 |
+
"20": 2145,
|
361 |
+
"200": 128,
|
362 |
+
"2001": 1719,
|
363 |
+
"2002": 120,
|
364 |
+
"2003": 1869,
|
365 |
+
"2004": 703,
|
366 |
+
"2007": 143,
|
367 |
+
"201": 124,
|
368 |
+
"2010": 671,
|
369 |
+
"2012": 321,
|
370 |
+
"2013": 1299,
|
371 |
+
"202": 1336,
|
372 |
+
"2021": 1153,
|
373 |
+
"2026": 2116,
|
374 |
+
"203": 555,
|
375 |
+
"2033": 2410,
|
376 |
+
"2035": 2335,
|
377 |
+
"204": 629,
|
378 |
+
"2042": 1951,
|
379 |
+
"2045": 1137,
|
380 |
+
"2046": 1528,
|
381 |
+
"205": 473,
|
382 |
+
"2050": 1264,
|
383 |
+
"2051": 1703,
|
384 |
+
"2053": 863,
|
385 |
+
"2056": 1046,
|
386 |
+
"2060": 355,
|
387 |
+
"2061": 397,
|
388 |
+
"2062": 1592,
|
389 |
+
"2063": 1691,
|
390 |
+
"2067": 1737,
|
391 |
+
"2068": 1373,
|
392 |
+
"207": 306,
|
393 |
+
"2074": 1079,
|
394 |
+
"2078": 2322,
|
395 |
+
"208": 550,
|
396 |
+
"2086": 2301,
|
397 |
+
"2089": 1894,
|
398 |
+
"209": 460,
|
399 |
+
"2090": 1380,
|
400 |
+
"2092": 67,
|
401 |
+
"2093": 1116,
|
402 |
+
"2096": 1332,
|
403 |
+
"210": 376,
|
404 |
+
"2100": 1950,
|
405 |
+
"2104": 1526,
|
406 |
+
"211": 234,
|
407 |
+
"2110": 702,
|
408 |
+
"2113": 441,
|
409 |
+
"2122": 1292,
|
410 |
+
"2127": 564,
|
411 |
+
"2133": 1507,
|
412 |
+
"2136": 70,
|
413 |
+
"2137": 946,
|
414 |
+
"2140": 1185,
|
415 |
+
"2143": 1720,
|
416 |
+
"2146": 930,
|
417 |
+
"2148": 2167,
|
418 |
+
"2149": 761,
|
419 |
+
"215": 1664,
|
420 |
+
"2152": 1842,
|
421 |
+
"2156": 385,
|
422 |
+
"2159": 151,
|
423 |
+
"216": 950,
|
424 |
+
"2162": 1023,
|
425 |
+
"2167": 610,
|
426 |
+
"217": 969,
|
427 |
+
"218": 1818,
|
428 |
+
"2182": 136,
|
429 |
+
"2185": 1577,
|
430 |
+
"2194": 820,
|
431 |
+
"2195": 1852,
|
432 |
+
"2196": 44,
|
433 |
+
"2198": 1176,
|
434 |
+
"22": 1036,
|
435 |
+
"2201": 853,
|
436 |
+
"2204": 1130,
|
437 |
+
"2208": 2157,
|
438 |
+
"2229": 271,
|
439 |
+
"2230": 451,
|
440 |
+
"2234": 1882,
|
441 |
+
"2237": 1663,
|
442 |
+
"2238": 478,
|
443 |
+
"224": 386,
|
444 |
+
"2240": 282,
|
445 |
+
"2246": 1501,
|
446 |
+
"225": 549,
|
447 |
+
"2254": 318,
|
448 |
+
"2256": 840,
|
449 |
+
"226": 171,
|
450 |
+
"2262": 1316,
|
451 |
+
"2269": 443,
|
452 |
+
"227": 487,
|
453 |
+
"2270": 1222,
|
454 |
+
"2272": 247,
|
455 |
+
"2273": 1167,
|
456 |
+
"2275": 1922,
|
457 |
+
"2276": 1263,
|
458 |
+
"2277": 2318,
|
459 |
+
"2279": 2204,
|
460 |
+
"228": 1974,
|
461 |
+
"2284": 1344,
|
462 |
+
"2285": 931,
|
463 |
+
"2288": 2139,
|
464 |
+
"2289": 99,
|
465 |
+
"229": 95,
|
466 |
+
"2292": 2236,
|
467 |
+
"2294": 775,
|
468 |
+
"2297": 1678,
|
469 |
+
"2299": 690,
|
470 |
+
"2300": 2371,
|
471 |
+
"2301": 2102,
|
472 |
+
"2309": 2195,
|
473 |
+
"231": 698,
|
474 |
+
"2312": 1538,
|
475 |
+
"2319": 705,
|
476 |
+
"233": 232,
|
477 |
+
"2339": 1581,
|
478 |
+
"2341": 1909,
|
479 |
+
"2346": 2055,
|
480 |
+
"2351": 2189,
|
481 |
+
"2356": 2284,
|
482 |
+
"2361": 1537,
|
483 |
+
"2364": 296,
|
484 |
+
"2368": 255,
|
485 |
+
"237": 2394,
|
486 |
+
"2374": 2005,
|
487 |
+
"238": 2295,
|
488 |
+
"2380": 1794,
|
489 |
+
"2384": 90,
|
490 |
+
"2388": 940,
|
491 |
+
"2391": 184,
|
492 |
+
"2393": 611,
|
493 |
+
"2397": 841,
|
494 |
+
"240": 648,
|
495 |
+
"2401": 787,
|
496 |
+
"2404": 627,
|
497 |
+
"2405": 1513,
|
498 |
+
"2407": 1983,
|
499 |
+
"2411": 914,
|
500 |
+
"2412": 2329,
|
501 |
+
"2414": 2435,
|
502 |
+
"2416": 42,
|
503 |
+
"242": 614,
|
504 |
+
"2427": 876,
|
505 |
+
"2428": 2332,
|
506 |
+
"243": 1455,
|
507 |
+
"2436": 215,
|
508 |
+
"2437": 1699,
|
509 |
+
"2445": 2229,
|
510 |
+
"2448": 1622,
|
511 |
+
"245": 1815,
|
512 |
+
"246": 1004,
|
513 |
+
"2473": 888,
|
514 |
+
"248": 61,
|
515 |
+
"2481": 975,
|
516 |
+
"2485": 1470,
|
517 |
+
"2487": 1711,
|
518 |
+
"2488": 1790,
|
519 |
+
"249": 488,
|
520 |
+
"2491": 1729,
|
521 |
+
"2494": 517,
|
522 |
+
"2496": 2289,
|
523 |
+
"2498": 322,
|
524 |
+
"2499": 297,
|
525 |
+
"25": 2098,
|
526 |
+
"250": 214,
|
527 |
+
"2504": 2017,
|
528 |
+
"2506": 2338,
|
529 |
+
"251": 2300,
|
530 |
+
"2512": 419,
|
531 |
+
"2514": 246,
|
532 |
+
"2517": 721,
|
533 |
+
"2518": 2,
|
534 |
+
"252": 1421,
|
535 |
+
"2522": 2034,
|
536 |
+
"2526": 2054,
|
537 |
+
"253": 1377,
|
538 |
+
"2531": 431,
|
539 |
+
"2532": 997,
|
540 |
+
"254": 244,
|
541 |
+
"2541": 2119,
|
542 |
+
"2544": 2022,
|
543 |
+
"2545": 1716,
|
544 |
+
"255": 1236,
|
545 |
+
"2552": 1409,
|
546 |
+
"2553": 1792,
|
547 |
+
"2562": 938,
|
548 |
+
"2568": 1585,
|
549 |
+
"2570": 693,
|
550 |
+
"2573": 628,
|
551 |
+
"2574": 1363,
|
552 |
+
"2577": 622,
|
553 |
+
"258": 334,
|
554 |
+
"2581": 1050,
|
555 |
+
"2582": 1133,
|
556 |
+
"2587": 1143,
|
557 |
+
"2588": 1753,
|
558 |
+
"2589": 836,
|
559 |
+
"2592": 911,
|
560 |
+
"2598": 251,
|
561 |
+
"26": 66,
|
562 |
+
"260": 2369,
|
563 |
+
"2606": 2003,
|
564 |
+
"2607": 1210,
|
565 |
+
"2609": 2437,
|
566 |
+
"2618": 1078,
|
567 |
+
"2624": 1372,
|
568 |
+
"2628": 345,
|
569 |
+
"263": 1732,
|
570 |
+
"2638": 434,
|
571 |
+
"264": 2105,
|
572 |
+
"265": 2059,
|
573 |
+
"2652": 307,
|
574 |
+
"2654": 317,
|
575 |
+
"2660": 1690,
|
576 |
+
"2671": 2109,
|
577 |
+
"2673": 476,
|
578 |
+
"2674": 384,
|
579 |
+
"2676": 1401,
|
580 |
+
"2688": 996,
|
581 |
+
"2691": 76,
|
582 |
+
"2694": 1265,
|
583 |
+
"27": 155,
|
584 |
+
"2709": 1009,
|
585 |
+
"2712": 1645,
|
586 |
+
"272": 763,
|
587 |
+
"2724": 1654,
|
588 |
+
"273": 1462,
|
589 |
+
"2730": 2232,
|
590 |
+
"2733": 2200,
|
591 |
+
"2735": 2183,
|
592 |
+
"274": 508,
|
593 |
+
"2740": 2260,
|
594 |
+
"2741": 596,
|
595 |
+
"2748": 2252,
|
596 |
+
"2751": 1051,
|
597 |
+
"2754": 1741,
|
598 |
+
"2758": 881,
|
599 |
+
"2762": 2130,
|
600 |
+
"2764": 104,
|
601 |
+
"2769": 766,
|
602 |
+
"277": 1787,
|
603 |
+
"2774": 1070,
|
604 |
+
"2775": 409,
|
605 |
+
"278": 639,
|
606 |
+
"2785": 793,
|
607 |
+
"2787": 665,
|
608 |
+
"2790": 901,
|
609 |
+
"28": 503,
|
610 |
+
"2803": 2321,
|
611 |
+
"2812": 429,
|
612 |
+
"2817": 103,
|
613 |
+
"2823": 1031,
|
614 |
+
"2825": 1921,
|
615 |
+
"2827": 758,
|
616 |
+
"283": 1639,
|
617 |
+
"2830": 2405,
|
618 |
+
"2834": 1201,
|
619 |
+
"2836": 10,
|
620 |
+
"2843": 233,
|
621 |
+
"2853": 309,
|
622 |
+
"2854": 1722,
|
623 |
+
"288": 912,
|
624 |
+
"2882": 778,
|
625 |
+
"289": 12,
|
626 |
+
"2893": 86,
|
627 |
+
"2895": 1156,
|
628 |
+
"29": 2006,
|
629 |
+
"2902": 2296,
|
630 |
+
"2909": 1913,
|
631 |
+
"2910": 30,
|
632 |
+
"2911": 239,
|
633 |
+
"2919": 1608,
|
634 |
+
"2920": 582,
|
635 |
+
"2925": 1367,
|
636 |
+
"2929": 1122,
|
637 |
+
"2930": 1846,
|
638 |
+
"294": 1224,
|
639 |
+
"2943": 1630,
|
640 |
+
"2946": 2242,
|
641 |
+
"2952": 198,
|
642 |
+
"296": 916,
|
643 |
+
"2960": 353,
|
644 |
+
"2961": 2381,
|
645 |
+
"2967": 1390,
|
646 |
+
"2971": 253,
|
647 |
+
"2975": 2288,
|
648 |
+
"2979": 1851,
|
649 |
+
"298": 101,
|
650 |
+
"2985": 2101,
|
651 |
+
"2988": 1595,
|
652 |
+
"2989": 114,
|
653 |
+
"2990": 1948,
|
654 |
+
"2992": 707,
|
655 |
+
"2997": 1456,
|
656 |
+
"2998": 2048,
|
657 |
+
"2999": 740,
|
658 |
+
"30": 426,
|
659 |
+
"3000": 2305,
|
660 |
+
"3001": 1042,
|
661 |
+
"3003": 477,
|
662 |
+
"3005": 2429,
|
663 |
+
"3006": 1668,
|
664 |
+
"3008": 771,
|
665 |
+
"3009": 857,
|
666 |
+
"302": 209,
|
667 |
+
"3020": 2270,
|
668 |
+
"3021": 2172,
|
669 |
+
"3025": 654,
|
670 |
+
"303": 513,
|
671 |
+
"3032": 891,
|
672 |
+
"3033": 1723,
|
673 |
+
"3045": 1864,
|
674 |
+
"3046": 692,
|
675 |
+
"3053": 1190,
|
676 |
+
"3054": 1280,
|
677 |
+
"3060": 1554,
|
678 |
+
"3063": 1274,
|
679 |
+
"307": 134,
|
680 |
+
"3070": 1041,
|
681 |
+
"3072": 1016,
|
682 |
+
"3079": 1985,
|
683 |
+
"3080": 2423,
|
684 |
+
"3081": 2299,
|
685 |
+
"3082": 482,
|
686 |
+
"3083": 1103,
|
687 |
+
"3088": 1930,
|
688 |
+
"3090": 1441,
|
689 |
+
"3094": 292,
|
690 |
+
"3097": 1971,
|
691 |
+
"3098": 1801,
|
692 |
+
"31": 1168,
|
693 |
+
"310": 1524,
|
694 |
+
"3100": 1977,
|
695 |
+
"3105": 414,
|
696 |
+
"3109": 1282,
|
697 |
+
"311": 74,
|
698 |
+
"3112": 71,
|
699 |
+
"3114": 261,
|
700 |
+
"3118": 484,
|
701 |
+
"3119": 573,
|
702 |
+
"3125": 1958,
|
703 |
+
"313": 1165,
|
704 |
+
"3132": 2030,
|
705 |
+
"3135": 2274,
|
706 |
+
"3137": 1640,
|
707 |
+
"3138": 2033,
|
708 |
+
"3142": 1219,
|
709 |
+
"3143": 2056,
|
710 |
+
"3144": 2087,
|
711 |
+
"3148": 1789,
|
712 |
+
"3157": 764,
|
713 |
+
"3168": 8,
|
714 |
+
"317": 2278,
|
715 |
+
"3170": 2311,
|
716 |
+
"3171": 1025,
|
717 |
+
"3172": 2249,
|
718 |
+
"3179": 1875,
|
719 |
+
"318": 1054,
|
720 |
+
"3180": 592,
|
721 |
+
"3185": 951,
|
722 |
+
"3187": 1112,
|
723 |
+
"319": 2123,
|
724 |
+
"3192": 1325,
|
725 |
+
"3196": 1141,
|
726 |
+
"32": 236,
|
727 |
+
"3214": 173,
|
728 |
+
"3215": 657,
|
729 |
+
"322": 32,
|
730 |
+
"3221": 943,
|
731 |
+
"3224": 360,
|
732 |
+
"3227": 2206,
|
733 |
+
"3228": 956,
|
734 |
+
"323": 877,
|
735 |
+
"3230": 497,
|
736 |
+
"3235": 144,
|
737 |
+
"3238": 2150,
|
738 |
+
"3240": 196,
|
739 |
+
"3242": 157,
|
740 |
+
"3244": 2186,
|
741 |
+
"3245": 1189,
|
742 |
+
"3257": 1478,
|
743 |
+
"3258": 324,
|
744 |
+
"3259": 64,
|
745 |
+
"3261": 1426,
|
746 |
+
"3268": 1681,
|
747 |
+
"3271": 2053,
|
748 |
+
"3272": 1378,
|
749 |
+
"3274": 708,
|
750 |
+
"3285": 2067,
|
751 |
+
"3288": 2162,
|
752 |
+
"3289": 710,
|
753 |
+
"329": 1105,
|
754 |
+
"3290": 2043,
|
755 |
+
"3294": 1029,
|
756 |
+
"3307": 354,
|
757 |
+
"331": 2007,
|
758 |
+
"3314": 1653,
|
759 |
+
"3318": 1923,
|
760 |
+
"3319": 1530,
|
761 |
+
"332": 192,
|
762 |
+
"3328": 928,
|
763 |
+
"3330": 880,
|
764 |
+
"3331": 2421,
|
765 |
+
"3334": 1952,
|
766 |
+
"3340": 663,
|
767 |
+
"3346": 1563,
|
768 |
+
"335": 606,
|
769 |
+
"3356": 2092,
|
770 |
+
"3357": 666,
|
771 |
+
"336": 2135,
|
772 |
+
"3361": 467,
|
773 |
+
"3368": 870,
|
774 |
+
"337": 574,
|
775 |
+
"3370": 695,
|
776 |
+
"3373": 1463,
|
777 |
+
"3374": 75,
|
778 |
+
"3379": 406,
|
779 |
+
"3380": 454,
|
780 |
+
"3381": 1757,
|
781 |
+
"3389": 358,
|
782 |
+
"339": 843,
|
783 |
+
"3394": 1809,
|
784 |
+
"340": 393,
|
785 |
+
"3400": 1998,
|
786 |
+
"3409": 1171,
|
787 |
+
"3411": 1284,
|
788 |
+
"3417": 1180,
|
789 |
+
"3433": 1413,
|
790 |
+
"3436": 93,
|
791 |
+
"3440": 159,
|
792 |
+
"3446": 336,
|
793 |
+
"3448": 587,
|
794 |
+
"345": 408,
|
795 |
+
"3465": 1708,
|
796 |
+
"3467": 1686,
|
797 |
+
"3470": 2169,
|
798 |
+
"3479": 1740,
|
799 |
+
"348": 1600,
|
800 |
+
"3482": 280,
|
801 |
+
"3483": 854,
|
802 |
+
"3486": 223,
|
803 |
+
"3488": 2036,
|
804 |
+
"3490": 326,
|
805 |
+
"3493": 917,
|
806 |
+
"3500": 1419,
|
807 |
+
"3503": 1713,
|
808 |
+
"3513": 430,
|
809 |
+
"3521": 369,
|
810 |
+
"3526": 29,
|
811 |
+
"3528": 2413,
|
812 |
+
"353": 701,
|
813 |
+
"3536": 2297,
|
814 |
+
"3537": 320,
|
815 |
+
"3538": 2424,
|
816 |
+
"3540": 892,
|
817 |
+
"3541": 1479,
|
818 |
+
"3546": 608,
|
819 |
+
"3547": 1194,
|
820 |
+
"3549": 869,
|
821 |
+
"3551": 616,
|
822 |
+
"3553": 1890,
|
823 |
+
"3554": 1468,
|
824 |
+
"3557": 1350,
|
825 |
+
"3559": 1752,
|
826 |
+
"3564": 1223,
|
827 |
+
"3567": 1984,
|
828 |
+
"3570": 2373,
|
829 |
+
"3571": 1629,
|
830 |
+
"3575": 2370,
|
831 |
+
"3576": 2331,
|
832 |
+
"3584": 700,
|
833 |
+
"3587": 1725,
|
834 |
+
"3588": 1804,
|
835 |
+
"359": 982,
|
836 |
+
"3592": 1853,
|
837 |
+
"3595": 2155,
|
838 |
+
"3598": 2207,
|
839 |
+
"36": 1557,
|
840 |
+
"3606": 1982,
|
841 |
+
"3607": 73,
|
842 |
+
"3615": 848,
|
843 |
+
"3618": 1329,
|
844 |
+
"362": 267,
|
845 |
+
"3630": 494,
|
846 |
+
"3638": 714,
|
847 |
+
"3641": 1392,
|
848 |
+
"3645": 536,
|
849 |
+
"3647": 2110,
|
850 |
+
"365": 1533,
|
851 |
+
"3650": 1249,
|
852 |
+
"3654": 404,
|
853 |
+
"3656": 2061,
|
854 |
+
"3657": 2271,
|
855 |
+
"366": 1989,
|
856 |
+
"3660": 2346,
|
857 |
+
"3663": 2361,
|
858 |
+
"3664": 53,
|
859 |
+
"3665": 1784,
|
860 |
+
"367": 2431,
|
861 |
+
"3675": 2120,
|
862 |
+
"3679": 1823,
|
863 |
+
"3681": 1313,
|
864 |
+
"3686": 883,
|
865 |
+
"369": 682,
|
866 |
+
"3691": 1460,
|
867 |
+
"3698": 1795,
|
868 |
+
"3699": 46,
|
869 |
+
"37": 1996,
|
870 |
+
"3703": 523,
|
871 |
+
"3717": 900,
|
872 |
+
"3723": 161,
|
873 |
+
"3728": 357,
|
874 |
+
"3729": 2388,
|
875 |
+
"373": 781,
|
876 |
+
"3733": 535,
|
877 |
+
"3738": 674,
|
878 |
+
"374": 57,
|
879 |
+
"3744": 1267,
|
880 |
+
"3747": 2118,
|
881 |
+
"3752": 2326,
|
882 |
+
"3757": 2171,
|
883 |
+
"3764": 2414,
|
884 |
+
"377": 1317,
|
885 |
+
"3779": 1986,
|
886 |
+
"3780": 1191,
|
887 |
+
"3781": 613,
|
888 |
+
"3783": 1221,
|
889 |
+
"3790": 949,
|
890 |
+
"3792": 988,
|
891 |
+
"3793": 1978,
|
892 |
+
"3796": 2138,
|
893 |
+
"3798": 2156,
|
894 |
+
"38": 263,
|
895 |
+
"380": 584,
|
896 |
+
"3807": 185,
|
897 |
+
"3816": 858,
|
898 |
+
"3819": 1440,
|
899 |
+
"3825": 1055,
|
900 |
+
"3830": 123,
|
901 |
+
"3835": 831,
|
902 |
+
"3843": 1896,
|
903 |
+
"3845": 1146,
|
904 |
+
"3848": 2151,
|
905 |
+
"3851": 382,
|
906 |
+
"3852": 749,
|
907 |
+
"3853": 2306,
|
908 |
+
"3857": 194,
|
909 |
+
"3864": 273,
|
910 |
+
"3866": 533,
|
911 |
+
"3867": 1997,
|
912 |
+
"3869": 717,
|
913 |
+
"3871": 1955,
|
914 |
+
"3876": 496,
|
915 |
+
"3879": 60,
|
916 |
+
"3885": 1677,
|
917 |
+
"3889": 875,
|
918 |
+
"3894": 1927,
|
919 |
+
"3895": 1833,
|
920 |
+
"3896": 1939,
|
921 |
+
"39": 118,
|
922 |
+
"3905": 464,
|
923 |
+
"3906": 1279,
|
924 |
+
"3909": 2010,
|
925 |
+
"3911": 1163,
|
926 |
+
"3912": 1237,
|
927 |
+
"3914": 1097,
|
928 |
+
"3915": 2356,
|
929 |
+
"392": 2165,
|
930 |
+
"3922": 578,
|
931 |
+
"3923": 833,
|
932 |
+
"3925": 1904,
|
933 |
+
"3926": 2163,
|
934 |
+
"3927": 1052,
|
935 |
+
"3928": 1572,
|
936 |
+
"3934": 1254,
|
937 |
+
"3945": 810,
|
938 |
+
"3947": 17,
|
939 |
+
"3955": 1814,
|
940 |
+
"3959": 1824,
|
941 |
+
"3962": 2243,
|
942 |
+
"3967": 995,
|
943 |
+
"3969": 1807,
|
944 |
+
"3972": 313,
|
945 |
+
"3977": 298,
|
946 |
+
"3979": 509,
|
947 |
+
"398": 725,
|
948 |
+
"3982": 13,
|
949 |
+
"3983": 16,
|
950 |
+
"3989": 1076,
|
951 |
+
"3990": 1957,
|
952 |
+
"3992": 1812,
|
953 |
+
"3994": 519,
|
954 |
+
"3997": 2416,
|
955 |
+
"40": 146,
|
956 |
+
"4005": 1933,
|
957 |
+
"4009": 1883,
|
958 |
+
"4010": 387,
|
959 |
+
"4013": 599,
|
960 |
+
"4014": 186,
|
961 |
+
"4015": 2136,
|
962 |
+
"4017": 2246,
|
963 |
+
"4018": 229,
|
964 |
+
"4019": 1529,
|
965 |
+
"402": 2008,
|
966 |
+
"4020": 2216,
|
967 |
+
"4021": 1340,
|
968 |
+
"403": 68,
|
969 |
+
"4034": 1511,
|
970 |
+
"4039": 301,
|
971 |
+
"404": 1348,
|
972 |
+
"4042": 1969,
|
973 |
+
"4044": 567,
|
974 |
+
"405": 165,
|
975 |
+
"4051": 110,
|
976 |
+
"4054": 813,
|
977 |
+
"4057": 680,
|
978 |
+
"4059": 2104,
|
979 |
+
"4063": 1314,
|
980 |
+
"4064": 669,
|
981 |
+
"4077": 2374,
|
982 |
+
"4078": 1532,
|
983 |
+
"408": 294,
|
984 |
+
"4085": 2281,
|
985 |
+
"4088": 100,
|
986 |
+
"409": 401,
|
987 |
+
"4090": 1465,
|
988 |
+
"4098": 595,
|
989 |
+
"4104": 2244,
|
990 |
+
"4108": 797,
|
991 |
+
"4110": 741,
|
992 |
+
"4111": 356,
|
993 |
+
"4116": 893,
|
994 |
+
"412": 82,
|
995 |
+
"4122": 1212,
|
996 |
+
"413": 1251,
|
997 |
+
"4133": 942,
|
998 |
+
"4137": 193,
|
999 |
+
"4138": 344,
|
1000 |
+
"4145": 780,
|
1001 |
+
"4148": 1049,
|
1002 |
+
"4152": 711,
|
1003 |
+
"4153": 2344,
|
1004 |
+
"4156": 2077,
|
1005 |
+
"4160": 142,
|
1006 |
+
"4161": 1575,
|
1007 |
+
"4172": 1854,
|
1008 |
+
"4174": 2078,
|
1009 |
+
"4179": 1320,
|
1010 |
+
"4189": 1660,
|
1011 |
+
"4191": 1858,
|
1012 |
+
"4192": 1756,
|
1013 |
+
"4193": 1973,
|
1014 |
+
"4195": 111,
|
1015 |
+
"4196": 1423,
|
1016 |
+
"4198": 2418,
|
1017 |
+
"4205": 2256,
|
1018 |
+
"421": 1389,
|
1019 |
+
"4211": 2089,
|
1020 |
+
"4214": 206,
|
1021 |
+
"4216": 1899,
|
1022 |
+
"4217": 1173,
|
1023 |
+
"4218": 1381,
|
1024 |
+
"422": 2327,
|
1025 |
+
"4222": 919,
|
1026 |
+
"4225": 1938,
|
1027 |
+
"4226": 958,
|
1028 |
+
"4234": 1889,
|
1029 |
+
"4235": 1566,
|
1030 |
+
"4236": 927,
|
1031 |
+
"4238": 759,
|
1032 |
+
"4243": 279,
|
1033 |
+
"4246": 1100,
|
1034 |
+
"4257": 388,
|
1035 |
+
"426": 160,
|
1036 |
+
"4260": 1015,
|
1037 |
+
"4262": 1785,
|
1038 |
+
"4263": 1215,
|
1039 |
+
"4267": 222,
|
1040 |
+
"4273": 2013,
|
1041 |
+
"4277": 1840,
|
1042 |
+
"4278": 1003,
|
1043 |
+
"428": 1775,
|
1044 |
+
"4280": 1230,
|
1045 |
+
"4289": 993,
|
1046 |
+
"4290": 885,
|
1047 |
+
"4294": 2422,
|
1048 |
+
"4295": 1721,
|
1049 |
+
"4297": 112,
|
1050 |
+
"4305": 1166,
|
1051 |
+
"4310": 1672,
|
1052 |
+
"4313": 1679,
|
1053 |
+
"432": 2224,
|
1054 |
+
"4321": 1353,
|
1055 |
+
"4323": 2353,
|
1056 |
+
"4327": 1891,
|
1057 |
+
"4331": 265,
|
1058 |
+
"4335": 689,
|
1059 |
+
"4340": 183,
|
1060 |
+
"4344": 1607,
|
1061 |
+
"4345": 1368,
|
1062 |
+
"4350": 2430,
|
1063 |
+
"4352": 1779,
|
1064 |
+
"4356": 314,
|
1065 |
+
"4358": 924,
|
1066 |
+
"4362": 219,
|
1067 |
+
"4363": 619,
|
1068 |
+
"4379": 1887,
|
1069 |
+
"4381": 752,
|
1070 |
+
"439": 742,
|
1071 |
+
"4396": 1228,
|
1072 |
+
"4397": 132,
|
1073 |
+
"44": 2175,
|
1074 |
+
"4402": 1599,
|
1075 |
+
"4406": 231,
|
1076 |
+
"4407": 1327,
|
1077 |
+
"4411": 1365,
|
1078 |
+
"4415": 1583,
|
1079 |
+
"4420": 2060,
|
1080 |
+
"4422": 1932,
|
1081 |
+
"4423": 2088,
|
1082 |
+
"4425": 968,
|
1083 |
+
"4427": 303,
|
1084 |
+
"4428": 1627,
|
1085 |
+
"4434": 649,
|
1086 |
+
"4438": 1117,
|
1087 |
+
"444": 1769,
|
1088 |
+
"4441": 224,
|
1089 |
+
"4442": 1508,
|
1090 |
+
"4443": 1847,
|
1091 |
+
"4446": 2392,
|
1092 |
+
"4447": 2255,
|
1093 |
+
"4455": 1341,
|
1094 |
+
"446": 178,
|
1095 |
+
"4463": 1688,
|
1096 |
+
"4474": 1399,
|
1097 |
+
"448": 2122,
|
1098 |
+
"4480": 1820,
|
1099 |
+
"4481": 170,
|
1100 |
+
"4484": 1406,
|
1101 |
+
"4487": 1886,
|
1102 |
+
"4490": 583,
|
1103 |
+
"4492": 1243,
|
1104 |
+
"4495": 618,
|
1105 |
+
"45": 2011,
|
1106 |
+
"4507": 2403,
|
1107 |
+
"451": 652,
|
1108 |
+
"4511": 1658,
|
1109 |
+
"4513": 1632,
|
1110 |
+
"4515": 2357,
|
1111 |
+
"4519": 538,
|
1112 |
+
"4520": 2040,
|
1113 |
+
"453": 1535,
|
1114 |
+
"4535": 603,
|
1115 |
+
"454": 466,
|
1116 |
+
"4545": 1418,
|
1117 |
+
"4546": 1446,
|
1118 |
+
"4549": 1771,
|
1119 |
+
"4563": 1582,
|
1120 |
+
"4570": 2358,
|
1121 |
+
"4572": 2364,
|
1122 |
+
"4576": 1411,
|
1123 |
+
"458": 125,
|
1124 |
+
"4583": 1793,
|
1125 |
+
"4586": 274,
|
1126 |
+
"459": 329,
|
1127 |
+
"4590": 1064,
|
1128 |
+
"4591": 2094,
|
1129 |
+
"4592": 281,
|
1130 |
+
"4594": 1302,
|
1131 |
+
"4595": 1084,
|
1132 |
+
"4598": 602,
|
1133 |
+
"4599": 1917,
|
1134 |
+
"46": 1707,
|
1135 |
+
"460": 169,
|
1136 |
+
"4629": 1019,
|
1137 |
+
"4640": 129,
|
1138 |
+
"4652": 1762,
|
1139 |
+
"4659": 2205,
|
1140 |
+
"466": 2286,
|
1141 |
+
"4660": 1623,
|
1142 |
+
"4667": 2192,
|
1143 |
+
"4680": 148,
|
1144 |
+
"4687": 1187,
|
1145 |
+
"4693": 1486,
|
1146 |
+
"4697": 1800,
|
1147 |
+
"4699": 2108,
|
1148 |
+
"47": 1733,
|
1149 |
+
"470": 1676,
|
1150 |
+
"4701": 2254,
|
1151 |
+
"4703": 1261,
|
1152 |
+
"4705": 1614,
|
1153 |
+
"4706": 1786,
|
1154 |
+
"4710": 1509,
|
1155 |
+
"4712": 2001,
|
1156 |
+
"4719": 791,
|
1157 |
+
"472": 337,
|
1158 |
+
"4731": 370,
|
1159 |
+
"4733": 844,
|
1160 |
+
"4734": 1000,
|
1161 |
+
"4738": 1988,
|
1162 |
+
"474": 2028,
|
1163 |
+
"4741": 1593,
|
1164 |
+
"4742": 1636,
|
1165 |
+
"4744": 838,
|
1166 |
+
"4748": 1915,
|
1167 |
+
"475": 328,
|
1168 |
+
"4750": 2062,
|
1169 |
+
"4757": 1466,
|
1170 |
+
"476": 278,
|
1171 |
+
"4766": 1912,
|
1172 |
+
"4767": 1863,
|
1173 |
+
"4771": 1142,
|
1174 |
+
"4773": 1745,
|
1175 |
+
"4779": 1226,
|
1176 |
+
"4788": 89,
|
1177 |
+
"479": 491,
|
1178 |
+
"4791": 2161,
|
1179 |
+
"4799": 1482,
|
1180 |
+
"480": 566,
|
1181 |
+
"4800": 782,
|
1182 |
+
"4806": 394,
|
1183 |
+
"4807": 944,
|
1184 |
+
"481": 37,
|
1185 |
+
"4813": 174,
|
1186 |
+
"4821": 1437,
|
1187 |
+
"4824": 1175,
|
1188 |
+
"483": 1502,
|
1189 |
+
"4830": 18,
|
1190 |
+
"4831": 2352,
|
1191 |
+
"4836": 1767,
|
1192 |
+
"4837": 609,
|
1193 |
+
"4839": 992,
|
1194 |
+
"4841": 1995,
|
1195 |
+
"4846": 290,
|
1196 |
+
"4848": 830,
|
1197 |
+
"4852": 2420,
|
1198 |
+
"4853": 48,
|
1199 |
+
"4854": 486,
|
1200 |
+
"4856": 971,
|
1201 |
+
"4859": 131,
|
1202 |
+
"4860": 379,
|
1203 |
+
"4863": 1906,
|
1204 |
+
"487": 1119,
|
1205 |
+
"4872": 1695,
|
1206 |
+
"489": 1149,
|
1207 |
+
"4894": 1195,
|
1208 |
+
"4898": 116,
|
1209 |
+
"4899": 364,
|
1210 |
+
"49": 1943,
|
1211 |
+
"4910": 1918,
|
1212 |
+
"4915": 1885,
|
1213 |
+
"492": 1038,
|
1214 |
+
"4926": 768,
|
1215 |
+
"4930": 1257,
|
1216 |
+
"4931": 1968,
|
1217 |
+
"4936": 1902,
|
1218 |
+
"4945": 1043,
|
1219 |
+
"4948": 2090,
|
1220 |
+
"4955": 1186,
|
1221 |
+
"4957": 1068,
|
1222 |
+
"4958": 2198,
|
1223 |
+
"4959": 1644,
|
1224 |
+
"4964": 1520,
|
1225 |
+
"4965": 1960,
|
1226 |
+
"4967": 1002,
|
1227 |
+
"4969": 1647,
|
1228 |
+
"497": 637,
|
1229 |
+
"4970": 2375,
|
1230 |
+
"4973": 823,
|
1231 |
+
"4979": 1866,
|
1232 |
+
"4991": 1233,
|
1233 |
+
"4992": 2382,
|
1234 |
+
"4993": 2000,
|
1235 |
+
"500": 974,
|
1236 |
+
"5000": 1174,
|
1237 |
+
"5002": 620,
|
1238 |
+
"5005": 1970,
|
1239 |
+
"5007": 288,
|
1240 |
+
"5009": 1751,
|
1241 |
+
"501": 965,
|
1242 |
+
"5012": 973,
|
1243 |
+
"5013": 1297,
|
1244 |
+
"5019": 1736,
|
1245 |
+
"5022": 245,
|
1246 |
+
"5023": 1469,
|
1247 |
+
"5029": 817,
|
1248 |
+
"5036": 1867,
|
1249 |
+
"5038": 1693,
|
1250 |
+
"5039": 547,
|
1251 |
+
"5043": 1356,
|
1252 |
+
"5044": 1665,
|
1253 |
+
"5045": 1436,
|
1254 |
+
"5049": 189,
|
1255 |
+
"505": 1239,
|
1256 |
+
"5054": 788,
|
1257 |
+
"5060": 1290,
|
1258 |
+
"5062": 532,
|
1259 |
+
"5063": 597,
|
1260 |
+
"5076": 1573,
|
1261 |
+
"5077": 1746,
|
1262 |
+
"5082": 2225,
|
1263 |
+
"5092": 348,
|
1264 |
+
"5093": 285,
|
1265 |
+
"51": 1338,
|
1266 |
+
"510": 939,
|
1267 |
+
"5101": 1865,
|
1268 |
+
"5104": 181,
|
1269 |
+
"5105": 2406,
|
1270 |
+
"511": 1128,
|
1271 |
+
"5115": 352,
|
1272 |
+
"5118": 1876,
|
1273 |
+
"512": 955,
|
1274 |
+
"5123": 589,
|
1275 |
+
"5126": 977,
|
1276 |
+
"5132": 2093,
|
1277 |
+
"5133": 636,
|
1278 |
+
"5136": 1772,
|
1279 |
+
"5139": 1106,
|
1280 |
+
"5141": 2181,
|
1281 |
+
"5142": 2396,
|
1282 |
+
"5147": 498,
|
1283 |
+
"5152": 1471,
|
1284 |
+
"5154": 450,
|
1285 |
+
"5157": 659,
|
1286 |
+
"5163": 77,
|
1287 |
+
"5164": 1578,
|
1288 |
+
"517": 2069,
|
1289 |
+
"5172": 1450,
|
1290 |
+
"5181": 2259,
|
1291 |
+
"5183": 1803,
|
1292 |
+
"5185": 1739,
|
1293 |
+
"5186": 458,
|
1294 |
+
"5189": 738,
|
1295 |
+
"5190": 504,
|
1296 |
+
"5192": 208,
|
1297 |
+
"5198": 1928,
|
1298 |
+
"5199": 2111,
|
1299 |
+
"52": 2233,
|
1300 |
+
"5206": 1065,
|
1301 |
+
"5217": 1527,
|
1302 |
+
"5220": 1443,
|
1303 |
+
"5224": 1306,
|
1304 |
+
"5230": 1712,
|
1305 |
+
"5233": 1217,
|
1306 |
+
"5239": 410,
|
1307 |
+
"5242": 600,
|
1308 |
+
"5244": 2097,
|
1309 |
+
"5245": 1868,
|
1310 |
+
"5246": 651,
|
1311 |
+
"5248": 1543,
|
1312 |
+
"5252": 2240,
|
1313 |
+
"5261": 363,
|
1314 |
+
"5266": 850,
|
1315 |
+
"5269": 1568,
|
1316 |
+
"5271": 2114,
|
1317 |
+
"5278": 2154,
|
1318 |
+
"5280": 1738,
|
1319 |
+
"5285": 1956,
|
1320 |
+
"5287": 2228,
|
1321 |
+
"5290": 724,
|
1322 |
+
"5293": 415,
|
1323 |
+
"5296": 1694,
|
1324 |
+
"5299": 2066,
|
1325 |
+
"5304": 719,
|
1326 |
+
"5319": 1124,
|
1327 |
+
"5321": 2058,
|
1328 |
+
"5322": 28,
|
1329 |
+
"5325": 1916,
|
1330 |
+
"5328": 1698,
|
1331 |
+
"533": 2438,
|
1332 |
+
"5333": 524,
|
1333 |
+
"5337": 266,
|
1334 |
+
"5338": 2310,
|
1335 |
+
"5339": 94,
|
1336 |
+
"534": 522,
|
1337 |
+
"5340": 2291,
|
1338 |
+
"5350": 2047,
|
1339 |
+
"5355": 1225,
|
1340 |
+
"5361": 1521,
|
1341 |
+
"5375": 1844,
|
1342 |
+
"5379": 1429,
|
1343 |
+
"5386": 612,
|
1344 |
+
"5389": 807,
|
1345 |
+
"5390": 50,
|
1346 |
+
"5393": 163,
|
1347 |
+
"54": 979,
|
1348 |
+
"5400": 631,
|
1349 |
+
"5401": 577,
|
1350 |
+
"5405": 1495,
|
1351 |
+
"5412": 1542,
|
1352 |
+
"542": 2227,
|
1353 |
+
"5424": 2064,
|
1354 |
+
"5429": 1687,
|
1355 |
+
"543": 1135,
|
1356 |
+
"5439": 2012,
|
1357 |
+
"544": 1330,
|
1358 |
+
"5442": 2411,
|
1359 |
+
"5445": 1248,
|
1360 |
+
"5448": 1040,
|
1361 |
+
"5456": 14,
|
1362 |
+
"5459": 2213,
|
1363 |
+
"5460": 1907,
|
1364 |
+
"5463": 150,
|
1365 |
+
"5468": 1576,
|
1366 |
+
"5471": 1451,
|
1367 |
+
"548": 842,
|
1368 |
+
"5480": 1454,
|
1369 |
+
"5484": 2408,
|
1370 |
+
"5487": 1643,
|
1371 |
+
"5489": 1024,
|
1372 |
+
"549": 970,
|
1373 |
+
"55": 425,
|
1374 |
+
"5506": 2083,
|
1375 |
+
"551": 1208,
|
1376 |
+
"5513": 667,
|
1377 |
+
"5514": 121,
|
1378 |
+
"5519": 1115,
|
1379 |
+
"5536": 2328,
|
1380 |
+
"5538": 792,
|
1381 |
+
"5543": 2337,
|
1382 |
+
"5545": 2100,
|
1383 |
+
"5561": 179,
|
1384 |
+
"5565": 1510,
|
1385 |
+
"5567": 1947,
|
1386 |
+
"5569": 1710,
|
1387 |
+
"557": 1240,
|
1388 |
+
"5570": 936,
|
1389 |
+
"5583": 568,
|
1390 |
+
"5588": 845,
|
1391 |
+
"559": 1028,
|
1392 |
+
"56": 531,
|
1393 |
+
"5604": 346,
|
1394 |
+
"5606": 751,
|
1395 |
+
"561": 902,
|
1396 |
+
"5618": 964,
|
1397 |
+
"5620": 1813,
|
1398 |
+
"5622": 1062,
|
1399 |
+
"5628": 1200,
|
1400 |
+
"5635": 675,
|
1401 |
+
"5636": 1768,
|
1402 |
+
"5639": 2391,
|
1403 |
+
"5641": 2237,
|
1404 |
+
"5649": 1250,
|
1405 |
+
"5652": 221,
|
1406 |
+
"5653": 1178,
|
1407 |
+
"5655": 1109,
|
1408 |
+
"5656": 986,
|
1409 |
+
"5660": 530,
|
1410 |
+
"5661": 1494,
|
1411 |
+
"5665": 1778,
|
1412 |
+
"567": 1750,
|
1413 |
+
"5671": 1673,
|
1414 |
+
"5672": 941,
|
1415 |
+
"5678": 238,
|
1416 |
+
"568": 1604,
|
1417 |
+
"5682": 1697,
|
1418 |
+
"5683": 2400,
|
1419 |
+
"5684": 452,
|
1420 |
+
"569": 1675,
|
1421 |
+
"5694": 2334,
|
1422 |
+
"57": 2283,
|
1423 |
+
"5700": 2277,
|
1424 |
+
"5703": 176,
|
1425 |
+
"5712": 871,
|
1426 |
+
"5717": 638,
|
1427 |
+
"5719": 1179,
|
1428 |
+
"572": 1550,
|
1429 |
+
"5720": 1198,
|
1430 |
+
"5723": 697,
|
1431 |
+
"5724": 605,
|
1432 |
+
"5725": 1685,
|
1433 |
+
"5727": 754,
|
1434 |
+
"5731": 1118,
|
1435 |
+
"5733": 1202,
|
1436 |
+
"5735": 1255,
|
1437 |
+
"5740": 832,
|
1438 |
+
"5746": 790,
|
1439 |
+
"5750": 21,
|
1440 |
+
"5756": 1628,
|
1441 |
+
"576": 416,
|
1442 |
+
"5764": 2417,
|
1443 |
+
"5765": 2127,
|
1444 |
+
"5767": 332,
|
1445 |
+
"5772": 1616,
|
1446 |
+
"5776": 553,
|
1447 |
+
"5778": 168,
|
1448 |
+
"5781": 2019,
|
1449 |
+
"5784": 2203,
|
1450 |
+
"5789": 22,
|
1451 |
+
"5791": 1967,
|
1452 |
+
"5796": 2131,
|
1453 |
+
"58": 1359,
|
1454 |
+
"580": 250,
|
1455 |
+
"5802": 367,
|
1456 |
+
"5808": 117,
|
1457 |
+
"5809": 795,
|
1458 |
+
"581": 684,
|
1459 |
+
"5810": 572,
|
1460 |
+
"5825": 2170,
|
1461 |
+
"5826": 1193,
|
1462 |
+
"583": 783,
|
1463 |
+
"5831": 1657,
|
1464 |
+
"5837": 1334,
|
1465 |
+
"584": 1819,
|
1466 |
+
"5840": 1562,
|
1467 |
+
"5849": 2351,
|
1468 |
+
"585": 1905,
|
1469 |
+
"5854": 1782,
|
1470 |
+
"5860": 1522,
|
1471 |
+
"5867": 187,
|
1472 |
+
"5868": 966,
|
1473 |
+
"587": 109,
|
1474 |
+
"5874": 1374,
|
1475 |
+
"5876": 428,
|
1476 |
+
"5883": 1014,
|
1477 |
+
"5886": 1749,
|
1478 |
+
"589": 829,
|
1479 |
+
"5890": 2280,
|
1480 |
+
"5893": 1558,
|
1481 |
+
"5894": 1214,
|
1482 |
+
"5895": 2307,
|
1483 |
+
"5906": 1897,
|
1484 |
+
"5909": 815,
|
1485 |
+
"5910": 1949,
|
1486 |
+
"5911": 1181,
|
1487 |
+
"5913": 1312,
|
1488 |
+
"5914": 632,
|
1489 |
+
"5918": 925,
|
1490 |
+
"5929": 1298,
|
1491 |
+
"593": 733,
|
1492 |
+
"5933": 1556,
|
1493 |
+
"5935": 308,
|
1494 |
+
"594": 527,
|
1495 |
+
"5940": 541,
|
1496 |
+
"5949": 1485,
|
1497 |
+
"5951": 1310,
|
1498 |
+
"5952": 2046,
|
1499 |
+
"596": 947,
|
1500 |
+
"5968": 798,
|
1501 |
+
"597": 770,
|
1502 |
+
"5970": 1870,
|
1503 |
+
"5975": 254,
|
1504 |
+
"5977": 2134,
|
1505 |
+
"5979": 2095,
|
1506 |
+
"598": 727,
|
1507 |
+
"5980": 1937,
|
1508 |
+
"5983": 1655,
|
1509 |
+
"5984": 909,
|
1510 |
+
"5985": 1008,
|
1511 |
+
"5993": 1559,
|
1512 |
+
"60": 108,
|
1513 |
+
"6000": 11,
|
1514 |
+
"6006": 753,
|
1515 |
+
"6009": 1901,
|
1516 |
+
"6010": 1689,
|
1517 |
+
"6014": 745,
|
1518 |
+
"6019": 140,
|
1519 |
+
"6025": 2190,
|
1520 |
+
"6030": 1726,
|
1521 |
+
"6032": 1111,
|
1522 |
+
"6035": 2208,
|
1523 |
+
"6037": 1092,
|
1524 |
+
"6038": 898,
|
1525 |
+
"6051": 2164,
|
1526 |
+
"6054": 855,
|
1527 |
+
"606": 983,
|
1528 |
+
"6060": 470,
|
1529 |
+
"6064": 226,
|
1530 |
+
"6065": 1386,
|
1531 |
+
"6070": 2433,
|
1532 |
+
"6072": 2219,
|
1533 |
+
"6075": 1026,
|
1534 |
+
"6076": 2035,
|
1535 |
+
"6077": 2272,
|
1536 |
+
"6078": 175,
|
1537 |
+
"608": 1925,
|
1538 |
+
"6080": 735,
|
1539 |
+
"6081": 225,
|
1540 |
+
"6082": 1071,
|
1541 |
+
"6084": 1364,
|
1542 |
+
"6087": 2265,
|
1543 |
+
"6088": 1601,
|
1544 |
+
"6097": 1724,
|
1545 |
+
"6098": 284,
|
1546 |
+
"6099": 731,
|
1547 |
+
"6102": 1414,
|
1548 |
+
"6104": 1022,
|
1549 |
+
"6106": 1427,
|
1550 |
+
"6111": 2215,
|
1551 |
+
"6115": 1034,
|
1552 |
+
"6119": 559,
|
1553 |
+
"612": 1011,
|
1554 |
+
"6120": 579,
|
1555 |
+
"6121": 1383,
|
1556 |
+
"6123": 2366,
|
1557 |
+
"6126": 1929,
|
1558 |
+
"6127": 1705,
|
1559 |
+
"6128": 2412,
|
1560 |
+
"613": 2223,
|
1561 |
+
"6131": 1394,
|
1562 |
+
"6135": 1744,
|
1563 |
+
"6138": 1296,
|
1564 |
+
"6139": 802,
|
1565 |
+
"614": 1241,
|
1566 |
+
"6145": 1855,
|
1567 |
+
"6147": 172,
|
1568 |
+
"6153": 1490,
|
1569 |
+
"6157": 908,
|
1570 |
+
"6159": 1388,
|
1571 |
+
"6160": 987,
|
1572 |
+
"6167": 1063,
|
1573 |
+
"6173": 1477,
|
1574 |
+
"6177": 1422,
|
1575 |
+
"6178": 1881,
|
1576 |
+
"6181": 119,
|
1577 |
+
"6184": 2197,
|
1578 |
+
"6188": 801,
|
1579 |
+
"6189": 1086,
|
1580 |
+
"6196": 1375,
|
1581 |
+
"6199": 2021,
|
1582 |
+
"62": 1262,
|
1583 |
+
"6206": 923,
|
1584 |
+
"6209": 149,
|
1585 |
+
"6211": 1633,
|
1586 |
+
"6215": 1077,
|
1587 |
+
"622": 1337,
|
1588 |
+
"6221": 1975,
|
1589 |
+
"6224": 2211,
|
1590 |
+
"6227": 2044,
|
1591 |
+
"6232": 1242,
|
1592 |
+
"6233": 683,
|
1593 |
+
"6235": 359,
|
1594 |
+
"6241": 2303,
|
1595 |
+
"6242": 2125,
|
1596 |
+
"6248": 1829,
|
1597 |
+
"6249": 2226,
|
1598 |
+
"625": 27,
|
1599 |
+
"6251": 1481,
|
1600 |
+
"6254": 2042,
|
1601 |
+
"6258": 1027,
|
1602 |
+
"6267": 2347,
|
1603 |
+
"6269": 1101,
|
1604 |
+
"6272": 26,
|
1605 |
+
"6276": 1162,
|
1606 |
+
"6281": 1570,
|
1607 |
+
"6284": 1461,
|
1608 |
+
"6286": 449,
|
1609 |
+
"6288": 590,
|
1610 |
+
"6294": 472,
|
1611 |
+
"6295": 2308,
|
1612 |
+
"6300": 319,
|
1613 |
+
"6308": 514,
|
1614 |
+
"6311": 1211,
|
1615 |
+
"6313": 2304,
|
1616 |
+
"6317": 351,
|
1617 |
+
"6319": 2323,
|
1618 |
+
"6323": 2245,
|
1619 |
+
"6324": 1331,
|
1620 |
+
"6330": 417,
|
1621 |
+
"6332": 1586,
|
1622 |
+
"6333": 2262,
|
1623 |
+
"6339": 746,
|
1624 |
+
"6341": 963,
|
1625 |
+
"6345": 2319,
|
1626 |
+
"6346": 1371,
|
1627 |
+
"6351": 1651,
|
1628 |
+
"6352": 518,
|
1629 |
+
"6353": 1183,
|
1630 |
+
"6356": 1318,
|
1631 |
+
"6358": 1475,
|
1632 |
+
"6359": 1053,
|
1633 |
+
"636": 325,
|
1634 |
+
"6364": 1728,
|
1635 |
+
"6367": 6,
|
1636 |
+
"6368": 2144,
|
1637 |
+
"637": 776,
|
1638 |
+
"6370": 2279,
|
1639 |
+
"6371": 998,
|
1640 |
+
"6373": 1085,
|
1641 |
+
"6377": 1650,
|
1642 |
+
"6378": 485,
|
1643 |
+
"6385": 88,
|
1644 |
+
"6388": 1102,
|
1645 |
+
"639": 598,
|
1646 |
+
"6391": 2168,
|
1647 |
+
"6395": 389,
|
1648 |
+
"6399": 2124,
|
1649 |
+
"64": 439,
|
1650 |
+
"6402": 1534,
|
1651 |
+
"6406": 670,
|
1652 |
+
"6407": 1857,
|
1653 |
+
"6411": 1624,
|
1654 |
+
"6415": 23,
|
1655 |
+
"6418": 1430,
|
1656 |
+
"6426": 1030,
|
1657 |
+
"6432": 2427,
|
1658 |
+
"6436": 2115,
|
1659 |
+
"6437": 24,
|
1660 |
+
"644": 1518,
|
1661 |
+
"6446": 260,
|
1662 |
+
"6454": 9,
|
1663 |
+
"6455": 2343,
|
1664 |
+
"6458": 558,
|
1665 |
+
"6459": 1273,
|
1666 |
+
"6467": 2340,
|
1667 |
+
"6476": 80,
|
1668 |
+
"6482": 2121,
|
1669 |
+
"6484": 1541,
|
1670 |
+
"6488": 1301,
|
1671 |
+
"6492": 400,
|
1672 |
+
"6494": 392,
|
1673 |
+
"6497": 978,
|
1674 |
+
"6499": 380,
|
1675 |
+
"65": 2247,
|
1676 |
+
"6505": 762,
|
1677 |
+
"6506": 2263,
|
1678 |
+
"6509": 862,
|
1679 |
+
"6510": 921,
|
1680 |
+
"6512": 2212,
|
1681 |
+
"6513": 1727,
|
1682 |
+
"6518": 1067,
|
1683 |
+
"6519": 1057,
|
1684 |
+
"652": 2302,
|
1685 |
+
"6529": 25,
|
1686 |
+
"6531": 79,
|
1687 |
+
"6533": 2173,
|
1688 |
+
"6534": 1621,
|
1689 |
+
"6535": 2140,
|
1690 |
+
"6538": 796,
|
1691 |
+
"6539": 1444,
|
1692 |
+
"6540": 1275,
|
1693 |
+
"6544": 1132,
|
1694 |
+
"6548": 2158,
|
1695 |
+
"6549": 1362,
|
1696 |
+
"6550": 760,
|
1697 |
+
"6553": 479,
|
1698 |
+
"6555": 1121,
|
1699 |
+
"6557": 1412,
|
1700 |
+
"6563": 91,
|
1701 |
+
"6567": 786,
|
1702 |
+
"6568": 1980,
|
1703 |
+
"6574": 395,
|
1704 |
+
"6575": 343,
|
1705 |
+
"6583": 1289,
|
1706 |
+
"6590": 1335,
|
1707 |
+
"6594": 1357,
|
1708 |
+
"6599": 2350,
|
1709 |
+
"66": 1434,
|
1710 |
+
"6609": 1619,
|
1711 |
+
"6610": 1797,
|
1712 |
+
"6614": 2293,
|
1713 |
+
"6620": 800,
|
1714 |
+
"6625": 1467,
|
1715 |
+
"6627": 1821,
|
1716 |
+
"663": 548,
|
1717 |
+
"6636": 1832,
|
1718 |
+
"6637": 335,
|
1719 |
+
"664": 483,
|
1720 |
+
"6643": 521,
|
1721 |
+
"6652": 1258,
|
1722 |
+
"666": 903,
|
1723 |
+
"6660": 2149,
|
1724 |
+
"6668": 2147,
|
1725 |
+
"667": 686,
|
1726 |
+
"6670": 1489,
|
1727 |
+
"6673": 757,
|
1728 |
+
"6674": 1487,
|
1729 |
+
"6676": 1425,
|
1730 |
+
"6683": 937,
|
1731 |
+
"6685": 1385,
|
1732 |
+
"6686": 726,
|
1733 |
+
"6687": 2014,
|
1734 |
+
"6689": 1874,
|
1735 |
+
"669": 4,
|
1736 |
+
"6690": 510,
|
1737 |
+
"6694": 827,
|
1738 |
+
"6695": 1247,
|
1739 |
+
"6696": 1091,
|
1740 |
+
"6701": 676,
|
1741 |
+
"6705": 2187,
|
1742 |
+
"6707": 1850,
|
1743 |
+
"6709": 2276,
|
1744 |
+
"6713": 1649,
|
1745 |
+
"672": 2379,
|
1746 |
+
"6724": 1942,
|
1747 |
+
"6726": 1964,
|
1748 |
+
"6727": 623,
|
1749 |
+
"6733": 2201,
|
1750 |
+
"6735": 2268,
|
1751 |
+
"6741": 1387,
|
1752 |
+
"6743": 1765,
|
1753 |
+
"6746": 1408,
|
1754 |
+
"6747": 2239,
|
1755 |
+
"6749": 1512,
|
1756 |
+
"6752": 1259,
|
1757 |
+
"6753": 1515,
|
1758 |
+
"6754": 1781,
|
1759 |
+
"6758": 2117,
|
1760 |
+
"6763": 1134,
|
1761 |
+
"6773": 1625,
|
1762 |
+
"6777": 1148,
|
1763 |
+
"6782": 847,
|
1764 |
+
"6784": 2188,
|
1765 |
+
"6788": 421,
|
1766 |
+
"679": 2143,
|
1767 |
+
"6792": 1324,
|
1768 |
+
"6794": 2024,
|
1769 |
+
"6798": 1498,
|
1770 |
+
"6804": 2178,
|
1771 |
+
"6807": 2126,
|
1772 |
+
"681": 2199,
|
1773 |
+
"6818": 227,
|
1774 |
+
"6821": 1590,
|
1775 |
+
"6828": 897,
|
1776 |
+
"6829": 2399,
|
1777 |
+
"6836": 138,
|
1778 |
+
"684": 1692,
|
1779 |
+
"6841": 2336,
|
1780 |
+
"6846": 1271,
|
1781 |
+
"6848": 158,
|
1782 |
+
"6849": 1294,
|
1783 |
+
"6853": 1398,
|
1784 |
+
"6865": 668,
|
1785 |
+
"6875": 2031,
|
1786 |
+
"6877": 784,
|
1787 |
+
"688": 868,
|
1788 |
+
"6880": 96,
|
1789 |
+
"6882": 1326,
|
1790 |
+
"6883": 1755,
|
1791 |
+
"6892": 1862,
|
1792 |
+
"6895": 601,
|
1793 |
+
"690": 1605,
|
1794 |
+
"6902": 1860,
|
1795 |
+
"6904": 953,
|
1796 |
+
"6906": 1459,
|
1797 |
+
"6912": 1484,
|
1798 |
+
"6913": 1464,
|
1799 |
+
"6914": 1783,
|
1800 |
+
"6918": 310,
|
1801 |
+
"6923": 2032,
|
1802 |
+
"6924": 569,
|
1803 |
+
"6925": 164,
|
1804 |
+
"6927": 839,
|
1805 |
+
"6930": 2385,
|
1806 |
+
"6937": 1007,
|
1807 |
+
"6938": 2425,
|
1808 |
+
"6943": 1491,
|
1809 |
+
"6945": 1140,
|
1810 |
+
"6947": 2113,
|
1811 |
+
"6950": 1309,
|
1812 |
+
"6951": 1961,
|
1813 |
+
"6954": 2269,
|
1814 |
+
"6956": 959,
|
1815 |
+
"696": 241,
|
1816 |
+
"6962": 2016,
|
1817 |
+
"6963": 1321,
|
1818 |
+
"6965": 809,
|
1819 |
+
"6967": 1715,
|
1820 |
+
"6974": 1652,
|
1821 |
+
"6978": 1919,
|
1822 |
+
"698": 935,
|
1823 |
+
"6981": 1072,
|
1824 |
+
"699": 1069,
|
1825 |
+
"6993": 874,
|
1826 |
+
"70": 456,
|
1827 |
+
"700": 2360,
|
1828 |
+
"7000": 647,
|
1829 |
+
"7001": 1342,
|
1830 |
+
"7008": 1270,
|
1831 |
+
"7009": 1216,
|
1832 |
+
"7011": 444,
|
1833 |
+
"7012": 1269,
|
1834 |
+
"7018": 2439,
|
1835 |
+
"7021": 2393,
|
1836 |
+
"7026": 2076,
|
1837 |
+
"7030": 737,
|
1838 |
+
"7046": 1197,
|
1839 |
+
"705": 1536,
|
1840 |
+
"7051": 433,
|
1841 |
+
"7055": 1754,
|
1842 |
+
"7059": 145,
|
1843 |
+
"7061": 554,
|
1844 |
+
"7062": 1474,
|
1845 |
+
"7065": 1395,
|
1846 |
+
"7067": 203,
|
1847 |
+
"7069": 804,
|
1848 |
+
"707": 952,
|
1849 |
+
"7073": 1987,
|
1850 |
+
"7078": 127,
|
1851 |
+
"7079": 1620,
|
1852 |
+
"708": 803,
|
1853 |
+
"7085": 1047,
|
1854 |
+
"7090": 258,
|
1855 |
+
"7092": 1492,
|
1856 |
+
"7095": 617,
|
1857 |
+
"7096": 1252,
|
1858 |
+
"7097": 1346,
|
1859 |
+
"7105": 2428,
|
1860 |
+
"7107": 1161,
|
1861 |
+
"711": 678,
|
1862 |
+
"7113": 204,
|
1863 |
+
"7117": 551,
|
1864 |
+
"712": 1349,
|
1865 |
+
"7120": 989,
|
1866 |
+
"7121": 1433,
|
1867 |
+
"7125": 1780,
|
1868 |
+
"7126": 895,
|
1869 |
+
"7127": 2372,
|
1870 |
+
"7128": 709,
|
1871 |
+
"713": 1849,
|
1872 |
+
"7131": 2106,
|
1873 |
+
"7134": 661,
|
1874 |
+
"7135": 1164,
|
1875 |
+
"7138": 2267,
|
1876 |
+
"7139": 275,
|
1877 |
+
"7140": 981,
|
1878 |
+
"7143": 1160,
|
1879 |
+
"7145": 1005,
|
1880 |
+
"7147": 2025,
|
1881 |
+
"7148": 84,
|
1882 |
+
"7150": 1596,
|
1883 |
+
"7155": 1546,
|
1884 |
+
"716": 474,
|
1885 |
+
"7169": 440,
|
1886 |
+
"7170": 1402,
|
1887 |
+
"7176": 2386,
|
1888 |
+
"7177": 1260,
|
1889 |
+
"7178": 102,
|
1890 |
+
"718": 561,
|
1891 |
+
"7188": 748,
|
1892 |
+
"7189": 1431,
|
1893 |
+
"7190": 1,
|
1894 |
+
"7197": 2142,
|
1895 |
+
"7198": 1432,
|
1896 |
+
"7199": 2166,
|
1897 |
+
"720": 1358,
|
1898 |
+
"7205": 1203,
|
1899 |
+
"7208": 1841,
|
1900 |
+
"7215": 1480,
|
1901 |
+
"7218": 2152,
|
1902 |
+
"7220": 1834,
|
1903 |
+
"7223": 2282,
|
1904 |
+
"7226": 152,
|
1905 |
+
"7228": 1893,
|
1906 |
+
"7229": 687,
|
1907 |
+
"7238": 2241,
|
1908 |
+
"7239": 1898,
|
1909 |
+
"724": 994,
|
1910 |
+
"7240": 422,
|
1911 |
+
"7241": 918,
|
1912 |
+
"7242": 1322,
|
1913 |
+
"7245": 453,
|
1914 |
+
"7246": 1828,
|
1915 |
+
"7247": 773,
|
1916 |
+
"7250": 2250,
|
1917 |
+
"7255": 1976,
|
1918 |
+
"7258": 1126,
|
1919 |
+
"726": 1661,
|
1920 |
+
"7263": 1379,
|
1921 |
+
"7264": 213,
|
1922 |
+
"7265": 1730,
|
1923 |
+
"727": 1972,
|
1924 |
+
"7276": 948,
|
1925 |
+
"7277": 1602,
|
1926 |
+
"7278": 240,
|
1927 |
+
"728": 1205,
|
1928 |
+
"7285": 270,
|
1929 |
+
"7286": 293,
|
1930 |
+
"7294": 1131,
|
1931 |
+
"7297": 972,
|
1932 |
+
"7299": 2234,
|
1933 |
+
"730": 137,
|
1934 |
+
"7301": 1878,
|
1935 |
+
"7302": 62,
|
1936 |
+
"7307": 2177,
|
1937 |
+
"731": 299,
|
1938 |
+
"7312": 41,
|
1939 |
+
"7313": 643,
|
1940 |
+
"7314": 860,
|
1941 |
+
"7315": 1213,
|
1942 |
+
"7316": 1010,
|
1943 |
+
"7318": 1082,
|
1944 |
+
"7320": 1617,
|
1945 |
+
"7326": 1150,
|
1946 |
+
"7327": 1218,
|
1947 |
+
"7331": 1493,
|
1948 |
+
"7333": 2080,
|
1949 |
+
"7335": 985,
|
1950 |
+
"7337": 1613,
|
1951 |
+
"7338": 2079,
|
1952 |
+
"7339": 861,
|
1953 |
+
"7342": 826,
|
1954 |
+
"7346": 1747,
|
1955 |
+
"7348": 1638,
|
1956 |
+
"7354": 1920,
|
1957 |
+
"7357": 1671,
|
1958 |
+
"7360": 2179,
|
1959 |
+
"7367": 69,
|
1960 |
+
"737": 1845,
|
1961 |
+
"7376": 1773,
|
1962 |
+
"7383": 653,
|
1963 |
+
"7384": 906,
|
1964 |
+
"7387": 2258,
|
1965 |
+
"7389": 1603,
|
1966 |
+
"7391": 1549,
|
1967 |
+
"7392": 2230,
|
1968 |
+
"7395": 575,
|
1969 |
+
"7398": 552,
|
1970 |
+
"7402": 217,
|
1971 |
+
"7408": 2159,
|
1972 |
+
"7416": 729,
|
1973 |
+
"742": 1962,
|
1974 |
+
"7423": 1924,
|
1975 |
+
"7424": 1445,
|
1976 |
+
"7433": 1965,
|
1977 |
+
"7434": 1021,
|
1978 |
+
"7436": 1941,
|
1979 |
+
"7437": 1037,
|
1980 |
+
"7445": 837,
|
1981 |
+
"7447": 113,
|
1982 |
+
"7448": 1895,
|
1983 |
+
"7460": 368,
|
1984 |
+
"7463": 1238,
|
1985 |
+
"7467": 1157,
|
1986 |
+
"7475": 765,
|
1987 |
+
"7478": 571,
|
1988 |
+
"7480": 2231,
|
1989 |
+
"7481": 1020,
|
1990 |
+
"7484": 1075,
|
1991 |
+
"7491": 2072,
|
1992 |
+
"7492": 1544,
|
1993 |
+
"7495": 828,
|
1994 |
+
"7498": 390,
|
1995 |
+
"75": 1872,
|
1996 |
+
"7502": 2210,
|
1997 |
+
"7505": 31,
|
1998 |
+
"7507": 2292,
|
1999 |
+
"7510": 2176,
|
2000 |
+
"7511": 33,
|
2001 |
+
"7512": 2202,
|
2002 |
+
"7514": 1354,
|
2003 |
+
"7515": 327,
|
2004 |
+
"7517": 211,
|
2005 |
+
"7518": 420,
|
2006 |
+
"7520": 302,
|
2007 |
+
"7522": 2182,
|
2008 |
+
"7525": 730,
|
2009 |
+
"753": 1305,
|
2010 |
+
"7538": 500,
|
2011 |
+
"7540": 438,
|
2012 |
+
"7552": 2004,
|
2013 |
+
"7553": 834,
|
2014 |
+
"7555": 805,
|
2015 |
+
"7556": 1246,
|
2016 |
+
"7558": 312,
|
2017 |
+
"7559": 1827,
|
2018 |
+
"7561": 1139,
|
2019 |
+
"7565": 1199,
|
2020 |
+
"7569": 910,
|
2021 |
+
"7584": 1209,
|
2022 |
+
"7585": 1817,
|
2023 |
+
"7594": 557,
|
2024 |
+
"7597": 1903,
|
2025 |
+
"7601": 2348,
|
2026 |
+
"7603": 1245,
|
2027 |
+
"7607": 1877,
|
2028 |
+
"7608": 1286,
|
2029 |
+
"7609": 1177,
|
2030 |
+
"7618": 2235,
|
2031 |
+
"7635": 59,
|
2032 |
+
"764": 976,
|
2033 |
+
"7640": 1169,
|
2034 |
+
"7641": 2349,
|
2035 |
+
"7644": 2015,
|
2036 |
+
"7647": 645,
|
2037 |
+
"7649": 2266,
|
2038 |
+
"7654": 1945,
|
2039 |
+
"7657": 350,
|
2040 |
+
"766": 1748,
|
2041 |
+
"7665": 1061,
|
2042 |
+
"7672": 1473,
|
2043 |
+
"7679": 2141,
|
2044 |
+
"7683": 1531,
|
2045 |
+
"7687": 1307,
|
2046 |
+
"7688": 1048,
|
2047 |
+
"7691": 1612,
|
2048 |
+
"7697": 2368,
|
2049 |
+
"7699": 1396,
|
2050 |
+
"77": 2253,
|
2051 |
+
"770": 512,
|
2052 |
+
"7700": 1253,
|
2053 |
+
"7702": 1561,
|
2054 |
+
"7704": 373,
|
2055 |
+
"7705": 1095,
|
2056 |
+
"7708": 2194,
|
2057 |
+
"7713": 1188,
|
2058 |
+
"7717": 586,
|
2059 |
+
"7720": 789,
|
2060 |
+
"7729": 2376,
|
2061 |
+
"7730": 1087,
|
2062 |
+
"7732": 1107,
|
2063 |
+
"7733": 664,
|
2064 |
+
"7737": 1347,
|
2065 |
+
"7739": 295,
|
2066 |
+
"774": 1669,
|
2067 |
+
"7746": 1229,
|
2068 |
+
"7749": 1680,
|
2069 |
+
"7752": 411,
|
2070 |
+
"7754": 1074,
|
2071 |
+
"7756": 2148,
|
2072 |
+
"7762": 1770,
|
2073 |
+
"7764": 1192,
|
2074 |
+
"7766": 418,
|
2075 |
+
"7769": 1760,
|
2076 |
+
"777": 2333,
|
2077 |
+
"7777": 405,
|
2078 |
+
"778": 1519,
|
2079 |
+
"7780": 34,
|
2080 |
+
"7783": 1093,
|
2081 |
+
"7786": 2085,
|
2082 |
+
"7789": 316,
|
2083 |
+
"779": 2287,
|
2084 |
+
"7794": 218,
|
2085 |
+
"7795": 1634,
|
2086 |
+
"7796": 1701,
|
2087 |
+
"78": 243,
|
2088 |
+
"780": 1836,
|
2089 |
+
"7800": 191,
|
2090 |
+
"7802": 330,
|
2091 |
+
"7809": 879,
|
2092 |
+
"781": 691,
|
2093 |
+
"7816": 681,
|
2094 |
+
"7823": 2290,
|
2095 |
+
"7825": 634,
|
2096 |
+
"7826": 1574,
|
2097 |
+
"7828": 794,
|
2098 |
+
"783": 347,
|
2099 |
+
"7832": 1081,
|
2100 |
+
"7833": 446,
|
2101 |
+
"7835": 1571,
|
2102 |
+
"7837": 856,
|
2103 |
+
"7839": 1505,
|
2104 |
+
"7843": 1369,
|
2105 |
+
"7848": 1448,
|
2106 |
+
"7850": 2315,
|
2107 |
+
"7859": 230,
|
2108 |
+
"7867": 945,
|
2109 |
+
"7868": 1127,
|
2110 |
+
"7871": 1580,
|
2111 |
+
"7874": 915,
|
2112 |
+
"7879": 1438,
|
2113 |
+
"7881": 1104,
|
2114 |
+
"7883": 1839,
|
2115 |
+
"7886": 1551,
|
2116 |
+
"789": 1838,
|
2117 |
+
"7892": 1553,
|
2118 |
+
"7898": 2073,
|
2119 |
+
"79": 872,
|
2120 |
+
"7902": 2436,
|
2121 |
+
"7909": 505,
|
2122 |
+
"791": 1764,
|
2123 |
+
"7910": 896,
|
2124 |
+
"7912": 1822,
|
2125 |
+
"792": 1458,
|
2126 |
+
"7923": 1303,
|
2127 |
+
"7925": 1206,
|
2128 |
+
"7926": 1058,
|
2129 |
+
"7932": 562,
|
2130 |
+
"7933": 852,
|
2131 |
+
"7938": 542,
|
2132 |
+
"7939": 607,
|
2133 |
+
"7942": 1564,
|
2134 |
+
"7945": 672,
|
2135 |
+
"7946": 2096,
|
2136 |
+
"7949": 624,
|
2137 |
+
"7956": 873,
|
2138 |
+
"7957": 259,
|
2139 |
+
"7959": 539,
|
2140 |
+
"7962": 283,
|
2141 |
+
"7967": 744,
|
2142 |
+
"797": 1892,
|
2143 |
+
"7975": 2407,
|
2144 |
+
"7976": 2312,
|
2145 |
+
"7981": 481,
|
2146 |
+
"7982": 1006,
|
2147 |
+
"7988": 2023,
|
2148 |
+
"7991": 1123,
|
2149 |
+
"7994": 851,
|
2150 |
+
"7995": 957,
|
2151 |
+
"7997": 1244,
|
2152 |
+
"8005": 2057,
|
2153 |
+
"8006": 507,
|
2154 |
+
"8008": 287,
|
2155 |
+
"8009": 1831,
|
2156 |
+
"8011": 1129,
|
2157 |
+
"8012": 1696,
|
2158 |
+
"8014": 19,
|
2159 |
+
"8015": 2257,
|
2160 |
+
"8023": 2218,
|
2161 |
+
"8028": 920,
|
2162 |
+
"803": 543,
|
2163 |
+
"8033": 1428,
|
2164 |
+
"8040": 2133,
|
2165 |
+
"8042": 1227,
|
2166 |
+
"8044": 2285,
|
2167 |
+
"8050": 1096,
|
2168 |
+
"8051": 126,
|
2169 |
+
"8057": 767,
|
2170 |
+
"8058": 1352,
|
2171 |
+
"806": 1136,
|
2172 |
+
"8063": 162,
|
2173 |
+
"8066": 338,
|
2174 |
+
"807": 1606,
|
2175 |
+
"8071": 1442,
|
2176 |
+
"8072": 1584,
|
2177 |
+
"8075": 769,
|
2178 |
+
"8080": 821,
|
2179 |
+
"8087": 1830,
|
2180 |
+
"8088": 58,
|
2181 |
+
"8095": 237,
|
2182 |
+
"8097": 455,
|
2183 |
+
"8098": 205,
|
2184 |
+
"81": 272,
|
2185 |
+
"810": 1646,
|
2186 |
+
"8108": 197,
|
2187 |
+
"811": 2074,
|
2188 |
+
"8112": 1966,
|
2189 |
+
"8113": 889,
|
2190 |
+
"8118": 269,
|
2191 |
+
"8119": 377,
|
2192 |
+
"8123": 55,
|
2193 |
+
"8131": 2415,
|
2194 |
+
"8138": 471,
|
2195 |
+
"8142": 859,
|
2196 |
+
"8143": 1709,
|
2197 |
+
"8148": 1666,
|
2198 |
+
"815": 448,
|
2199 |
+
"8152": 362,
|
2200 |
+
"8156": 1714,
|
2201 |
+
"816": 677,
|
2202 |
+
"8163": 423,
|
2203 |
+
"8164": 1992,
|
2204 |
+
"8168": 1611,
|
2205 |
+
"8169": 1416,
|
2206 |
+
"8172": 1497,
|
2207 |
+
"8173": 2339,
|
2208 |
+
"8176": 331,
|
2209 |
+
"8180": 1776,
|
2210 |
+
"8183": 644,
|
2211 |
+
"8188": 2419,
|
2212 |
+
"8190": 511,
|
2213 |
+
"8193": 249,
|
2214 |
+
"8194": 262,
|
2215 |
+
"8195": 713,
|
2216 |
+
"8197": 2099,
|
2217 |
+
"8199": 2185,
|
2218 |
+
"82": 1861,
|
2219 |
+
"8200": 1552,
|
2220 |
+
"8208": 1407,
|
2221 |
+
"8215": 1159,
|
2222 |
+
"8222": 656,
|
2223 |
+
"8224": 2402,
|
2224 |
+
"8225": 305,
|
2225 |
+
"8226": 45,
|
2226 |
+
"8228": 641,
|
2227 |
+
"8230": 2389,
|
2228 |
+
"8238": 47,
|
2229 |
+
"8240": 2041,
|
2230 |
+
"8242": 1276,
|
2231 |
+
"8245": 1391,
|
2232 |
+
"8246": 1268,
|
2233 |
+
"8250": 1944,
|
2234 |
+
"8254": 2355,
|
2235 |
+
"8259": 1618,
|
2236 |
+
"826": 1476,
|
2237 |
+
"8262": 1999,
|
2238 |
+
"8266": 463,
|
2239 |
+
"8272": 1196,
|
2240 |
+
"8273": 2217,
|
2241 |
+
"8280": 2426,
|
2242 |
+
"8288": 2359,
|
2243 |
+
"829": 655,
|
2244 |
+
"8291": 2084,
|
2245 |
+
"8295": 1404,
|
2246 |
+
"8296": 1704,
|
2247 |
+
"8297": 2330,
|
2248 |
+
"83": 72,
|
2249 |
+
"830": 304,
|
2250 |
+
"8300": 739,
|
2251 |
+
"8302": 1946,
|
2252 |
+
"8307": 1683,
|
2253 |
+
"831": 5,
|
2254 |
+
"8312": 156,
|
2255 |
+
"8316": 1674,
|
2256 |
+
"8321": 2052,
|
2257 |
+
"8322": 2238,
|
2258 |
+
"8324": 177,
|
2259 |
+
"8328": 1424,
|
2260 |
+
"8329": 808,
|
2261 |
+
"8334": 1731,
|
2262 |
+
"8337": 1856,
|
2263 |
+
"8346": 1295,
|
2264 |
+
"8347": 407,
|
2265 |
+
"835": 1114,
|
2266 |
+
"8356": 2209,
|
2267 |
+
"836": 339,
|
2268 |
+
"8367": 2075,
|
2269 |
+
"8382": 1266,
|
2270 |
+
"8388": 315,
|
2271 |
+
"8389": 1598,
|
2272 |
+
"839": 220,
|
2273 |
+
"8392": 2137,
|
2274 |
+
"8394": 1880,
|
2275 |
+
"8396": 673,
|
2276 |
+
"84": 2309,
|
2277 |
+
"8401": 716,
|
2278 |
+
"8404": 1039,
|
2279 |
+
"8410": 640,
|
2280 |
+
"8413": 1231,
|
2281 |
+
"8414": 2045,
|
2282 |
+
"8415": 1447,
|
2283 |
+
"8419": 98,
|
2284 |
+
"8421": 685,
|
2285 |
+
"8422": 1366,
|
2286 |
+
"8424": 1155,
|
2287 |
+
"8425": 199,
|
2288 |
+
"8430": 1345,
|
2289 |
+
"8432": 1798,
|
2290 |
+
"844": 1504,
|
2291 |
+
"8441": 1700,
|
2292 |
+
"8443": 1158,
|
2293 |
+
"8444": 1184,
|
2294 |
+
"8445": 1763,
|
2295 |
+
"8447": 2091,
|
2296 |
+
"845": 1435,
|
2297 |
+
"8455": 2378,
|
2298 |
+
"8459": 300,
|
2299 |
+
"846": 1843,
|
2300 |
+
"8461": 2409,
|
2301 |
+
"8463": 2395,
|
2302 |
+
"8464": 1108,
|
2303 |
+
"8465": 43,
|
2304 |
+
"8466": 1954,
|
2305 |
+
"8468": 180,
|
2306 |
+
"8470": 1147,
|
2307 |
+
"8474": 756,
|
2308 |
+
"8476": 1393,
|
2309 |
+
"8479": 922,
|
2310 |
+
"8490": 399,
|
2311 |
+
"8494": 528,
|
2312 |
+
"8498": 785,
|
2313 |
+
"8499": 1569,
|
2314 |
+
"85": 1994,
|
2315 |
+
"850": 625,
|
2316 |
+
"8500": 1788,
|
2317 |
+
"8506": 630,
|
2318 |
+
"851": 2068,
|
2319 |
+
"8527": 646,
|
2320 |
+
"8531": 1597,
|
2321 |
+
"8534": 642,
|
2322 |
+
"8536": 1591,
|
2323 |
+
"8543": 2294,
|
2324 |
+
"8544": 1304,
|
2325 |
+
"8545": 816,
|
2326 |
+
"8555": 2398,
|
2327 |
+
"8565": 1220,
|
2328 |
+
"8573": 732,
|
2329 |
+
"8575": 424,
|
2330 |
+
"8576": 1453,
|
2331 |
+
"8580": 83,
|
2332 |
+
"8587": 1959,
|
2333 |
+
"8590": 1323,
|
2334 |
+
"8591": 432,
|
2335 |
+
"8592": 537,
|
2336 |
+
"8605": 905,
|
2337 |
+
"8609": 51,
|
2338 |
+
"8619": 1012,
|
2339 |
+
"8625": 1256,
|
2340 |
+
"8629": 139,
|
2341 |
+
"8630": 228,
|
2342 |
+
"8631": 1609,
|
2343 |
+
"8632": 2128,
|
2344 |
+
"8635": 436,
|
2345 |
+
"8643": 990,
|
2346 |
+
"8644": 1283,
|
2347 |
+
"8664": 1172,
|
2348 |
+
"8666": 1637,
|
2349 |
+
"8671": 1742,
|
2350 |
+
"8675": 2251,
|
2351 |
+
"8677": 540,
|
2352 |
+
"8678": 1207,
|
2353 |
+
"868": 662,
|
2354 |
+
"8684": 720,
|
2355 |
+
"8687": 824,
|
2356 |
+
"8699": 378,
|
2357 |
+
"87": 35,
|
2358 |
+
"8705": 268,
|
2359 |
+
"8710": 2273,
|
2360 |
+
"8713": 469,
|
2361 |
+
"8718": 886,
|
2362 |
+
"8722": 743,
|
2363 |
+
"8725": 468,
|
2364 |
+
"8742": 556,
|
2365 |
+
"8747": 166,
|
2366 |
+
"8753": 1706,
|
2367 |
+
"8758": 526,
|
2368 |
+
"876": 1993,
|
2369 |
+
"8765": 1935,
|
2370 |
+
"8770": 141,
|
2371 |
+
"8771": 1083,
|
2372 |
+
"8772": 442,
|
2373 |
+
"8776": 593,
|
2374 |
+
"8778": 1859,
|
2375 |
+
"8786": 747,
|
2376 |
+
"8791": 822,
|
2377 |
+
"8797": 63,
|
2378 |
+
"8799": 1579,
|
2379 |
+
"8803": 1810,
|
2380 |
+
"8808": 2051,
|
2381 |
+
"882": 276,
|
2382 |
+
"8820": 525,
|
2383 |
+
"8824": 954,
|
2384 |
+
"8825": 544,
|
2385 |
+
"8838": 87,
|
2386 |
+
"884": 1154,
|
2387 |
+
"8842": 2317,
|
2388 |
+
"8846": 1587,
|
2389 |
+
"8848": 475,
|
2390 |
+
"8855": 492,
|
2391 |
+
"886": 1610,
|
2392 |
+
"8867": 2184,
|
2393 |
+
"887": 40,
|
2394 |
+
"8875": 495,
|
2395 |
+
"8879": 984,
|
2396 |
+
"8887": 594,
|
2397 |
+
"8897": 2221,
|
2398 |
+
"89": 201,
|
2399 |
+
"895": 2248,
|
2400 |
+
"8975": 85,
|
2401 |
+
"899": 1073,
|
2402 |
+
"90": 570,
|
2403 |
+
"9000": 1656,
|
2404 |
+
"9022": 635,
|
2405 |
+
"9023": 887,
|
2406 |
+
"9026": 866,
|
2407 |
+
"908": 2397,
|
2408 |
+
"909": 7,
|
2409 |
+
"91": 1376,
|
2410 |
+
"911": 202,
|
2411 |
+
"915": 1816,
|
2412 |
+
"92": 1565,
|
2413 |
+
"920": 932,
|
2414 |
+
"921": 2193,
|
2415 |
+
"922": 457,
|
2416 |
+
"923": 2071,
|
2417 |
+
"925": 723,
|
2418 |
+
"927": 1835,
|
2419 |
+
"93": 499,
|
2420 |
+
"937": 1277,
|
2421 |
+
"94": 1759,
|
2422 |
+
"948": 1138,
|
2423 |
+
"949": 585,
|
2424 |
+
"951": 1761,
|
2425 |
+
"953": 960,
|
2426 |
+
"954": 1098,
|
2427 |
+
"956": 1615,
|
2428 |
+
"957": 256,
|
2429 |
+
"960": 1234,
|
2430 |
+
"964": 1914,
|
2431 |
+
"968": 1120,
|
2432 |
+
"969": 2196,
|
2433 |
+
"976": 1626,
|
2434 |
+
"978": 1802,
|
2435 |
+
"979": 750,
|
2436 |
+
"98": 342,
|
2437 |
+
"982": 1594,
|
2438 |
+
"984": 779,
|
2439 |
+
"985": 2049,
|
2440 |
+
"986": 311,
|
2441 |
+
"<unk>": 0
|
2442 |
+
}
|
config/speaker_id_mapping_libri.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"14": 0, "16": 1, "17": 2, "19": 3, "20": 4, "22": 5, "23": 6, "25": 7, "26": 8, "27": 9, "28": 10, "29": 11, "30": 12, "31": 13, "32": 14, "36": 15, "37": 16, "38": 17, "39": 18, "40": 19, "44": 20, "45": 21, "46": 22, "47": 23, "49": 24, "51": 25, "52": 26, "54": 27, "55": 28, "56": 29, "57": 30, "58": 31, "60": 32, "61": 33, "62": 34, "64": 35, "65": 36, "66": 37, "70": 38, "75": 39, "77": 40, "78": 41, "79": 42, "81": 43, "82": 44, "83": 45, "84": 46, "85": 47, "87": 48, "89": 49, "90": 50, "91": 51, "92": 52, "93": 53, "94": 54, "98": 55, "100": 56, "101": 57, "102": 58, "103": 59, "104": 60, "107": 61, "110": 62, "111": 63, "112": 64, "114": 65, "115": 66, "116": 67, "118": 68, "119": 69, "121": 70, "122": 71, "123": 72, "125": 73, "126": 74, "127": 75, "128": 76, "133": 77, "147": 78, "149": 79, "150": 80, "151": 81, "152": 82, "153": 83, "154": 84, "157": 85, "159": 86, "161": 87, "163": 88, "166": 89, "167": 90, "168": 91, "173": 92, "174": 93, "175": 94, "176": 95, "177": 96, "188": 97, "192": 98, "196": 99, "198": 100, "199": 101, "200": 102, "201": 103, "202": 104, "203": 105, "204": 106, "205": 107, "207": 108, "208": 109, "209": 110, "210": 111, "211": 112, "215": 113, "216": 114, "217": 115, "218": 116, "224": 117, "225": 118, "226": 119, "227": 120, "228": 121, "229": 122, "231": 123, "233": 124, "237": 125, "238": 126, "240": 127, "242": 128, "243": 129, "245": 130, "246": 131, "248": 132, "249": 133, "250": 134, "251": 135, "252": 136, "253": 137, "254": 138, "255": 139, "258": 140, "260": 141, "263": 142, "264": 143, "265": 144, "272": 145, "273": 146, "274": 147, "277": 148, "278": 149, "283": 150, "288": 151, "289": 152, "294": 153, "296": 154, "298": 155, "302": 156, "303": 157, "307": 158, "310": 159, "311": 160, "313": 161, "317": 162, "318": 163, "319": 164, "322": 165, "323": 166, "328": 167, "329": 168, "331": 169, "332": 170, "335": 171, "336": 172, "337": 173, "339": 174, "340": 175, "345": 176, "348": 177, "353": 178, "359": 179, "362": 180, "365": 181, "366": 182, "367": 183, "369": 184, "373": 185, "374": 186, "377": 187, "380": 188, "392": 189, "398": 190, "402": 191, "403": 192, "404": 193, "405": 194, "408": 195, "409": 196, "412": 197, "413": 198, "421": 199, "422": 200, "426": 201, "428": 202, "432": 203, "434": 204, "439": 205, "441": 206, "444": 207, "445": 208, "446": 209, "448": 210, "451": 211, "453": 212, "454": 213, "458": 214, "459": 215, "460": 216, "464": 217, "466": 218, "470": 219, "472": 220, "474": 221, "475": 222, "476": 223, "479": 224, "480": 225, "481": 226, "483": 227, "487": 228, "489": 229, "492": 230, "497": 231, "500": 232, "501": 233, "505": 234, "510": 235, "511": 236, "512": 237, "517": 238, "525": 239, "533": 240, "534": 241, "542": 242, "543": 243, "544": 244, "548": 245, "549": 246, "551": 247, "557": 248, "559": 249, "561": 250, "567": 251, "568": 252, "569": 253, "572": 254, "576": 255, "580": 256, "581": 257, "583": 258, "584": 259, "585": 260, "587": 261, "589": 262, "593": 263, "594": 264, "596": 265, "597": 266, "598": 267, "606": 268, "608": 269, "612": 270, "613": 271, "614": 272, "622": 273, "625": 274, "636": 275, "637": 276, "639": 277, "644": 278, "652": 279, "663": 280, "664": 281, "666": 282, "667": 283, "669": 284, "671": 285, "672": 286, "679": 287, "681": 288, "684": 289, "688": 290, "690": 291, "696": 292, "698": 293, "699": 294, "700": 295, "705": 296, "707": 297, "708": 298, "711": 299, "712": 300, "713": 301, "716": 302, "718": 303, "720": 304, "724": 305, "726": 306, "727": 307, "728": 308, "730": 309, "731": 310, "737": 311, "742": 312, "753": 313, "764": 314, "766": 315, "770": 316, "774": 317, "777": 318, "778": 319, "779": 320, "780": 321, "781": 322, "782": 323, "783": 324, "789": 325, "791": 326, "792": 327, "797": 328, "803": 329, "806": 330, "807": 331, "810": 332, "811": 333, "815": 334, "816": 335, "820": 336, "826": 337, "829": 338, "830": 339, "831": 340, "834": 341, "835": 342, "836": 343, "839": 344, "844": 345, "845": 346, "846": 347, "850": 348, "851": 349, "868": 350, "876": 351, "882": 352, "884": 353, "886": 354, "887": 355, "895": 356, "899": 357, "908": 358, "909": 359, "911": 360, "915": 361, "920": 362, "921": 363, "922": 364, "923": 365, "925": 366, "927": 367, "937": 368, "948": 369, "949": 370, "951": 371, "953": 372, "954": 373, "956": 374, "957": 375, "960": 376, "964": 377, "968": 378, "969": 379, "976": 380, "978": 381, "979": 382, "982": 383, "984": 384, "985": 385, "986": 386, "1001": 387, "1006": 388, "1012": 389, "1018": 390, "1025": 391, "1027": 392, "1028": 393, "1031": 394, "1034": 395, "1040": 396, "1046": 397, "1049": 398, "1050": 399, "1051": 400, "1052": 401, "1053": 402, "1054": 403, "1058": 404, "1060": 405, "1061": 406, "1065": 407, "1066": 408, "1069": 409, "1079": 410, "1081": 411, "1084": 412, "1085": 413, "1088": 414, "1089": 415, "1092": 416, "1093": 417, "1094": 418, "1096": 419, "1097": 420, "1098": 421, "1100": 422, "1107": 423, "1110": 424, "1112": 425, "1116": 426, "1121": 427, "1124": 428, "1132": 429, "1152": 430, "1154": 431, "1160": 432, "1161": 433, "1165": 434, "1166": 435, "1168": 436, "1171": 437, "1175": 438, "1179": 439, "1182": 440, "1183": 441, "1184": 442, "1187": 443, "1188": 444, "1195": 445, "1200": 446, "1212": 447, "1221": 448, "1222": 449, "1224": 450, "1225": 451, "1226": 452, "1230": 453, "1235": 454, "1239": 455, "1241": 456, "1246": 457, "1250": 458, "1252": 459, "1255": 460, "1258": 461, "1259": 462, "1260": 463, "1261": 464, "1263": 465, "1264": 466, "1265": 467, "1266": 468, "1271": 469, "1272": 470, "1274": 471, "1280": 472, "1283": 473, "1284": 474, "1289": 475, "1290": 476, "1291": 477, "1296": 478, "1298": 479, "1311": 480, "1313": 481, "1316": 482, "1320": 483, "1322": 484, "1323": 485, "1331": 486, "1334": 487, "1335": 488, "1336": 489, "1337": 490, "1341": 491, "1342": 492, "1343": 493, "1347": 494, "1348": 495, "1349": 496, "1353": 497, "1355": 498, "1363": 499, "1365": 500, "1367": 501, "1370": 502, "1373": 503, "1374": 504, "1379": 505, "1382": 506, "1383": 507, "1384": 508, "1387": 509, "1390": 510, "1392": 511, "1401": 512, "1403": 513, "1413": 514, "1414": 515, "1417": 516, "1421": 517, "1422": 518, "1425": 519, "1430": 520, "1444": 521, "1445": 522, "1446": 523, "1447": 524, "1448": 525, "1455": 526, "1456": 527, "1460": 528, "1462": 529, "1463": 530, "1469": 531, "1472": 532, "1473": 533, "1474": 534, "1482": 535, "1485": 536, "1487": 537, "1492": 538, "1494": 539, "1495": 540, "1498": 541, "1502": 542, "1505": 543, "1509": 544, "1513": 545, "1535": 546, "1536": 547, "1544": 548, "1545": 549, "1547": 550, "1552": 551, "1553": 552, "1556": 553, "1559": 554, "1563": 555, "1564": 556, "1566": 557, "1569": 558, "1571": 559, "1572": 560, "1578": 561, "1579": 562, "1580": 563, "1585": 564, "1593": 565, "1594": 566, "1595": 567, "1601": 568, "1603": 569, "1607": 570, "1614": 571, "1618": 572, "1621": 573, "1624": 574, "1629": 575, "1630": 576, "1633": 577, "1634": 578, "1636": 579, "1638": 580, "1639": 581, "1641": 582, "1643": 583, "1645": 584, "1646": 585, "1647": 586, "1648": 587, "1649": 588, "1650": 589, "1651": 590, "1653": 591, "1664": 592, "1665": 593, "1668": 594, "1673": 595, "1674": 596, "1678": 597, "1679": 598, "1680": 599, "1681": 600, "1685": 601, "1686": 602, "1688": 603, "1690": 604, "1691": 605, "1693": 606, "1695": 607, "1696": 608, "1699": 609, "1701": 610, "1704": 611, "1705": 612, "1708": 613, "1710": 614, "1714": 615, "1715": 616, "1717": 617, "1721": 618, "1723": 619, "1724": 620, "1726": 621, "1731": 622, "1733": 623, "1734": 624, "1736": 625, "1737": 626, "1740": 627, "1743": 628, "1746": 629, "1748": 630, "1750": 631, "1752": 632, "1754": 633, "1756": 634, "1757": 635, "1760": 636, "1765": 637, "1767": 638, "1769": 639, "1772": 640, "1773": 641, "1776": 642, "1777": 643, "1779": 644, "1780": 645, "1784": 646, "1789": 647, "1795": 648, "1800": 649, "1801": 650, "1804": 651, "1806": 652, "1809": 653, "1811": 654, "1813": 655, "1815": 656, "1819": 657, "1825": 658, "1826": 659, "1827": 660, "1828": 661, "1841": 662, "1844": 663, "1845": 664, "1846": 665, "1849": 666, "1851": 667, "1859": 668, "1863": 669, "1867": 670, "1868": 671, "1870": 672, "1874": 673, "1878": 674, "1885": 675, "1898": 676, "1901": 677, "1903": 678, "1913": 679, "1914": 680, "1919": 681, "1920": 682, "1923": 683, "1924": 684, "1926": 685, "1931": 686, "1933": 687, "1938": 688, "1943": 689, "1944": 690, "1958": 691, "1961": 692, "1963": 693, "1968": 694, "1970": 695, "1974": 696, "1977": 697, "1985": 698, "1987": 699, "1988": 700, "1989": 701, "1992": 702, "1993": 703, "1995": 704, "1998": 705, "2001": 706, "2002": 707, "2003": 708, "2004": 709, "2007": 710, "2010": 711, "2012": 712, "2013": 713, "2021": 714, "2026": 715, "2033": 716, "2035": 717, "2039": 718, "2042": 719, "2045": 720, "2046": 721, "2050": 722, "2051": 723, "2053": 724, "2056": 725, "2060": 726, "2061": 727, "2062": 728, "2063": 729, "2067": 730, "2068": 731, "2074": 732, "2078": 733, "2085": 734, "2086": 735, "2089": 736, "2090": 737, "2092": 738, "2093": 739, "2094": 740, "2096": 741, "2100": 742, "2104": 743, "2110": 744, "2113": 745, "2122": 746, "2127": 747, "2133": 748, "2136": 749, "2137": 750, "2140": 751, "2143": 752, "2146": 753, "2148": 754, "2149": 755, "2152": 756, "2156": 757, "2159": 758, "2162": 759, "2167": 760, "2182": 761, "2185": 762, "2194": 763, "2195": 764, "2196": 765, "2198": 766, "2201": 767, "2204": 768, "2208": 769, "2229": 770, "2230": 771, "2234": 772, "2237": 773, "2238": 774, "2240": 775, "2246": 776, "2254": 777, "2256": 778, "2262": 779, "2269": 780, "2270": 781, "2272": 782, "2273": 783, "2275": 784, "2276": 785, "2277": 786, "2279": 787, "2284": 788, "2285": 789, "2288": 790, "2289": 791, "2292": 792, "2294": 793, "2297": 794, "2299": 795, "2300": 796, "2301": 797, "2309": 798, "2312": 799, "2319": 800, "2334": 801, "2339": 802, "2341": 803, "2346": 804, "2348": 805, "2351": 806, "2356": 807, "2361": 808, "2364": 809, "2368": 810, "2374": 811, "2380": 812, "2384": 813, "2388": 814, "2391": 815, "2393": 816, "2397": 817, "2401": 818, "2404": 819, "2405": 820, "2407": 821, "2411": 822, "2412": 823, "2414": 824, "2416": 825, "2427": 826, "2428": 827, "2436": 828, "2437": 829, "2445": 830, "2448": 831, "2473": 832, "2481": 833, "2485": 834, "2487": 835, "2488": 836, "2491": 837, "2494": 838, "2496": 839, "2498": 840, "2499": 841, "2504": 842, "2506": 843, "2512": 844, "2514": 845, "2517": 846, "2518": 847, "2522": 848, "2526": 849, "2531": 850, "2532": 851, "2533": 852, "2541": 853, "2544": 854, "2545": 855, "2552": 856, "2553": 857, "2562": 858, "2568": 859, "2570": 860, "2573": 861, "2574": 862, "2577": 863, "2581": 864, "2582": 865, "2587": 866, "2588": 867, "2589": 868, "2592": 869, "2598": 870, "2606": 871, "2607": 872, "2609": 873, "2618": 874, "2624": 875, "2625": 876, "2628": 877, "2638": 878, "2652": 879, "2654": 880, "2660": 881, "2671": 882, "2673": 883, "2674": 884, "2676": 885, "2688": 886, "2691": 887, "2694": 888, "2696": 889, "2709": 890, "2712": 891, "2724": 892, "2730": 893, "2733": 894, "2735": 895, "2740": 896, "2741": 897, "2748": 898, "2751": 899, "2754": 900, "2758": 901, "2762": 902, "2764": 903, "2769": 904, "2774": 905, "2775": 906, "2785": 907, "2787": 908, "2790": 909, "2792": 910, "2803": 911, "2812": 912, "2815": 913, "2816": 914, "2817": 915, "2823": 916, "2825": 917, "2827": 918, "2830": 919, "2834": 920, "2836": 921, "2843": 922, "2853": 923, "2854": 924, "2882": 925, "2893": 926, "2895": 927, "2902": 928, "2909": 929, "2910": 930, "2911": 931, "2919": 932, "2920": 933, "2925": 934, "2929": 935, "2930": 936, "2943": 937, "2946": 938, "2952": 939, "2960": 940, "2961": 941, "2967": 942, "2971": 943, "2975": 944, "2979": 945, "2985": 946, "2988": 947, "2989": 948, "2990": 949, "2992": 950, "2997": 951, "2998": 952, "2999": 953, "3000": 954, "3001": 955, "3003": 956, "3005": 957, "3006": 958, "3008": 959, "3009": 960, "3020": 961, "3021": 962, "3025": 963, "3032": 964, "3033": 965, "3045": 966, "3046": 967, "3053": 968, "3054": 969, "3060": 970, "3063": 971, "3070": 972, "3072": 973, "3079": 974, "3080": 975, "3081": 976, "3082": 977, "3083": 978, "3088": 979, "3090": 980, "3092": 981, "3094": 982, "3097": 983, "3098": 984, "3100": 985, "3105": 986, "3109": 987, "3112": 988, "3114": 989, "3118": 990, "3119": 991, "3125": 992, "3132": 993, "3135": 994, "3137": 995, "3138": 996, "3142": 997, "3143": 998, "3144": 999, "3148": 1000, "3157": 1001, "3168": 1002, "3170": 1003, "3171": 1004, "3172": 1005, "3179": 1006, "3180": 1007, "3185": 1008, "3187": 1009, "3192": 1010, "3196": 1011, "3214": 1012, "3215": 1013, "3221": 1014, "3224": 1015, "3227": 1016, "3228": 1017, "3230": 1018, "3235": 1019, "3238": 1020, "3240": 1021, "3242": 1022, "3244": 1023, "3245": 1024, "3257": 1025, "3258": 1026, "3259": 1027, "3261": 1028, "3268": 1029, "3271": 1030, "3272": 1031, "3274": 1032, "3285": 1033, "3288": 1034, "3289": 1035, "3290": 1036, "3294": 1037, "3307": 1038, "3314": 1039, "3318": 1040, "3319": 1041, "3328": 1042, "3330": 1043, "3331": 1044, "3334": 1045, "3340": 1046, "3346": 1047, "3347": 1048, "3356": 1049, "3357": 1050, "3361": 1051, "3368": 1052, "3370": 1053, "3373": 1054, "3374": 1055, "3379": 1056, "3380": 1057, "3381": 1058, "3389": 1059, "3394": 1060, "3400": 1061, "3409": 1062, "3411": 1063, "3417": 1064, "3433": 1065, "3436": 1066, "3440": 1067, "3446": 1068, "3448": 1069, "3465": 1070, "3467": 1071, "3470": 1072, "3479": 1073, "3482": 1074, "3483": 1075, "3486": 1076, "3488": 1077, "3490": 1078, "3493": 1079, "3500": 1080, "3503": 1081, "3513": 1082, "3521": 1083, "3526": 1084, "3528": 1085, "3536": 1086, "3537": 1087, "3538": 1088, "3540": 1089, "3541": 1090, "3546": 1091, "3547": 1092, "3549": 1093, "3551": 1094, "3553": 1095, "3554": 1096, "3557": 1097, "3559": 1098, "3564": 1099, "3567": 1100, "3570": 1101, "3571": 1102, "3575": 1103, "3576": 1104, "3584": 1105, "3587": 1106, "3588": 1107, "3592": 1108, "3595": 1109, "3598": 1110, "3606": 1111, "3607": 1112, "3615": 1113, "3618": 1114, "3630": 1115, "3638": 1116, "3641": 1117, "3645": 1118, "3647": 1119, "3650": 1120, "3654": 1121, "3656": 1122, "3657": 1123, "3660": 1124, "3663": 1125, "3664": 1126, "3665": 1127, "3675": 1128, "3679": 1129, "3681": 1130, "3686": 1131, "3691": 1132, "3698": 1133, "3699": 1134, "3703": 1135, "3717": 1136, "3723": 1137, "3728": 1138, "3729": 1139, "3733": 1140, "3738": 1141, "3744": 1142, "3747": 1143, "3752": 1144, "3757": 1145, "3764": 1146, "3779": 1147, "3780": 1148, "3781": 1149, "3783": 1150, "3790": 1151, "3792": 1152, "3793": 1153, "3796": 1154, "3798": 1155, "3807": 1156, "3816": 1157, "3819": 1158, "3825": 1159, "3830": 1160, "3835": 1161, "3843": 1162, "3845": 1163, "3848": 1164, "3851": 1165, "3852": 1166, "3853": 1167, "3857": 1168, "3864": 1169, "3866": 1170, "3867": 1171, "3869": 1172, "3871": 1173, "3876": 1174, "3879": 1175, "3885": 1176, "3889": 1177, "3894": 1178, "3895": 1179, "3896": 1180, "3905": 1181, "3906": 1182, "3909": 1183, "3911": 1184, "3912": 1185, "3914": 1186, "3915": 1187, "3922": 1188, "3923": 1189, "3925": 1190, "3926": 1191, "3927": 1192, "3928": 1193, "3934": 1194, "3945": 1195, "3947": 1196, "3955": 1197, "3959": 1198, "3962": 1199, "3967": 1200, "3969": 1201, "3972": 1202, "3977": 1203, "3979": 1204, "3982": 1205, "3983": 1206, "3989": 1207, "3990": 1208, "3992": 1209, "3994": 1210, "3997": 1211, "4005": 1212, "4009": 1213, "4010": 1214, "4013": 1215, "4014": 1216, "4015": 1217, "4017": 1218, "4018": 1219, "4019": 1220, "4020": 1221, "4021": 1222, "4034": 1223, "4039": 1224, "4042": 1225, "4044": 1226, "4051": 1227, "4054": 1228, "4057": 1229, "4059": 1230, "4063": 1231, "4064": 1232, "4071": 1233, "4077": 1234, "4078": 1235, "4085": 1236, "4088": 1237, "4090": 1238, "4098": 1239, "4104": 1240, "4108": 1241, "4110": 1242, "4111": 1243, "4116": 1244, "4122": 1245, "4133": 1246, "4137": 1247, "4138": 1248, "4145": 1249, "4148": 1250, "4152": 1251, "4153": 1252, "4156": 1253, "4160": 1254, "4161": 1255, "4172": 1256, "4174": 1257, "4179": 1258, "4189": 1259, "4191": 1260, "4192": 1261, "4193": 1262, "4195": 1263, "4196": 1264, "4198": 1265, "4205": 1266, "4211": 1267, "4214": 1268, "4216": 1269, "4217": 1270, "4218": 1271, "4222": 1272, "4225": 1273, "4226": 1274, "4234": 1275, "4235": 1276, "4236": 1277, "4238": 1278, "4243": 1279, "4246": 1280, "4257": 1281, "4260": 1282, "4262": 1283, "4263": 1284, "4267": 1285, "4273": 1286, "4277": 1287, "4278": 1288, "4280": 1289, "4289": 1290, "4290": 1291, "4294": 1292, "4295": 1293, "4297": 1294, "4305": 1295, "4310": 1296, "4313": 1297, "4321": 1298, "4323": 1299, "4327": 1300, "4331": 1301, "4335": 1302, "4340": 1303, "4344": 1304, "4345": 1305, "4350": 1306, "4352": 1307, "4356": 1308, "4358": 1309, "4362": 1310, "4363": 1311, "4379": 1312, "4381": 1313, "4396": 1314, "4397": 1315, "4402": 1316, "4406": 1317, "4407": 1318, "4411": 1319, "4415": 1320, "4420": 1321, "4422": 1322, "4423": 1323, "4425": 1324, "4427": 1325, "4428": 1326, "4433": 1327, "4434": 1328, "4438": 1329, "4441": 1330, "4442": 1331, "4443": 1332, "4446": 1333, "4447": 1334, "4455": 1335, "4463": 1336, "4474": 1337, "4480": 1338, "4481": 1339, "4484": 1340, "4487": 1341, "4490": 1342, "4492": 1343, "4495": 1344, "4507": 1345, "4511": 1346, "4513": 1347, "4515": 1348, "4519": 1349, "4520": 1350, "4535": 1351, "4545": 1352, "4546": 1353, "4549": 1354, "4563": 1355, "4570": 1356, "4572": 1357, "4576": 1358, "4583": 1359, "4586": 1360, "4590": 1361, "4591": 1362, "4592": 1363, "4594": 1364, "4595": 1365, "4598": 1366, "4599": 1367, "4629": 1368, "4640": 1369, "4652": 1370, "4659": 1371, "4660": 1372, "4667": 1373, "4680": 1374, "4681": 1375, "4687": 1376, "4693": 1377, "4697": 1378, "4699": 1379, "4701": 1380, "4703": 1381, "4705": 1382, "4706": 1383, "4710": 1384, "4712": 1385, "4719": 1386, "4731": 1387, "4733": 1388, "4734": 1389, "4738": 1390, "4741": 1391, "4742": 1392, "4744": 1393, "4748": 1394, "4750": 1395, "4757": 1396, "4766": 1397, "4767": 1398, "4770": 1399, "4771": 1400, "4773": 1401, "4779": 1402, "4788": 1403, "4791": 1404, "4799": 1405, "4800": 1406, "4806": 1407, "4807": 1408, "4813": 1409, "4821": 1410, "4824": 1411, "4830": 1412, "4831": 1413, "4836": 1414, "4837": 1415, "4839": 1416, "4841": 1417, "4846": 1418, "4848": 1419, "4852": 1420, "4853": 1421, "4854": 1422, "4856": 1423, "4859": 1424, "4860": 1425, "4863": 1426, "4872": 1427, "4894": 1428, "4898": 1429, "4899": 1430, "4910": 1431, "4915": 1432, "4926": 1433, "4930": 1434, "4931": 1435, "4936": 1436, "4945": 1437, "4948": 1438, "4955": 1439, "4957": 1440, "4958": 1441, "4959": 1442, "4964": 1443, "4965": 1444, "4967": 1445, "4969": 1446, "4970": 1447, "4973": 1448, "4979": 1449, "4991": 1450, "4992": 1451, "4993": 1452, "5000": 1453, "5002": 1454, "5005": 1455, "5007": 1456, "5009": 1457, "5012": 1458, "5013": 1459, "5019": 1460, "5022": 1461, "5023": 1462, "5029": 1463, "5036": 1464, "5038": 1465, "5039": 1466, "5043": 1467, "5044": 1468, "5045": 1469, "5049": 1470, "5054": 1471, "5060": 1472, "5062": 1473, "5063": 1474, "5076": 1475, "5077": 1476, "5082": 1477, "5092": 1478, "5093": 1479, "5101": 1480, "5104": 1481, "5105": 1482, "5115": 1483, "5118": 1484, "5123": 1485, "5126": 1486, "5132": 1487, "5133": 1488, "5136": 1489, "5139": 1490, "5141": 1491, "5142": 1492, "5147": 1493, "5152": 1494, "5154": 1495, "5157": 1496, "5163": 1497, "5164": 1498, "5172": 1499, "5181": 1500, "5183": 1501, "5185": 1502, "5186": 1503, "5189": 1504, "5190": 1505, "5192": 1506, "5198": 1507, "5199": 1508, "5206": 1509, "5217": 1510, "5220": 1511, "5224": 1512, "5230": 1513, "5233": 1514, "5239": 1515, "5242": 1516, "5244": 1517, "5245": 1518, "5246": 1519, "5248": 1520, "5252": 1521, "5261": 1522, "5266": 1523, "5269": 1524, "5271": 1525, "5278": 1526, "5280": 1527, "5285": 1528, "5287": 1529, "5290": 1530, "5293": 1531, "5296": 1532, "5299": 1533, "5304": 1534, "5319": 1535, "5321": 1536, "5322": 1537, "5325": 1538, "5328": 1539, "5333": 1540, "5337": 1541, "5338": 1542, "5339": 1543, "5340": 1544, "5350": 1545, "5355": 1546, "5361": 1547, "5375": 1548, "5379": 1549, "5386": 1550, "5389": 1551, "5390": 1552, "5393": 1553, "5400": 1554, "5401": 1555, "5405": 1556, "5412": 1557, "5424": 1558, "5429": 1559, "5439": 1560, "5442": 1561, "5445": 1562, "5448": 1563, "5456": 1564, "5459": 1565, "5460": 1566, "5463": 1567, "5468": 1568, "5471": 1569, "5480": 1570, "5484": 1571, "5487": 1572, "5489": 1573, "5506": 1574, "5513": 1575, "5514": 1576, "5519": 1577, "5536": 1578, "5538": 1579, "5543": 1580, "5545": 1581, "5561": 1582, "5565": 1583, "5567": 1584, "5569": 1585, "5570": 1586, "5583": 1587, "5588": 1588, "5604": 1589, "5606": 1590, "5618": 1591, "5620": 1592, "5622": 1593, "5628": 1594, "5635": 1595, "5636": 1596, "5637": 1597, "5639": 1598, "5641": 1599, "5649": 1600, "5652": 1601, "5653": 1602, "5655": 1603, "5656": 1604, "5660": 1605, "5661": 1606, "5665": 1607, "5671": 1608, "5672": 1609, "5678": 1610, "5682": 1611, "5683": 1612, "5684": 1613, "5688": 1614, "5694": 1615, "5700": 1616, "5703": 1617, "5712": 1618, "5717": 1619, "5719": 1620, "5720": 1621, "5723": 1622, "5724": 1623, "5725": 1624, "5727": 1625, "5731": 1626, "5733": 1627, "5735": 1628, "5740": 1629, "5746": 1630, "5750": 1631, "5756": 1632, "5764": 1633, "5765": 1634, "5767": 1635, "5772": 1636, "5776": 1637, "5778": 1638, "5781": 1639, "5784": 1640, "5789": 1641, "5791": 1642, "5796": 1643, "5802": 1644, "5808": 1645, "5809": 1646, "5810": 1647, "5825": 1648, "5826": 1649, "5831": 1650, "5837": 1651, "5840": 1652, "5849": 1653, "5854": 1654, "5860": 1655, "5867": 1656, "5868": 1657, "5874": 1658, "5876": 1659, "5883": 1660, "5886": 1661, "5890": 1662, "5893": 1663, "5894": 1664, "5895": 1665, "5906": 1666, "5909": 1667, "5910": 1668, "5911": 1669, "5913": 1670, "5914": 1671, "5918": 1672, "5929": 1673, "5933": 1674, "5935": 1675, "5940": 1676, "5949": 1677, "5951": 1678, "5952": 1679, "5968": 1680, "5970": 1681, "5975": 1682, "5977": 1683, "5979": 1684, "5980": 1685, "5983": 1686, "5984": 1687, "5985": 1688, "5993": 1689, "6000": 1690, "6003": 1691, "6006": 1692, "6009": 1693, "6010": 1694, "6014": 1695, "6019": 1696, "6025": 1697, "6030": 1698, "6032": 1699, "6035": 1700, "6037": 1701, "6038": 1702, "6051": 1703, "6054": 1704, "6060": 1705, "6064": 1706, "6065": 1707, "6070": 1708, "6072": 1709, "6075": 1710, "6076": 1711, "6077": 1712, "6078": 1713, "6080": 1714, "6081": 1715, "6082": 1716, "6084": 1717, "6087": 1718, "6088": 1719, "6097": 1720, "6098": 1721, "6099": 1722, "6102": 1723, "6104": 1724, "6106": 1725, "6111": 1726, "6115": 1727, "6119": 1728, "6120": 1729, "6121": 1730, "6123": 1731, "6126": 1732, "6127": 1733, "6128": 1734, "6131": 1735, "6135": 1736, "6138": 1737, "6139": 1738, "6145": 1739, "6147": 1740, "6153": 1741, "6157": 1742, "6159": 1743, "6160": 1744, "6167": 1745, "6173": 1746, "6177": 1747, "6178": 1748, "6181": 1749, "6184": 1750, "6188": 1751, "6189": 1752, "6196": 1753, "6199": 1754, "6206": 1755, "6209": 1756, "6211": 1757, "6215": 1758, "6221": 1759, "6224": 1760, "6227": 1761, "6232": 1762, "6233": 1763, "6235": 1764, "6236": 1765, "6241": 1766, "6242": 1767, "6248": 1768, "6249": 1769, "6251": 1770, "6254": 1771, "6258": 1772, "6267": 1773, "6269": 1774, "6272": 1775, "6276": 1776, "6281": 1777, "6284": 1778, "6286": 1779, "6288": 1780, "6294": 1781, "6295": 1782, "6300": 1783, "6308": 1784, "6311": 1785, "6313": 1786, "6317": 1787, "6319": 1788, "6323": 1789, "6324": 1790, "6330": 1791, "6332": 1792, "6333": 1793, "6339": 1794, "6341": 1795, "6345": 1796, "6346": 1797, "6351": 1798, "6352": 1799, "6353": 1800, "6356": 1801, "6358": 1802, "6359": 1803, "6364": 1804, "6367": 1805, "6368": 1806, "6370": 1807, "6371": 1808, "6373": 1809, "6377": 1810, "6378": 1811, "6385": 1812, "6388": 1813, "6391": 1814, "6395": 1815, "6399": 1816, "6402": 1817, "6406": 1818, "6407": 1819, "6411": 1820, "6415": 1821, "6418": 1822, "6426": 1823, "6432": 1824, "6436": 1825, "6437": 1826, "6446": 1827, "6454": 1828, "6455": 1829, "6458": 1830, "6459": 1831, "6467": 1832, "6476": 1833, "6482": 1834, "6484": 1835, "6488": 1836, "6492": 1837, "6494": 1838, "6497": 1839, "6499": 1840, "6505": 1841, "6506": 1842, "6509": 1843, "6510": 1844, "6512": 1845, "6513": 1846, "6518": 1847, "6519": 1848, "6529": 1849, "6531": 1850, "6533": 1851, "6534": 1852, "6535": 1853, "6538": 1854, "6539": 1855, "6540": 1856, "6544": 1857, "6548": 1858, "6549": 1859, "6550": 1860, "6553": 1861, "6555": 1862, "6557": 1863, "6563": 1864, "6567": 1865, "6568": 1866, "6574": 1867, "6575": 1868, "6583": 1869, "6590": 1870, "6594": 1871, "6599": 1872, "6609": 1873, "6610": 1874, "6614": 1875, "6620": 1876, "6625": 1877, "6627": 1878, "6636": 1879, "6637": 1880, "6641": 1881, "6643": 1882, "6652": 1883, "6660": 1884, "6668": 1885, "6670": 1886, "6673": 1887, "6674": 1888, "6676": 1889, "6683": 1890, "6685": 1891, "6686": 1892, "6687": 1893, "6689": 1894, "6690": 1895, "6694": 1896, "6695": 1897, "6696": 1898, "6701": 1899, "6705": 1900, "6707": 1901, "6709": 1902, "6713": 1903, "6724": 1904, "6726": 1905, "6727": 1906, "6733": 1907, "6735": 1908, "6741": 1909, "6743": 1910, "6746": 1911, "6747": 1912, "6749": 1913, "6752": 1914, "6753": 1915, "6754": 1916, "6758": 1917, "6763": 1918, "6773": 1919, "6777": 1920, "6782": 1921, "6784": 1922, "6788": 1923, "6792": 1924, "6794": 1925, "6798": 1926, "6804": 1927, "6807": 1928, "6818": 1929, "6821": 1930, "6828": 1931, "6829": 1932, "6836": 1933, "6841": 1934, "6846": 1935, "6848": 1936, "6849": 1937, "6853": 1938, "6865": 1939, "6875": 1940, "6877": 1941, "6880": 1942, "6882": 1943, "6883": 1944, "6892": 1945, "6895": 1946, "6902": 1947, "6904": 1948, "6906": 1949, "6912": 1950, "6913": 1951, "6914": 1952, "6918": 1953, "6923": 1954, "6924": 1955, "6925": 1956, "6927": 1957, "6930": 1958, "6937": 1959, "6938": 1960, "6943": 1961, "6945": 1962, "6947": 1963, "6950": 1964, "6951": 1965, "6954": 1966, "6956": 1967, "6962": 1968, "6963": 1969, "6965": 1970, "6967": 1971, "6974": 1972, "6978": 1973, "6981": 1974, "6993": 1975, "7000": 1976, "7001": 1977, "7008": 1978, "7009": 1979, "7011": 1980, "7012": 1981, "7018": 1982, "7021": 1983, "7026": 1984, "7030": 1985, "7046": 1986, "7051": 1987, "7055": 1988, "7059": 1989, "7061": 1990, "7062": 1991, "7065": 1992, "7067": 1993, "7069": 1994, "7073": 1995, "7078": 1996, "7079": 1997, "7085": 1998, "7090": 1999, "7092": 2000, "7095": 2001, "7096": 2002, "7097": 2003, "7105": 2004, "7107": 2005, "7113": 2006, "7117": 2007, "7120": 2008, "7121": 2009, "7125": 2010, "7126": 2011, "7127": 2012, "7128": 2013, "7131": 2014, "7134": 2015, "7135": 2016, "7138": 2017, "7139": 2018, "7140": 2019, "7143": 2020, "7145": 2021, "7147": 2022, "7148": 2023, "7150": 2024, "7155": 2025, "7169": 2026, "7170": 2027, "7176": 2028, "7177": 2029, "7178": 2030, "7188": 2031, "7189": 2032, "7190": 2033, "7197": 2034, "7198": 2035, "7199": 2036, "7205": 2037, "7208": 2038, "7215": 2039, "7218": 2040, "7220": 2041, "7223": 2042, "7226": 2043, "7228": 2044, "7229": 2045, "7238": 2046, "7239": 2047, "7240": 2048, "7241": 2049, "7242": 2050, "7245": 2051, "7246": 2052, "7247": 2053, "7250": 2054, "7255": 2055, "7258": 2056, "7263": 2057, "7264": 2058, "7265": 2059, "7276": 2060, "7277": 2061, "7278": 2062, "7285": 2063, "7286": 2064, "7294": 2065, "7297": 2066, "7299": 2067, "7301": 2068, "7302": 2069, "7307": 2070, "7312": 2071, "7313": 2072, "7314": 2073, "7315": 2074, "7316": 2075, "7318": 2076, "7320": 2077, "7326": 2078, "7327": 2079, "7331": 2080, "7333": 2081, "7335": 2082, "7337": 2083, "7338": 2084, "7339": 2085, "7342": 2086, "7346": 2087, "7348": 2088, "7354": 2089, "7357": 2090, "7360": 2091, "7367": 2092, "7376": 2093, "7383": 2094, "7384": 2095, "7387": 2096, "7389": 2097, "7391": 2098, "7392": 2099, "7395": 2100, "7398": 2101, "7402": 2102, "7408": 2103, "7416": 2104, "7423": 2105, "7424": 2106, "7433": 2107, "7434": 2108, "7436": 2109, "7437": 2110, "7445": 2111, "7447": 2112, "7448": 2113, "7460": 2114, "7463": 2115, "7467": 2116, "7475": 2117, "7478": 2118, "7480": 2119, "7481": 2120, "7484": 2121, "7491": 2122, "7492": 2123, "7495": 2124, "7498": 2125, "7502": 2126, "7505": 2127, "7507": 2128, "7510": 2129, "7511": 2130, "7512": 2131, "7514": 2132, "7515": 2133, "7517": 2134, "7518": 2135, "7520": 2136, "7522": 2137, "7525": 2138, "7538": 2139, "7540": 2140, "7552": 2141, "7553": 2142, "7555": 2143, "7556": 2144, "7558": 2145, "7559": 2146, "7561": 2147, "7565": 2148, "7569": 2149, "7584": 2150, "7585": 2151, "7594": 2152, "7597": 2153, "7601": 2154, "7603": 2155, "7607": 2156, "7608": 2157, "7609": 2158, "7618": 2159, "7635": 2160, "7640": 2161, "7641": 2162, "7644": 2163, "7647": 2164, "7649": 2165, "7654": 2166, "7657": 2167, "7665": 2168, "7672": 2169, "7679": 2170, "7683": 2171, "7687": 2172, "7688": 2173, "7691": 2174, "7697": 2175, "7699": 2176, "7700": 2177, "7702": 2178, "7704": 2179, "7705": 2180, "7708": 2181, "7713": 2182, "7717": 2183, "7720": 2184, "7729": 2185, "7730": 2186, "7732": 2187, "7733": 2188, "7737": 2189, "7739": 2190, "7746": 2191, "7749": 2192, "7752": 2193, "7754": 2194, "7756": 2195, "7762": 2196, "7764": 2197, "7766": 2198, "7769": 2199, "7777": 2200, "7780": 2201, "7783": 2202, "7786": 2203, "7789": 2204, "7794": 2205, "7795": 2206, "7796": 2207, "7800": 2208, "7802": 2209, "7809": 2210, "7816": 2211, "7823": 2212, "7825": 2213, "7826": 2214, "7828": 2215, "7832": 2216, "7833": 2217, "7835": 2218, "7837": 2219, "7839": 2220, "7843": 2221, "7848": 2222, "7850": 2223, "7859": 2224, "7867": 2225, "7868": 2226, "7871": 2227, "7874": 2228, "7879": 2229, "7881": 2230, "7883": 2231, "7886": 2232, "7892": 2233, "7898": 2234, "7902": 2235, "7909": 2236, "7910": 2237, "7912": 2238, "7923": 2239, "7925": 2240, "7926": 2241, "7932": 2242, "7933": 2243, "7938": 2244, "7939": 2245, "7942": 2246, "7945": 2247, "7946": 2248, "7949": 2249, "7956": 2250, "7957": 2251, "7959": 2252, "7962": 2253, "7967": 2254, "7975": 2255, "7976": 2256, "7981": 2257, "7982": 2258, "7988": 2259, "7991": 2260, "7994": 2261, "7995": 2262, "7997": 2263, "8005": 2264, "8006": 2265, "8008": 2266, "8009": 2267, "8011": 2268, "8012": 2269, "8014": 2270, "8015": 2271, "8023": 2272, "8028": 2273, "8033": 2274, "8040": 2275, "8042": 2276, "8044": 2277, "8050": 2278, "8051": 2279, "8057": 2280, "8058": 2281, "8063": 2282, "8066": 2283, "8071": 2284, "8072": 2285, "8075": 2286, "8080": 2287, "8087": 2288, "8088": 2289, "8095": 2290, "8097": 2291, "8098": 2292, "8108": 2293, "8112": 2294, "8113": 2295, "8118": 2296, "8119": 2297, "8123": 2298, "8131": 2299, "8138": 2300, "8142": 2301, "8143": 2302, "8148": 2303, "8152": 2304, "8156": 2305, "8163": 2306, "8164": 2307, "8168": 2308, "8169": 2309, "8172": 2310, "8173": 2311, "8176": 2312, "8180": 2313, "8183": 2314, "8188": 2315, "8190": 2316, "8193": 2317, "8194": 2318, "8195": 2319, "8197": 2320, "8199": 2321, "8200": 2322, "8208": 2323, "8215": 2324, "8222": 2325, "8224": 2326, "8225": 2327, "8226": 2328, "8228": 2329, "8230": 2330, "8238": 2331, "8240": 2332, "8242": 2333, "8245": 2334, "8246": 2335, "8250": 2336, "8254": 2337, "8259": 2338, "8262": 2339, "8266": 2340, "8272": 2341, "8273": 2342, "8280": 2343, "8288": 2344, "8291": 2345, "8295": 2346, "8296": 2347, "8297": 2348, "8300": 2349, "8302": 2350, "8307": 2351, "8312": 2352, "8316": 2353, "8321": 2354, "8322": 2355, "8324": 2356, "8328": 2357, "8329": 2358, "8334": 2359, "8337": 2360, "8346": 2361, "8347": 2362, "8356": 2363, "8367": 2364, "8382": 2365, "8388": 2366, "8389": 2367, "8392": 2368, "8394": 2369, "8396": 2370, "8401": 2371, "8404": 2372, "8410": 2373, "8413": 2374, "8414": 2375, "8415": 2376, "8419": 2377, "8421": 2378, "8422": 2379, "8424": 2380, "8425": 2381, "8430": 2382, "8432": 2383, "8441": 2384, "8443": 2385, "8444": 2386, "8445": 2387, "8447": 2388, "8455": 2389, "8459": 2390, "8461": 2391, "8463": 2392, "8464": 2393, "8465": 2394, "8466": 2395, "8468": 2396, "8470": 2397, "8474": 2398, "8476": 2399, "8479": 2400, "8490": 2401, "8494": 2402, "8498": 2403, "8499": 2404, "8500": 2405, "8506": 2406, "8527": 2407, "8531": 2408, "8534": 2409, "8536": 2410, "8543": 2411, "8544": 2412, "8545": 2413, "8555": 2414, "8565": 2415, "8573": 2416, "8575": 2417, "8576": 2418, "8580": 2419, "8587": 2420, "8590": 2421, "8591": 2422, "8592": 2423, "8605": 2424, "8609": 2425, "8619": 2426, "8625": 2427, "8629": 2428, "8630": 2429, "8631": 2430, "8632": 2431, "8635": 2432, "8643": 2433, "8644": 2434, "8664": 2435, "8666": 2436, "8671": 2437, "8675": 2438, "8677": 2439, "8678": 2440, "8684": 2441, "8687": 2442, "8699": 2443, "8705": 2444, "8710": 2445, "8713": 2446, "8718": 2447, "8722": 2448, "8725": 2449, "8742": 2450, "8747": 2451, "8753": 2452, "8758": 2453, "8765": 2454, "8770": 2455, "8771": 2456, "8772": 2457, "8776": 2458, "8778": 2459, "8786": 2460, "8791": 2461, "8797": 2462, "8799": 2463, "8803": 2464, "8808": 2465, "8820": 2466, "8824": 2467, "8825": 2468, "8838": 2469, "8842": 2470, "8846": 2471, "8848": 2472, "8855": 2473, "8867": 2474, "8875": 2475, "8879": 2476, "8887": 2477, "8897": 2478, "8975": 2479, "9000": 2480, "9022": 2481, "9023": 2482, "9026": 2483}
|
config/speakers.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"3": {"id": 3, "name": "Kara Shallenberg", "gender": "F"}, "8": {"id": 8, "name": "Denny Sayers", "gender": "M"}, "9": {"id": 9, "name": "Sean McKinley", "gender": "M"}, "14": {"id": 14, "name": "Betsie Bush", "gender": "F"}, "18": {"id": 18, "name": "Sherry Crowther", "gender": "F"}, "19": {"id": 19, "name": "Vicki Barbour", "gender": "F"}, "32": {"id": 32, "name": "nan", "gender": "M"}, "41": {"id": 41, "name": "Hugh McGuire", "gender": "M"}, "45": {"id": 45, "name": "Catharine Eastman", "gender": "F"}, "48": {"id": 48, "name": "Rosalind Wills", "gender": "F"}, "49": {"id": 49, "name": "Kristen McQuillin", "gender": "F"}, "59": {"id": 59, "name": "Karen Savage", "gender": "F"}, "68": {"id": 68, "name": "Alex Buie", "gender": "M"}, "73": {"id": 73, "name": "Claire Goget", "gender": "F"}, "80": {"id": 80, "name": "Fox in the Stars", "gender": "F"}, "88": {"id": 88, "name": "Andrew Miller", "gender": "M"}, "99": {"id": 99, "name": "Stewart Wills", "gender": "M"}, "100": {"id": 100, "name": "Heather Barnett", "gender": "F"}, "102": {"id": 102, "name": "Maureen S. O'Brien", "gender": "F"}, "103": {"id": 103, "name": "Joplin James", "gender": "M"}, "112": {"id": 112, "name": "shanda_w", "gender": "F"}, "119": {"id": 119, "name": "Deb Bacon-Ziegler", "gender": "F"}, "122": {"id": 122, "name": "carnright", "gender": "M"}, "124": {"id": 124, "name": "Steve Karafit", "gender": "M"}, "132": {"id": 132, "name": "Becky Miller", "gender": "F"}, "134": {"id": 134, "name": "Mary Reagan", "gender": "F"}, "138": {"id": 138, "name": "Alan Davis Drake (1945-2010)", "gender": "M"}, "152": {"id": 152, "name": "Barbara Wedge", "gender": "F"}, "155": {"id": 155, "name": "Caroline Morse", "gender": "F"}, "156": {"id": 156, "name": "Chris Peterson", "gender": "F"}, "158": {"id": 158, "name": "Randy Phillips", "gender": "M"}, "160": {"id": 160, "name": "deadwhitemales", "gender": "M"}, "165": {"id": 165, "name": "Elisabeth Shields", "gender": "F"}, "167": {"id": 167, "name": "Elizabeth Palmer", "gender": "F"}, "170": {"id": 170, "name": "Aaron Teiser", "gender": "M"}, "186": {"id": 186, "name": "kumarei", "gender": "M"}, "192": {"id": 192, "name": "Nocturna", "gender": "F"}, "194": {"id": 194, "name": "Eric Dennison", "gender": "M"}, "197": {"id": 197, "name": "Brian Roberg", "gender": "M"}, "201": {"id": 201, "name": "Norah Piehl", "gender": "F"}, "206": {"id": 206, "name": "Sandra in Wales, United Kingdom", "gender": "F"}, "208": {"id": 208, "name": "Dave Foss", "gender": "M"}, "209": {"id": 209, "name": "Steve Hartzog", "gender": "M"}, "214": {"id": 214, "name": "Scott Splavec", "gender": "M"}, "216": {"id": 216, "name": "Dave Ranson", "gender": "M"}, "226": {"id": 226, "name": "Neal Foley", "gender": "M"}, "261": {"id": 261, "name": "Joy Scaglione", "gender": "F"}, "274": {"id": 274, "name": "toriasuncle", "gender": "M"}, "284": {"id": 284, "name": "Anne", "gender": "F"}, "292": {"id": 292, "name": "Tamara R. Schwartz", "gender": "F"}, "309": {"id": 309, "name": "Karen Labenz", "gender": "F"}, "340": {"id": 340, "name": "Nick Gallant", "gender": "M"}, "344": {"id": 344, "name": "rovert405", "gender": "M"}, "355": {"id": 355, "name": "Lana Taylor", "gender": "F"}, "359": {"id": 359, "name": "Greg Bryant", "gender": "M"}, "360": {"id": 360, "name": "frankjf", "gender": "M"}, "395": {"id": 395, "name": "Kevin O'Coin", "gender": "M"}, "396": {"id": 396, "name": "John Garvin", "gender": "M"}, "409": {"id": 409, "name": "Dawn", "gender": "F"}, "411": {"id": 411, "name": "Fracture", "gender": "M"}, "414": {"id": 414, "name": "Christabel", "gender": "F"}, "421": {"id": 421, "name": "Merryb", "gender": "F"}, "426": {"id": 426, "name": "Megan Stemm-Wade", "gender": "F"}, "441": {"id": 441, "name": "roolynninms", "gender": "F"}, "454": {"id": 454, "name": "Tim Gregory", "gender": "M"}, "457": {"id": 457, "name": "Sandra", "gender": "F"}, "465": {"id": 465, "name": "Leonie Rose", "gender": "F"}, "487": {"id": 487, "name": "John Schell", "gender": "M"}, "498": {"id": 498, "name": "Chris Gladis", "gender": "M"}, "499": {"id": 499, "name": "Tammy Sanders", "gender": "F"}, "524": {"id": 524, "name": "Luigina", "gender": "F"}, "526": {"id": 526, "name": "webslog", "gender": "M"}, "542": {"id": 542, "name": "Ann Boyer", "gender": "F"}, "552": {"id": 552, "name": "Mim Ritty", "gender": "F"}, "561": {"id": 561, "name": "Lorelle Anderson", "gender": "F"}, "566": {"id": 566, "name": "Jon Scott Jones", "gender": "M"}, "574": {"id": 574, "name": "Daniel Shorten", "gender": "M"}, "619": {"id": 619, "name": "Rob Whelan", "gender": "M"}, "626": {"id": 626, "name": "Erin Hastings", "gender": "F"}, "628": {"id": 628, "name": "Bryan Ness", "gender": "M"}, "662": {"id": 662, "name": "Laura Caldwell", "gender": "F"}, "670": {"id": 670, "name": "Rowdy Delaney", "gender": "M"}, "676": {"id": 676, "name": "Jennifer", "gender": "F"}, "685": {"id": 685, "name": "Nikki Sullivan", "gender": "F"}, "693": {"id": 693, "name": "Belinda Brown", "gender": "F"}, "695": {"id": 695, "name": "Dawn Larsen", "gender": "F"}, "702": {"id": 702, "name": "Michelle White", "gender": "F"}, "707": {"id": 707, "name": "Larry Maddocks", "gender": "M"}, "710": {"id": 710, "name": "Sheila Morton", "gender": "F"}, "738": {"id": 738, "name": "Elaine Hamby", "gender": "F"}, "749": {"id": 749, "name": "Great Plains", "gender": "M"}, "758": {"id": 758, "name": "Matthew Westra", "gender": "M"}, "761": {"id": 761, "name": "Susan Umpleby", "gender": "F"}, "765": {"id": 765, "name": "Andrea Fiore", "gender": "F"}, "791": {"id": 791, "name": "David Kleparek", "gender": "M"}, "813": {"id": 813, "name": "Ger", "gender": "M"}, "815": {"id": 815, "name": "treefingers", "gender": "F"}, "825": {"id": 825, "name": "Julia Albath", "gender": "F"}, "828": {"id": 828, "name": "Seth Adam Sher", "gender": "M"}, "845": {"id": 845, "name": "S. Young", "gender": "M"}, "847": {"id": 847, "name": "Rob Powell", "gender": "M"}, "887": {"id": 887, "name": "Donna Stewart", "gender": "F"}, "903": {"id": 903, "name": "Piper Hale", "gender": "F"}, "915": {"id": 915, "name": "Catherine Millward", "gender": "F"}, "921": {"id": 921, "name": "Linda McDaniel", "gender": "F"}, "922": {"id": 922, "name": "ricell", "gender": "M"}, "926": {"id": 926, "name": "Ryan Sutter", "gender": "M"}, "930": {"id": 930, "name": "Janna", "gender": "F"}, "931": {"id": 931, "name": "David Lawrence", "gender": "M"}, "939": {"id": 939, "name": "Scott Carpenter", "gender": "M"}, "948": {"id": 948, "name": "Jamie Strassenburg, Cypress, California", "gender": "F"}, "988": {"id": 988, "name": "Jessica Louise", "gender": "F"}, "1002": {"id": 1002, "name": "David Anton", "gender": "M"}, "1012": {"id": 1012, "name": "fourteatoo", "gender": "M"}, "1019": {"id": 1019, "name": "Karen Commins", "gender": "F"}, "1021": {"id": 1021, "name": "flakker", "gender": "M"}, "1022": {"id": 1022, "name": "peac", "gender": "M"}, "1027": {"id": 1027, "name": "Kate West", "gender": "F"}, "1055": {"id": 1055, "name": "Craig Campbell", "gender": "M"}, "1066": {"id": 1066, "name": "Anders Lankford", "gender": "M"}, "1067": {"id": 1067, "name": "Heidi Will", "gender": "F"}, "1076": {"id": 1076, "name": "Robin Balmer", "gender": "M"}, "1084": {"id": 1084, "name": "Bereni", "gender": "F"}, "1112": {"id": 1112, "name": "Richard Wallis", "gender": "M"}, "1126": {"id": 1126, "name": "Barry Eads", "gender": "M"}, "1134": {"id": 1134, "name": "Bruce Pirie", "gender": "M"}, "1137": {"id": 1137, "name": "Kevin Lavin", "gender": "M"}, "1156": {"id": 1156, "name": "Jesse Noar", "gender": "M"}, "1160": {"id": 1160, "name": "rymd80", "gender": "M"}, "1168": {"id": 1168, "name": "Epistomolus", "gender": "M"}, "1175": {"id": 1175, "name": "Keneva", "gender": "F"}, "1196": {"id": 1196, "name": "johnell", "gender": "F"}, "1205": {"id": 1205, "name": "Kate Adams", "gender": "F"}, "1206": {"id": 1206, "name": "lavocedorata", "gender": "F"}, "1216": {"id": 1216, "name": "Tom Clifton", "gender": "M"}, "1219": {"id": 1219, "name": "Nicholas Clifford", "gender": "M"}, "1227": {"id": 1227, "name": "Liz Devens", "gender": "F"}, "1237": {"id": 1237, "name": "Blazin48", "gender": "F"}, "1247": {"id": 1247, "name": "Sarah LuAnn", "gender": "F"}, "1254": {"id": 1254, "name": "Rosie", "gender": "F"}, "1263": {"id": 1263, "name": "bj", "gender": "F"}, "1268": {"id": 1268, "name": "A. Janelle Risa", "gender": "F"}, "1285": {"id": 1285, "name": "Ric F", "gender": "M"}, "1294": {"id": 1294, "name": "Tina Horning", "gender": "F"}, "1303": {"id": 1303, "name": "kiwafruit", "gender": "F"}, "1310": {"id": 1310, "name": "Michelle Montano", "gender": "F"}, "1315": {"id": 1315, "name": "John Dennison", "gender": "M"}, "1317": {"id": 1317, "name": "Matthew Scott Surprenant", "gender": "M"}, "1330": {"id": 1330, "name": "William Peck", "gender": "M"}, "1339": {"id": 1339, "name": "margo zinberg", "gender": "F"}, "1369": {"id": 1369, "name": "Karen Mason", "gender": "F"}, "1374": {"id": 1374, "name": "pachayes", "gender": "F"}, "1403": {"id": 1403, "name": "Bill Boerst", "gender": "M"}, "1409": {"id": 1409, "name": "Steve Mattern", "gender": "M"}, "1412": {"id": 1412, "name": "George Aalto", "gender": "M"}, "1421": {"id": 1421, "name": "Barbara Derksen", "gender": "F"}, "1424": {"id": 1424, "name": "nathank", "gender": "M"}, "1429": {"id": 1429, "name": "greatbasinrain", "gender": "M"}, "1461": {"id": 1461, "name": "Kathleen Costa", "gender": "F"}, "1470": {"id": 1470, "name": "Bradley Smith", "gender": "M"}, "1481": {"id": 1481, "name": "Chuck Burke", "gender": "M"}, "1497": {"id": 1497, "name": "LilyAnne", "gender": "F"}, "1506": {"id": 1506, "name": "Jason Esteves", "gender": "M"}, "1537": {"id": 1537, "name": "Jay Bidal", "gender": "M"}, "1543": {"id": 1543, "name": "Lauren McCullough", "gender": "F"}, "1552": {"id": 1552, "name": "Charles Bice", "gender": "M"}, "1553": {"id": 1553, "name": "Amy Hengst", "gender": "F"}, "1564": {"id": 1564, "name": "e_scarab", "gender": "M"}, "1567": {"id": 1567, "name": "GLM", "gender": "M"}, "1576": {"id": 1576, "name": "Ella Jane Quentin", "gender": "F"}, "1582": {"id": 1582, "name": "Ellen Jones", "gender": "F"}, "1601": {"id": 1601, "name": "amicrazy2u", "gender": "F"}, "1610": {"id": 1610, "name": "jgoffena", "gender": "M"}, "1614": {"id": 1614, "name": "Jennifer Dionne", "gender": "F"}, "1617": {"id": 1617, "name": "Garth Comira", "gender": "M"}, "1631": {"id": 1631, "name": "laurencetrask", "gender": "M"}, "1638": {"id": 1638, "name": "Laura Victoria", "gender": "F"}, "1641": {"id": 1641, "name": "Kirsten Wever", "gender": "F"}, "1645": {"id": 1645, "name": "jeandelfrio", "gender": "M"}, "1656": {"id": 1656, "name": "Sharon Omi", "gender": "F"}, "1690": {"id": 1690, "name": "MissRose", "gender": "F"}, "1696": {"id": 1696, "name": "DerekP", "gender": "M"}, "1706": {"id": 1706, "name": "Deborah Knight", "gender": "F"}, "1713": {"id": 1713, "name": "dobsonfly", "gender": "F"}, "1715": {"id": 1715, "name": "Lazuli", "gender": "M"}, "1740": {"id": 1740, "name": "Liberty Stump", "gender": "F"}, "1749": {"id": 1749, "name": "Mike", "gender": "M"}, "1756": {"id": 1756, "name": "deckerteach", "gender": "M"}, "1775": {"id": 1775, "name": "jlenardon", "gender": "F"}, "1805": {"id": 1805, "name": "Vince Dee", "gender": "M"}, "1812": {"id": 1812, "name": "Novella Serena", "gender": "F"}, "1821": {"id": 1821, "name": "Daryl Wor", "gender": "F"}, "1826": {"id": 1826, "name": "John Hoerr", "gender": "M"}, "1828": {"id": 1828, "name": "David Wales", "gender": "M"}, "1833": {"id": 1833, "name": "Viridian", "gender": "F"}, "1849": {"id": 1849, "name": "Fred DeBerardinis", "gender": "M"}, "1850": {"id": 1850, "name": "janesandberg", "gender": "F"}, "1864": {"id": 1864, "name": "William Tomcho", "gender": "M"}, "1929": {"id": 1929, "name": "beckyboyd", "gender": "F"}, "1933": {"id": 1933, "name": "John", "gender": "M"}, "1936": {"id": 1936, "name": "KarlHenning", "gender": "M"}, "1942": {"id": 1942, "name": "Capybara", "gender": "M"}, "1956": {"id": 1956, "name": "Thomas Meaney", "gender": "M"}, "1989": {"id": 1989, "name": "Joannemmp", "gender": "F"}, "1993": {"id": 1993, "name": "Matthew Wall", "gender": "M"}, "1996": {"id": 1996, "name": "Mary in Arkansas", "gender": "F"}, "2006": {"id": 2006, "name": "Sukaina Jaffer", "gender": "F"}, "2023": {"id": 2023, "name": "Vickie Ranz", "gender": "F"}, "2030": {"id": 2030, "name": "J.K. Neely", "gender": "F"}, "2033": {"id": 2033, "name": "Tony Posante", "gender": "M"}, "2043": {"id": 2043, "name": "Jonathan Moore", "gender": "M"}, "2058": {"id": 2058, "name": "Sean McClain", "gender": "M"}, "2062": {"id": 2062, "name": "Jon Smith", "gender": "M"}, "2069": {"id": 2069, "name": "Asta1234", "gender": "F"}, "2071": {"id": 2071, "name": "nkneer", "gender": "M"}, "2092": {"id": 2092, "name": "NIneFive83", "gender": "M"}, "2102": {"id": 2102, "name": "Canby Ibarra", "gender": "M"}, "2112": {"id": 2112, "name": "dasbury", "gender": "M"}, "2127": {"id": 2127, "name": "Ron Lockhart", "gender": "M"}, "2130": {"id": 2130, "name": "Sherri Vance", "gender": "F"}, "2134": {"id": 2134, "name": "Raz Mason", "gender": "F"}, "2160": {"id": 2160, "name": "Judy Guinan", "gender": "F"}, "2201": {"id": 2201, "name": "tazzle", "gender": "F"}, "2205": {"id": 2205, "name": "mlcui", "gender": "F"}, "2208": {"id": 2208, "name": "Arie", "gender": "F"}, "2224": {"id": 2224, "name": "xinamarieuhl", "gender": "F"}, "2270": {"id": 2270, "name": "constatine", "gender": "F"}, "2279": {"id": 2279, "name": "Maria Kasper", "gender": "F"}, "2282": {"id": 2282, "name": "Robert Snoza", "gender": "M"}, "2289": {"id": 2289, "name": "Jason Bolestridge", "gender": "M"}, "2290": {"id": 2290, "name": "Theodulf", "gender": "M"}, "2292": {"id": 2292, "name": "Arnold", "gender": "M"}, "2293": {"id": 2293, "name": "drakaunus", "gender": "M"}, "2298": {"id": 2298, "name": "Sheila Wood", "gender": "F"}, "2328": {"id": 2328, "name": "Adam Picot", "gender": "M"}, "2331": {"id": 2331, "name": "Madam Fickle", "gender": "F"}, "2352": {"id": 2352, "name": "Jaimie Noy", "gender": "F"}, "2356": {"id": 2356, "name": "Kathy Wright", "gender": "F"}, "2377": {"id": 2377, "name": "Jon Kissack", "gender": "M"}, "2381": {"id": 2381, "name": "Larry Wilson", "gender": "M"}, "2394": {"id": 2394, "name": "TinaNygard2", "gender": "F"}, "2396": {"id": 2396, "name": "Jennifer Dorr", "gender": "F"}, "2419": {"id": 2419, "name": "Gary Dana", "gender": "M"}, "2425": {"id": 2425, "name": "noblesavage", "gender": "M"}, "2428": {"id": 2428, "name": "Shivansh Dhar", "gender": "M"}, "2429": {"id": 2429, "name": "Eduardo", "gender": "M"}, "2451": {"id": 2451, "name": "DeanOBuchanan", "gender": "M"}, "2455": {"id": 2455, "name": "Paul Simonin", "gender": "M"}, "2462": {"id": 2462, "name": "Sean Grabosky", "gender": "M"}, "2469": {"id": 2469, "name": "Kevin Owens", "gender": "M"}, "2479": {"id": 2479, "name": "Daisy Flaim", "gender": "F"}}
|
config/speakers.tsv
ADDED
@@ -0,0 +1,2485 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
READER GENDER SUBSET NAME
|
2 |
+
14 F train-clean-360 Kristin LeMoine
|
3 |
+
16 F train-clean-360 Alys AtteWater
|
4 |
+
17 M train-clean-360 Gord Mackenzie
|
5 |
+
19 F train-clean-100 Kara Shallenberg
|
6 |
+
20 F train-other-500 Gesine
|
7 |
+
22 F train-clean-360 Michelle Crandall
|
8 |
+
23 F train-clean-360 Anita Roy Dobbs
|
9 |
+
25 M train-other-500 John Gonzalez
|
10 |
+
26 M train-clean-100 Denny Sayers
|
11 |
+
27 M train-clean-100 Sean McKinley
|
12 |
+
28 F train-clean-360 Kristin Hughes
|
13 |
+
29 M train-other-500 Linton
|
14 |
+
30 F train-clean-360 Annie Coleman Rothenberg
|
15 |
+
31 M train-other-500 Martin Clifton
|
16 |
+
32 F train-clean-100 Betsie Bush
|
17 |
+
36 M train-other-500 Chip
|
18 |
+
37 M train-other-500 wolvrin
|
19 |
+
38 M train-clean-360 R. Francis Smith
|
20 |
+
39 F train-clean-100 Sherry Crowther
|
21 |
+
40 F train-clean-100 Vicki Barbour
|
22 |
+
44 F train-other-500 travelbratd
|
23 |
+
45 F train-other-500 Kelly Bescherer
|
24 |
+
46 M train-other-500 Aaron Hochwimmer
|
25 |
+
47 F train-other-500 Amanda
|
26 |
+
49 M train-other-500 vrk74
|
27 |
+
51 M train-other-500 rakkar
|
28 |
+
52 F train-other-500 Luisa Hall
|
29 |
+
54 F train-clean-360 Westwinds12
|
30 |
+
55 M train-clean-360 David Jaquay
|
31 |
+
56 F train-clean-360 Kirsten Ferreri
|
32 |
+
57 F train-other-500 Ophelia Darcy
|
33 |
+
58 M train-other-500 George Coutts
|
34 |
+
60 M train-clean-100
|
35 |
+
61 M test-clean Paul-Gabriel Wiener
|
36 |
+
62 M train-other-500 Faris
|
37 |
+
64 F train-clean-360 Robin Cotter
|
38 |
+
65 F train-other-500 chriss the girl
|
39 |
+
66 M train-other-500 Alex Foster
|
40 |
+
70 M train-clean-360 Kurt Copeland
|
41 |
+
75 M train-other-500 Jim Mowatt
|
42 |
+
77 F train-other-500 JemmaBlythe
|
43 |
+
78 M train-clean-100 Hugh McGuire
|
44 |
+
79 F train-clean-360 Jennifer Crispin
|
45 |
+
81 M train-clean-360 Aaron Decker
|
46 |
+
82 F train-other-500 Marlo Dianne
|
47 |
+
83 F train-clean-100 Catharine Eastman
|
48 |
+
84 F dev-clean Christie Nowak
|
49 |
+
85 M train-other-500 David Leaman
|
50 |
+
87 F train-clean-100 Rosalind Wills
|
51 |
+
89 F train-clean-100 Kristen McQuillin
|
52 |
+
90 M train-clean-360 Dan Threetrees
|
53 |
+
91 M train-other-500 Stephan Mobius
|
54 |
+
92 F train-other-500 Cori Samuel
|
55 |
+
93 F train-clean-360 Kathy
|
56 |
+
94 M train-other-500 David Barnes
|
57 |
+
98 F train-clean-360 Patricia Oakley
|
58 |
+
100 F train-clean-360 Judy Bieber
|
59 |
+
101 M train-clean-360 paulino
|
60 |
+
102 F train-other-500 Linda Leu
|
61 |
+
103 F train-clean-100 Karen Savage
|
62 |
+
104 F train-other-500 Laura M.D.
|
63 |
+
107 M train-other-500 John Greenman
|
64 |
+
110 F train-other-500 Cynthia Lyons (1946-2011)
|
65 |
+
111 F train-other-500 Linda Wilcox
|
66 |
+
112 F train-clean-360 Christiane Levesque
|
67 |
+
114 F train-clean-360 Jen Kidd
|
68 |
+
115 F train-clean-360 Maddie
|
69 |
+
116 M dev-other Steven Collins
|
70 |
+
118 M train-clean-100 Alex Buie
|
71 |
+
119 M train-clean-360 Alex Patterson
|
72 |
+
121 F test-clean Nikolle Doolin
|
73 |
+
122 M train-clean-360 J.C.
|
74 |
+
123 F train-other-500 Ezwa
|
75 |
+
125 F train-clean-100 Claire Goget
|
76 |
+
126 F train-clean-360 Susan Denney
|
77 |
+
127 M train-other-500 John Hicken
|
78 |
+
128 M train-other-500 ML Cohen
|
79 |
+
133 M train-other-500 Mick
|
80 |
+
147 M train-other-500 Thomas Hoover
|
81 |
+
149 M train-other-500 Joshua Young
|
82 |
+
150 F train-clean-100 Fox in the Stars
|
83 |
+
151 F train-other-500 Gwen
|
84 |
+
152 M train-other-500 Andy Minter
|
85 |
+
153 M train-other-500 Graham Williams
|
86 |
+
154 M train-clean-360 Robert Foster
|
87 |
+
157 M train-clean-360 Ben Douglas
|
88 |
+
159 M train-clean-360 hugh mac
|
89 |
+
161 M train-other-500 Cyril Law, Jr.
|
90 |
+
163 M train-clean-100 Andrew Miller
|
91 |
+
166 F train-clean-360 Paula Berinstein
|
92 |
+
167 M train-other-500 Peter Yearsley
|
93 |
+
168 M train-other-500 Chris Goringe
|
94 |
+
173 F train-other-500 vlooi
|
95 |
+
174 M dev-clean Peter Eastman
|
96 |
+
175 F train-clean-360 Meredith Hughes
|
97 |
+
176 M train-clean-360 Vinny Bove
|
98 |
+
177 F train-other-500 Kymm Zuckert
|
99 |
+
188 F train-clean-360 Mary Anderson
|
100 |
+
192 F train-clean-360 Deborah Clark
|
101 |
+
196 M train-clean-100 Stewart Wills
|
102 |
+
198 F train-clean-100 Heather Barnett
|
103 |
+
199 F train-other-500 Maria Morabe
|
104 |
+
200 F train-clean-100 Maureen S. O'Brien
|
105 |
+
201 M train-clean-100 Joplin James
|
106 |
+
202 F train-other-500 Geetu Melwani
|
107 |
+
203 F train-clean-360 Marian Brown
|
108 |
+
204 M train-clean-360 Mark F. Smith
|
109 |
+
205 F train-clean-360 Esther
|
110 |
+
207 M train-clean-360 Kevin McAsh
|
111 |
+
208 F train-clean-360 Andrea L
|
112 |
+
209 F train-clean-360 Moira Fogarty
|
113 |
+
210 M train-clean-360 Aldark
|
114 |
+
211 F train-clean-100 shanda_w
|
115 |
+
215 F train-other-500 Alice Elizabeth Still
|
116 |
+
216 M train-clean-360 Thomas Davoren
|
117 |
+
217 F train-clean-360 firefly
|
118 |
+
218 M train-other-500 Kelly Clear
|
119 |
+
224 F train-clean-360 Caitlin Kelly
|
120 |
+
225 F train-clean-360 Brenda Dayne
|
121 |
+
226 F train-clean-100 Deb Bacon-Ziegler
|
122 |
+
227 F train-clean-360 Sarah Key-DeLyria
|
123 |
+
228 F train-other-500 Arctura
|
124 |
+
229 M train-clean-100 carnright
|
125 |
+
231 M train-clean-360 Sean McGaughey
|
126 |
+
233 M train-clean-100 Steve Karafit
|
127 |
+
237 F test-clean rachelellen
|
128 |
+
238 F train-other-500 Maria Elmvang
|
129 |
+
240 M train-clean-360 Shurtagal
|
130 |
+
242 F train-clean-360 Cagirlwithasoutherndrawl
|
131 |
+
243 F train-other-500 Jennifer Stearns
|
132 |
+
245 M train-other-500 Peter of Buckinghamshire England
|
133 |
+
246 F train-clean-360 Beth Dudek
|
134 |
+
248 F train-clean-100 Becky Miller
|
135 |
+
249 M train-clean-360 pww214
|
136 |
+
250 F train-clean-100 Mary Reagan
|
137 |
+
251 M dev-clean Mark Nelson
|
138 |
+
252 M train-other-500 Rainer
|
139 |
+
253 M train-other-500 Stefan Schmelz
|
140 |
+
254 M train-clean-100 Alan Davis Drake (1945-2010)
|
141 |
+
255 M train-other-500 Chris Hawk
|
142 |
+
258 M train-clean-360 Kurt Wong
|
143 |
+
260 M test-clean Brad Bush
|
144 |
+
263 M train-other-500 Michael Sirois
|
145 |
+
264 M train-other-500 Chris Hughes
|
146 |
+
265 M train-other-500 Janice
|
147 |
+
272 M train-clean-360 Mr. Baby Man
|
148 |
+
273 M train-other-500 Jim Cadwell
|
149 |
+
274 F train-clean-360 Eileen George
|
150 |
+
277 F train-other-500 Alessia
|
151 |
+
278 F train-clean-360 AliceG
|
152 |
+
283 M train-other-500 Asaf Bartov
|
153 |
+
288 F train-clean-360 Bookworm
|
154 |
+
289 F train-clean-100 Barbara Wedge
|
155 |
+
294 F train-other-500 Calliope
|
156 |
+
296 M train-clean-360 Carl Manchester
|
157 |
+
298 F train-clean-100 Caroline Morse
|
158 |
+
302 F train-clean-100 Chris Peterson
|
159 |
+
303 M train-clean-360 Tony Hightower
|
160 |
+
307 M train-clean-100 Randy Phillips
|
161 |
+
310 F train-other-500 Dexnell Peters
|
162 |
+
311 M train-clean-100 deadwhitemales
|
163 |
+
313 F train-other-500 Dilini Jayasinghe
|
164 |
+
317 M train-other-500 Mike Gardom
|
165 |
+
318 F train-clean-360 Eileen aka e
|
166 |
+
319 M train-other-500 Ed Good
|
167 |
+
322 F train-clean-100 Elisabeth Shields
|
168 |
+
323 F train-clean-360 Erica Kuntz
|
169 |
+
328 F train-clean-100 Elizabeth Palmer
|
170 |
+
329 M train-clean-360 Todd Cranston-Cuebas
|
171 |
+
331 M train-other-500 Richard Grove
|
172 |
+
332 M train-clean-100 Aaron Teiser
|
173 |
+
335 M train-clean-360 Paul Harvey
|
174 |
+
336 M train-other-500 Harvey Chinn
|
175 |
+
337 F train-clean-360 Barbara Harvey
|
176 |
+
339 F train-clean-360 Heather Ordover
|
177 |
+
340 M train-clean-360 Scott Henkel
|
178 |
+
345 M train-clean-360 Micah Sheppard
|
179 |
+
348 M train-other-500 ianish
|
180 |
+
353 M train-clean-360 Jamey Osborne
|
181 |
+
359 M train-clean-360 John Nicholson
|
182 |
+
362 F train-clean-360 Judith Brown
|
183 |
+
365 M train-other-500 Jon Ingram
|
184 |
+
366 F train-other-500 Katy Preston
|
185 |
+
367 F test-other Kathleen Dang
|
186 |
+
369 M train-clean-360 Kevin Readdean
|
187 |
+
373 F train-clean-360 Kim Braun
|
188 |
+
374 M train-clean-100 kumarei
|
189 |
+
377 M train-other-500 Lenny Glionna Jr.
|
190 |
+
380 F train-clean-360 Laurie Campbell
|
191 |
+
392 F train-other-500 Maria Celano
|
192 |
+
398 M train-clean-360 James Smith
|
193 |
+
402 F train-other-500 Sharmini Kumar
|
194 |
+
403 F train-clean-100 Nocturna
|
195 |
+
404 F train-other-500 Nomenphile
|
196 |
+
405 M train-clean-100 Eric Dennison
|
197 |
+
408 F train-clean-360 Claudine Chen
|
198 |
+
409 M train-clean-360 Mike Kauffmann
|
199 |
+
412 M train-clean-100 Brian Roberg
|
200 |
+
413 M train-other-500 Daniel Watkins
|
201 |
+
421 M train-other-500 Patrick
|
202 |
+
422 M dev-clean President Lethe
|
203 |
+
426 F train-clean-100 Norah Piehl
|
204 |
+
428 M train-other-500 Rayburn Beale
|
205 |
+
432 M train-other-500 Steve Andersen
|
206 |
+
434 F train-clean-360 Joyce Nussbaum
|
207 |
+
439 M train-clean-360 Robert Garrison
|
208 |
+
441 F train-clean-100 Sandra in Wales, United Kingdom
|
209 |
+
444 F train-other-500 Sage Tyrtle
|
210 |
+
445 M train-clean-100 Dave Foss
|
211 |
+
446 M train-clean-100 Steve Hartzog
|
212 |
+
448 F train-other-500 scrappylibrarian
|
213 |
+
451 F train-clean-360 Sonserae Leese-Calver
|
214 |
+
453 M train-other-500 Glen Hallstrom
|
215 |
+
454 M train-clean-360 Tom Yates
|
216 |
+
458 M train-clean-100 Scott Splavec
|
217 |
+
459 M train-clean-360 Mark Bradford
|
218 |
+
460 M train-clean-100 Dave Ranson
|
219 |
+
464 M train-clean-360 Mike Wilson
|
220 |
+
466 F train-other-500 Joy Chan
|
221 |
+
470 M train-other-500 Chris Chapman
|
222 |
+
472 F train-clean-360 Tina Tilney
|
223 |
+
474 M train-other-500 Zachary Brewster-Geisz
|
224 |
+
475 M train-clean-360 Jason X.
|
225 |
+
476 M train-clean-360 Chuck Spann
|
226 |
+
479 F train-clean-360 wedschild
|
227 |
+
480 M train-clean-360 Chris Vee
|
228 |
+
481 M train-clean-100 Neal Foley
|
229 |
+
483 F train-other-500 junk science
|
230 |
+
487 M train-clean-360 Clayton J. Smith
|
231 |
+
489 F train-other-500 Tora
|
232 |
+
492 M train-clean-360 TBOL3
|
233 |
+
497 M train-clean-360 audiotoshokan
|
234 |
+
500 M train-clean-360 galaxiant
|
235 |
+
501 M train-clean-360 mikenkat
|
236 |
+
505 M train-other-500 Menno
|
237 |
+
510 M train-clean-360 Kirk Thomas
|
238 |
+
511 M train-clean-360 Matthew Shepherd
|
239 |
+
512 M train-clean-360 Anthony Craine
|
240 |
+
517 M train-other-500 Matthew Walton
|
241 |
+
525 F train-clean-360 Victoria Long
|
242 |
+
533 F test-other Ana Simao
|
243 |
+
534 F train-clean-360 Jean O'Sullivan
|
244 |
+
542 M train-other-500 J. Hall
|
245 |
+
543 M train-clean-360 Ted Delorme
|
246 |
+
544 M train-other-500 bozgeez
|
247 |
+
548 M train-clean-360 Chris Mitchell
|
248 |
+
549 F train-clean-360 SarahHadley
|
249 |
+
551 M train-other-500 Guntar
|
250 |
+
557 M train-other-500 fieldsofgold
|
251 |
+
559 M train-clean-360 Bill Stackpole
|
252 |
+
561 M train-clean-360 Quentin
|
253 |
+
567 M train-other-500 Aaron Benedict
|
254 |
+
568 M train-other-500 JD Weber
|
255 |
+
569 M train-other-500 Frank
|
256 |
+
572 M train-other-500 Rebecca Dittman
|
257 |
+
576 F train-clean-360 Caroline Mercier
|
258 |
+
580 M train-clean-360 Ryan
|
259 |
+
581 M train-clean-360 C. Berrius
|
260 |
+
583 M train-clean-360 Russ Maxwell
|
261 |
+
584 F train-other-500 miette
|
262 |
+
585 F train-other-500 pheo
|
263 |
+
587 F train-clean-100 Joy Scaglione
|
264 |
+
589 F train-clean-360 Stephanie Konig
|
265 |
+
593 M train-clean-360 Eric S. Piotrowski
|
266 |
+
594 M train-clean-360 KentF
|
267 |
+
596 F train-clean-360 Carol Goode
|
268 |
+
597 F train-clean-360 Lisa Chau
|
269 |
+
598 F train-clean-360 Kim
|
270 |
+
606 M train-clean-360 Julian Jamison
|
271 |
+
608 F train-other-500 Baranduin
|
272 |
+
612 F train-clean-360 Cindy Steib
|
273 |
+
613 M train-other-500 D.E. Wittkower
|
274 |
+
614 F train-other-500 Christine Blachford
|
275 |
+
622 M train-other-500 Andrew Lebrun
|
276 |
+
625 M train-clean-100 toriasuncle
|
277 |
+
636 F train-clean-360 Zale Schafer (Rose May Chamberlin Memorial Foundat
|
278 |
+
637 M train-clean-360 Michael Scherer
|
279 |
+
639 M train-clean-360 Robert Beach
|
280 |
+
644 M train-other-500 Daniele
|
281 |
+
652 M dev-clean Scott Walter
|
282 |
+
663 M train-clean-360 Bruce Stafford
|
283 |
+
664 F train-clean-360 Wendy G.
|
284 |
+
666 F train-clean-360 Monique
|
285 |
+
667 F train-clean-360 Bethany Simpson
|
286 |
+
669 F train-clean-100 Anne
|
287 |
+
671 M train-clean-360 koijmonop
|
288 |
+
672 M test-clean Taylor Burton-Edward
|
289 |
+
679 M train-other-500 rhodian
|
290 |
+
681 F train-other-500 Lucy Burgoyne
|
291 |
+
684 F train-other-500 Lizzie Driver
|
292 |
+
688 F train-clean-360 J. M. Smallheer
|
293 |
+
690 F train-other-500 Silver
|
294 |
+
696 F train-clean-100 Tamara R. Schwartz
|
295 |
+
698 F train-clean-360 Randi Warwick
|
296 |
+
699 F train-clean-360 Diana Kiesners
|
297 |
+
700 F dev-other Susan Hooks
|
298 |
+
705 F train-other-500 eva
|
299 |
+
707 M train-clean-360 Jason Mayoff
|
300 |
+
708 M train-clean-360 Kevin Devine
|
301 |
+
711 M train-clean-360 Roy Schreiber
|
302 |
+
712 M train-other-500 Michael Shook
|
303 |
+
713 F train-other-500 Onjana Yawnghwe
|
304 |
+
716 M train-clean-360 martyd
|
305 |
+
718 M train-clean-360 clarknova
|
306 |
+
720 M train-other-500 Peter Gallagher
|
307 |
+
724 M train-clean-360 Michael Crowl
|
308 |
+
726 M train-other-500 Paul
|
309 |
+
727 M train-other-500 Andrew Richards
|
310 |
+
728 M train-other-500 Eric Connover
|
311 |
+
730 F train-clean-100 Karen Labenz
|
312 |
+
731 F train-clean-360 Megan-Jane Daniels Suyasu
|
313 |
+
737 M train-other-500 Roger W. Barnett
|
314 |
+
742 M train-other-500 Peter Groom
|
315 |
+
753 M train-other-500 Tim Bulkeley
|
316 |
+
764 M train-clean-360 Carl Vonnoh, III
|
317 |
+
766 M train-other-500 Jean Crevier
|
318 |
+
770 M train-clean-360 Justin S Barrett
|
319 |
+
774 F train-other-500 Sara Walsh
|
320 |
+
777 M dev-clean fling93
|
321 |
+
778 M train-other-500 Branko Collin
|
322 |
+
779 M train-other-500 Greg
|
323 |
+
780 M train-other-500 Lloyd Davis
|
324 |
+
781 M train-clean-360 Mitchell Dwyer
|
325 |
+
782 F train-other-500 Michele Pacey
|
326 |
+
783 F train-clean-360 Gina
|
327 |
+
789 F train-other-500 Eva
|
328 |
+
791 M train-other-500 Ivan
|
329 |
+
792 F train-other-500 mjd-s
|
330 |
+
797 M train-other-500 Mike Shapiro
|
331 |
+
803 M train-clean-360 Greg Elmensdorp
|
332 |
+
806 M train-clean-360 Aaron Andradne
|
333 |
+
807 M train-other-500 Luke Venediger
|
334 |
+
810 M train-other-500 Joseph Loverti
|
335 |
+
811 F train-other-500 Elizabeth
|
336 |
+
815 M train-clean-360 mawrtea
|
337 |
+
816 M train-clean-360 Jeff Robinson
|
338 |
+
820 M train-clean-360 Scoot
|
339 |
+
826 M train-other-500 Thomas Wells
|
340 |
+
829 F train-clean-360 frenchfry
|
341 |
+
830 F train-clean-360 sebrazer
|
342 |
+
831 M train-clean-100 Nick Gallant
|
343 |
+
834 F train-clean-360 nausicaa
|
344 |
+
835 M train-clean-360 echo
|
345 |
+
836 M train-clean-360 Kevin LaVergne
|
346 |
+
839 M train-clean-100 rovert405
|
347 |
+
844 F train-other-500 Martina
|
348 |
+
845 M train-other-500 DaveF
|
349 |
+
846 M train-other-500 Anadaxis_Canejia
|
350 |
+
850 M train-clean-360 tonypettit
|
351 |
+
851 M train-other-500 brenthumphries
|
352 |
+
868 M train-clean-360 Mike Rosenlof
|
353 |
+
876 F train-other-500 Alisha
|
354 |
+
882 F train-clean-360 Mur Lafferty
|
355 |
+
884 M train-other-500 sayeth
|
356 |
+
886 M train-other-500 Paul S. Jenkins
|
357 |
+
887 F train-clean-100 Lana Taylor
|
358 |
+
895 M train-other-500 Max Porter Zasada
|
359 |
+
899 M train-clean-360 thomahal
|
360 |
+
908 M test-clean Sam Stinson
|
361 |
+
909 M train-clean-100 Greg Bryant
|
362 |
+
911 M train-clean-100 frankjf
|
363 |
+
915 M train-other-500 Ted Kaouk
|
364 |
+
920 F train-clean-360 Sarah Bean
|
365 |
+
921 M train-other-500 Brian J. Callaghan
|
366 |
+
922 M train-clean-360 Steven H. Wilson
|
367 |
+
923 F train-other-500 Layna
|
368 |
+
925 F train-clean-360 pattymarie
|
369 |
+
927 M train-other-500 Nerijus
|
370 |
+
937 F train-other-500 Susie G.
|
371 |
+
948 F train-clean-360 Chere Theriot
|
372 |
+
949 M train-clean-360 ontheroad
|
373 |
+
951 F train-other-500 thomasina
|
374 |
+
953 M train-clean-360 Jim Mullins
|
375 |
+
954 M train-clean-360 Brooks Seveer
|
376 |
+
956 F train-other-500 krithiga
|
377 |
+
957 M train-clean-360 iscatel
|
378 |
+
960 F train-other-500 Marloes Schoonheim
|
379 |
+
964 M train-other-500 Paul Sze
|
380 |
+
968 F train-clean-360 Pat Elder
|
381 |
+
969 M train-other-500 Czechchris
|
382 |
+
976 F train-other-500 Alison Raouf
|
383 |
+
978 M train-other-500 Rick Box
|
384 |
+
979 F train-clean-360 Kelli Robinson
|
385 |
+
982 M train-other-500 Mike Roop
|
386 |
+
984 M train-clean-360 J A Carter
|
387 |
+
985 M train-other-500 George Pilling
|
388 |
+
986 M train-clean-360 Michael Kirkpatrick
|
389 |
+
1001 M train-clean-360 Eric
|
390 |
+
1006 F train-other-500 Marta Kornowska
|
391 |
+
1012 F train-clean-360 Lizzie Oldfather
|
392 |
+
1018 M train-clean-360 JimmyLogan
|
393 |
+
1025 M train-clean-360 rdmagpie
|
394 |
+
1027 M train-clean-360 Brooks Jensen
|
395 |
+
1028 M train-clean-360 Tim Lundeen
|
396 |
+
1031 F train-clean-360 swroot
|
397 |
+
1034 M train-clean-100 Kevin O'Coin
|
398 |
+
1040 M train-clean-100 John Garvin
|
399 |
+
1046 M train-clean-360 durnburr
|
400 |
+
1049 M train-other-500 Sam Fold
|
401 |
+
1050 F train-clean-360 entada
|
402 |
+
1051 F train-other-500 E. Moulton
|
403 |
+
1052 F train-clean-360 Kathy Jacobs
|
404 |
+
1053 F train-clean-360 katyleah
|
405 |
+
1054 F train-clean-360 Igor Teaforay
|
406 |
+
1058 M train-clean-360 James Tiley
|
407 |
+
1060 F train-clean-360 Val Grimm
|
408 |
+
1061 F train-clean-360 Missie
|
409 |
+
1065 M train-other-500 Justin Brett
|
410 |
+
1066 F train-clean-360 Laurie Anne Walden
|
411 |
+
1069 F train-clean-100 Dawn
|
412 |
+
1079 F train-clean-360 Mary aka Breadchick
|
413 |
+
1081 M train-clean-100 Fracture
|
414 |
+
1084 F train-other-500 Nichole Karl
|
415 |
+
1085 M train-other-500 hefyd
|
416 |
+
1088 F train-clean-100 Christabel
|
417 |
+
1089 M test-clean Peter Bobbe
|
418 |
+
1092 F train-other-500 Maria
|
419 |
+
1093 F train-clean-360 Kiki Baessell
|
420 |
+
1094 M train-other-500 tubeyes
|
421 |
+
1096 M train-other-500 Geoff Dugwyler
|
422 |
+
1097 M train-other-500 Euthymius
|
423 |
+
1098 F train-clean-100 Merryb
|
424 |
+
1100 F train-clean-360 Danielle Flores
|
425 |
+
1107 M train-other-500 Jason Oakley
|
426 |
+
1110 M train-other-500 Graeme Jolliffe
|
427 |
+
1112 M train-clean-360 RedToby
|
428 |
+
1116 F train-clean-100 Megan Stemm-Wade
|
429 |
+
1121 M train-clean-360 John Lieder
|
430 |
+
1124 F train-other-500 Ancilla
|
431 |
+
1132 M train-other-500 Giles Baker
|
432 |
+
1152 F train-other-500 Millbeach
|
433 |
+
1154 F train-other-500 Larysa Jaworski
|
434 |
+
1160 M train-clean-360 Gary Gilberd
|
435 |
+
1161 M train-other-500 Dominic Moore
|
436 |
+
1165 M train-clean-360 Bob Graff
|
437 |
+
1166 F train-other-500 Debra Lynn
|
438 |
+
1168 F train-other-500 Ree
|
439 |
+
1171 F train-other-500 Julia Claussen
|
440 |
+
1175 M train-clean-360 Brother Patrick
|
441 |
+
1179 M train-other-500 Alan Chant
|
442 |
+
1182 M train-clean-360 Brett Condron
|
443 |
+
1183 F train-clean-100 roolynninms
|
444 |
+
1184 M train-other-500 Jeremy Pavier
|
445 |
+
1187 M train-other-500 Paul Hansen
|
446 |
+
1188 M test-clean Duncan Murrell
|
447 |
+
1195 F train-clean-360 Jennette Selig
|
448 |
+
1200 M train-other-500 hosmer_angel
|
449 |
+
1212 F train-clean-360 Lee Ann Howlett
|
450 |
+
1221 F test-clean Dianne
|
451 |
+
1222 M train-clean-360 Joseph Ugoretz
|
452 |
+
1224 F train-clean-360 Heather Duncan
|
453 |
+
1225 M train-other-500 Chris Langston
|
454 |
+
1226 M train-clean-360 Russ Lemker
|
455 |
+
1230 M train-other-500 Ian Skillen
|
456 |
+
1235 M train-clean-100 Tim Gregory
|
457 |
+
1239 M train-other-500 Scott Robbins
|
458 |
+
1241 F train-clean-360 Catherine Fitz
|
459 |
+
1246 F train-clean-100 Sandra
|
460 |
+
1250 F train-other-500 Christina Boyles
|
461 |
+
1252 F train-other-500 Avery
|
462 |
+
1255 M dev-other Simon Evers
|
463 |
+
1258 M train-other-500 Mellors
|
464 |
+
1259 F train-clean-360 Elizabeth Klett
|
465 |
+
1260 M train-other-500 Chris Hughes
|
466 |
+
1261 M train-other-500 Mans Broo
|
467 |
+
1263 F train-clean-100 Leonie Rose
|
468 |
+
1264 M train-clean-360 Matthew Hinman
|
469 |
+
1265 M train-clean-360 Edward Elmer
|
470 |
+
1266 F train-other-500 Jenilee
|
471 |
+
1271 M train-clean-360 Christian Pecaut
|
472 |
+
1272 M dev-clean John Rose
|
473 |
+
1274 M train-other-500 Larry Gilman
|
474 |
+
1280 M train-other-500 Tim Makarios
|
475 |
+
1283 M train-clean-360 Paul Siegel
|
476 |
+
1284 F test-clean Daniel Anaya
|
477 |
+
1289 F train-clean-360 Joanne Pauwels
|
478 |
+
1290 F train-clean-360 librarianite
|
479 |
+
1291 F train-other-500 Patti Brugman
|
480 |
+
1296 F train-clean-360 Gigi Minden
|
481 |
+
1298 F train-other-500 Wina Hathaway
|
482 |
+
1311 M train-clean-360 Scott D. Farquhar
|
483 |
+
1313 M train-clean-360 Scott Sherris
|
484 |
+
1316 M train-clean-360 Estragon
|
485 |
+
1320 M test-clean number6
|
486 |
+
1322 M train-clean-360 chris tierney
|
487 |
+
1323 M train-clean-360 Leon Mire
|
488 |
+
1331 M train-other-500 Adrian Praetzellis
|
489 |
+
1334 M train-clean-100 John Schell
|
490 |
+
1335 F train-clean-360 Clarica
|
491 |
+
1336 M train-clean-360 Charlie Blakemore
|
492 |
+
1337 M train-clean-360 Steven Rushing
|
493 |
+
1341 M train-other-500 Coastalbloke
|
494 |
+
1342 F train-other-500 SueAnn Dozier
|
495 |
+
1343 F train-clean-360 Laura Koskinen
|
496 |
+
1347 M train-other-500 Ted Nugent
|
497 |
+
1348 F train-clean-360 Janet Friday
|
498 |
+
1349 M train-clean-360 John Pruden
|
499 |
+
1353 M train-other-500 Clarke Bell
|
500 |
+
1355 M train-clean-100 Chris Gladis
|
501 |
+
1363 F train-clean-100 Tammy Sanders
|
502 |
+
1365 M train-clean-360 Joel Poortenga
|
503 |
+
1367 M train-other-500 Joe Brenneman
|
504 |
+
1370 F train-other-500 Lee Elliott
|
505 |
+
1373 F train-other-500 Kira Belkin
|
506 |
+
1374 M train-other-500 Graham Thomsen
|
507 |
+
1379 M train-clean-360 Ken Crooker
|
508 |
+
1382 F train-clean-360 Heather Lawrence
|
509 |
+
1383 M train-clean-360 David Best
|
510 |
+
1384 M train-other-500 Stephen Lamb
|
511 |
+
1387 M train-clean-360 Scott Mather
|
512 |
+
1390 F train-clean-360 C.L.Coney
|
513 |
+
1392 M train-clean-360 Chris Masterson
|
514 |
+
1401 F train-clean-360 Sibella Denton
|
515 |
+
1403 M train-other-500 tipaew
|
516 |
+
1413 M train-clean-360 ryanaw
|
517 |
+
1414 F train-other-500 guava
|
518 |
+
1417 F train-clean-360 Psuke Bariah
|
519 |
+
1421 F train-other-500 Madame Tusk
|
520 |
+
1422 F train-clean-360 Yazpistachio
|
521 |
+
1425 F train-clean-360 Jeanette Ferguson
|
522 |
+
1430 M train-other-500 Alok Karulkar
|
523 |
+
1444 M train-other-500 Ryan Mease
|
524 |
+
1445 M train-clean-360 Michael Yard
|
525 |
+
1446 M train-clean-360 Michael Loftus
|
526 |
+
1447 F train-clean-100 Luigina
|
527 |
+
1448 F train-clean-360 marevalo
|
528 |
+
1455 M train-clean-100 webslog
|
529 |
+
1456 M train-clean-360 Jason Isbell
|
530 |
+
1460 F train-clean-360 E. Plein
|
531 |
+
1462 F dev-clean E. Tavano
|
532 |
+
1463 F train-clean-360 Vivian Bush
|
533 |
+
1469 M train-other-500 Fr. Richard Zeile of Detroit
|
534 |
+
1472 F train-clean-360 Sarah Jennings
|
535 |
+
1473 M train-clean-360 Dan Polanco
|
536 |
+
1474 F train-other-500 Jc Guan
|
537 |
+
1482 M train-clean-360 Joshua B. Christensen
|
538 |
+
1485 M train-other-500 Robert Flach
|
539 |
+
1487 M train-clean-360 radioreader
|
540 |
+
1492 M train-other-500 mb
|
541 |
+
1494 M train-other-500 George Deprez, PhD
|
542 |
+
1495 M train-other-500 Glendower Jones
|
543 |
+
1498 F train-clean-360 Lori Hebel
|
544 |
+
1502 F train-clean-100 Ann Boyer
|
545 |
+
1505 M train-other-500 Mark Norman
|
546 |
+
1509 F train-clean-360 Miranda Stinson
|
547 |
+
1513 M train-clean-360 Simon-Peter Zak
|
548 |
+
1535 M train-clean-360 Robert Scott
|
549 |
+
1536 M train-clean-360 Marco
|
550 |
+
1544 F train-other-500 LilianaVale
|
551 |
+
1545 F train-other-500 AmyAG
|
552 |
+
1547 F train-clean-360 Riddleman
|
553 |
+
1552 M train-clean-360 Roger Turnau
|
554 |
+
1553 F train-clean-100 Mim Ritty
|
555 |
+
1556 M train-clean-360 geofred
|
556 |
+
1559 M train-other-500 Luke Harrison
|
557 |
+
1563 F train-other-500 Chandra Gioiello
|
558 |
+
1564 F train-other-500 Hedvig
|
559 |
+
1566 F train-other-500 Anna Christensen
|
560 |
+
1569 F train-other-500 Kristine Mackin
|
561 |
+
1571 M train-clean-360 Bob Tassinari
|
562 |
+
1572 M train-other-500 Alan Clare
|
563 |
+
1578 F train-clean-100 Lorelle Anderson
|
564 |
+
1579 F train-other-500 Philippa Willitts
|
565 |
+
1580 F test-clean TinyPines
|
566 |
+
1585 F dev-other Nelly ()
|
567 |
+
1593 F train-other-500 Kristine Bekere
|
568 |
+
1594 M train-clean-100 Jon Scott Jones
|
569 |
+
1595 M train-other-500 Riccardo Fasol
|
570 |
+
1601 M train-other-500 Michael Yourshaw
|
571 |
+
1603 M train-clean-360 Arouet
|
572 |
+
1607 M train-clean-360 Claude Banta
|
573 |
+
1614 M train-other-500 FNH
|
574 |
+
1618 M train-other-500 Nicholas James Bridgewater
|
575 |
+
1621 M train-other-500 Caliban
|
576 |
+
1624 M train-clean-100 Daniel Shorten
|
577 |
+
1629 F train-clean-360 Gwyneth
|
578 |
+
1630 F dev-other spiritualbeing
|
579 |
+
1633 F train-other-500 Beecher
|
580 |
+
1634 M train-clean-360 daxm
|
581 |
+
1636 F train-other-500 Sandra Zera
|
582 |
+
1638 M train-clean-360 Kyle M.
|
583 |
+
1639 M train-clean-360 Joe Konno
|
584 |
+
1641 F train-clean-360 Rohanna
|
585 |
+
1643 M train-other-500 Chris Leslie-Hynan
|
586 |
+
1645 M train-clean-360 David Shamp
|
587 |
+
1646 M train-other-500 Ben Cobbett
|
588 |
+
1647 M train-other-500 Rich Meyers
|
589 |
+
1648 F train-other-500 Accent
|
590 |
+
1649 F train-clean-360 Kalynda
|
591 |
+
1650 M dev-other WangHaojie
|
592 |
+
1651 M dev-other Brendan Hodge
|
593 |
+
1653 F train-other-500 Carmina Sansone
|
594 |
+
1664 F train-other-500 Shauna M
|
595 |
+
1665 F train-other-500 Jessica AC Snyder
|
596 |
+
1668 F train-clean-360 stepheather
|
597 |
+
1673 F dev-clean Tonia
|
598 |
+
1674 F train-other-500 Jo
|
599 |
+
1678 F train-clean-360 leonardswench
|
600 |
+
1679 F train-other-500 Polly
|
601 |
+
1680 F train-other-500 intothelight
|
602 |
+
1681 F train-other-500 islajane
|
603 |
+
1685 M train-other-500 Jonathan Horniblow
|
604 |
+
1686 F dev-other neelma
|
605 |
+
1688 M test-other winam
|
606 |
+
1690 F train-other-500 Anne-Marie
|
607 |
+
1691 F train-other-500 Classicsfan
|
608 |
+
1693 F train-other-500 4Cullen
|
609 |
+
1695 F train-other-500 Steph
|
610 |
+
1696 F train-other-500 Darcywil
|
611 |
+
1699 M train-other-500 Gavin Smith
|
612 |
+
1701 M dev-other camelot2302
|
613 |
+
1704 F train-other-500 JB
|
614 |
+
1705 F train-clean-360 tittletattle
|
615 |
+
1708 M train-other-500 Alaaious
|
616 |
+
1710 F train-other-500 Gilly
|
617 |
+
1714 F train-other-500 lauralee
|
618 |
+
1715 F train-other-500 Marianna
|
619 |
+
1717 F train-other-500 PJ
|
620 |
+
1721 F train-other-500 Linnea
|
621 |
+
1723 M train-clean-100 Rob Whelan
|
622 |
+
1724 F train-clean-360 Anna Simon
|
623 |
+
1726 F train-other-500 janeite
|
624 |
+
1731 F train-clean-360 Dani
|
625 |
+
1733 F train-other-500 Mira Cheskis
|
626 |
+
1734 F train-clean-360 LuvDemBrooders
|
627 |
+
1736 F train-other-500 LC
|
628 |
+
1737 F train-clean-100 Erin Hastings
|
629 |
+
1740 F train-clean-360 Shubda
|
630 |
+
1743 M train-clean-100 Bryan Ness
|
631 |
+
1746 M train-other-500 Theo Bacher
|
632 |
+
1748 M train-clean-360 Brad Powers
|
633 |
+
1750 F train-other-500 Lorie Heinrichs
|
634 |
+
1752 F train-clean-360 Jan MacGillivray
|
635 |
+
1754 F train-clean-360 Joan Freeman
|
636 |
+
1756 F train-other-500 Tamara Hamilton
|
637 |
+
1757 F train-other-500 cricket
|
638 |
+
1760 F train-other-500 Matthew Howell
|
639 |
+
1765 F train-other-500 Kelly Elizabeth
|
640 |
+
1767 F train-other-500 Cori Dean
|
641 |
+
1769 M train-clean-360 ej
|
642 |
+
1772 M train-other-500 David A. Stokely
|
643 |
+
1773 F train-other-500 Eliza Horne
|
644 |
+
1776 M train-clean-360 Jim Eastman
|
645 |
+
1777 M train-clean-360 Professor Chronotis
|
646 |
+
1779 F train-clean-360 Cynthia Zocca
|
647 |
+
1780 M train-other-500 Micah
|
648 |
+
1784 F train-other-500 grovejade
|
649 |
+
1789 M train-clean-360 Vin Reilly
|
650 |
+
1795 M train-other-500 Muhammad Mussnoon
|
651 |
+
1800 F train-clean-360 Scarlett!
|
652 |
+
1801 M train-clean-360 Antonio
|
653 |
+
1804 F train-other-500 Marie Manis
|
654 |
+
1806 M train-clean-360 Gary W. Sherwin
|
655 |
+
1809 F train-other-500 cucciasv
|
656 |
+
1811 M train-clean-360 Eric Ray
|
657 |
+
1813 F train-other-500 tesoro007
|
658 |
+
1815 M train-other-500 Aringguth
|
659 |
+
1819 F train-other-500 Shannon
|
660 |
+
1825 F train-clean-360 srshel
|
661 |
+
1826 M train-clean-360 Jacob Miller
|
662 |
+
1827 M train-clean-360 Doug Wetzel
|
663 |
+
1828 M train-other-500 James Gladwin
|
664 |
+
1841 F train-clean-100 Laura Caldwell
|
665 |
+
1844 M train-other-500 noonday
|
666 |
+
1845 F train-clean-360 Katie Gibboney
|
667 |
+
1846 M train-other-500 valikojohn
|
668 |
+
1849 M train-clean-360 Kelly Dougherty
|
669 |
+
1851 F train-clean-360 Kehinde
|
670 |
+
1859 F train-clean-360 Jan Baxter
|
671 |
+
1863 F train-other-500 Ania
|
672 |
+
1867 M train-clean-100 Rowdy Delaney
|
673 |
+
1868 M train-other-500 Graham Redman
|
674 |
+
1870 M train-other-500 Stuart Bell
|
675 |
+
1874 M train-clean-360 Ernst Schnell
|
676 |
+
1878 M train-other-500 BLRossow
|
677 |
+
1885 F train-clean-360 inkwelldragon
|
678 |
+
1898 F train-clean-100 Jennifer
|
679 |
+
1901 F train-other-500 Allyson Hester
|
680 |
+
1903 M train-clean-360 Michael Thomas Robinson
|
681 |
+
1913 M train-clean-360 Geoff Cowgill
|
682 |
+
1914 M train-clean-360 Kevin Kivikko
|
683 |
+
1919 F dev-clean nprigoda
|
684 |
+
1920 F train-other-500 Annika Feilbach
|
685 |
+
1923 F train-clean-360 Maire Rhode
|
686 |
+
1924 M train-other-500 Andrew Drinkwater
|
687 |
+
1926 F train-clean-100 Nikki Sullivan
|
688 |
+
1931 F train-other-500 poormedea
|
689 |
+
1933 F train-clean-360 iremonger
|
690 |
+
1938 M train-other-500 icyjumbo (1964-2010)
|
691 |
+
1943 M train-clean-360 Corun
|
692 |
+
1944 F train-clean-360 Carolyn Frances
|
693 |
+
1958 M train-clean-360 Furio
|
694 |
+
1961 F train-clean-360 Qhali
|
695 |
+
1963 F train-clean-100 Belinda Brown
|
696 |
+
1968 F train-other-500 lizzyblack
|
697 |
+
1970 F train-clean-100 Dawn Larsen
|
698 |
+
1974 F train-clean-360 Katie Baynes
|
699 |
+
1977 F train-other-500 Jennie Hughes
|
700 |
+
1985 M train-other-500 Jonny Lee
|
701 |
+
1987 M train-clean-360 Michael Macedonia
|
702 |
+
1988 F dev-clean Ransom
|
703 |
+
1989 M train-other-500 Sergio Baldelli
|
704 |
+
1992 F train-clean-100 Michelle White
|
705 |
+
1993 F dev-clean Wendy Belcher
|
706 |
+
1995 F test-clean AJai Hilton
|
707 |
+
1998 F test-other Sonja
|
708 |
+
2001 M train-other-500 Phillip David
|
709 |
+
2002 M train-clean-100 Larry Maddocks
|
710 |
+
2003 M train-other-500 The Penang Lawyer
|
711 |
+
2004 F train-clean-360 Kim S
|
712 |
+
2007 F train-clean-100 Sheila Morton
|
713 |
+
2010 F train-clean-360 Julie Bynum
|
714 |
+
2012 M train-clean-360 jburby
|
715 |
+
2013 M train-other-500 Mark
|
716 |
+
2021 M train-other-500 Keri Ford
|
717 |
+
2026 F train-other-500 Mil Nicholson
|
718 |
+
2033 M test-other Filippo Gioachin
|
719 |
+
2035 F dev-clean Sharon Bautista
|
720 |
+
2039 M train-clean-360 Anton
|
721 |
+
2042 F train-other-500 Charlene V. Smith
|
722 |
+
2045 M train-clean-360 David O'Connell
|
723 |
+
2046 M train-other-500 kyleti
|
724 |
+
2050 F train-other-500 Xe Sands
|
725 |
+
2051 M train-other-500 Grant Petersen
|
726 |
+
2053 F train-clean-360 Vincent Tapia
|
727 |
+
2056 F train-clean-360 Nancy Roberts
|
728 |
+
2060 F train-clean-360 Julie Pandya
|
729 |
+
2061 F train-clean-360 Jodi Krangle
|
730 |
+
2062 F train-other-500 Mindy H
|
731 |
+
2063 M train-other-500 hearhis
|
732 |
+
2067 M train-other-500 Nick Gisburne
|
733 |
+
2068 F train-other-500 Priya, India
|
734 |
+
2074 M train-clean-360 Tysto
|
735 |
+
2078 M dev-clean Kathy Caver
|
736 |
+
2085 F train-clean-360 Stephanie Dupal-Demartin
|
737 |
+
2086 M dev-clean Nicodemus
|
738 |
+
2089 F train-other-500 Martina
|
739 |
+
2090 F train-other-500 Melissa
|
740 |
+
2092 F train-clean-100 Elaine Hamby
|
741 |
+
2093 M train-clean-360 RK Wilcox
|
742 |
+
2094 F test-clean amycsj
|
743 |
+
2096 M train-other-500 Nick Marsh
|
744 |
+
2100 F train-other-500 Katherine Holt
|
745 |
+
2104 M train-other-500 R. S. Steinberg
|
746 |
+
2110 M train-clean-360 Aaron Elliott
|
747 |
+
2113 M train-clean-360 Andrew Vidal
|
748 |
+
2122 M train-other-500 Kenneth R. Morefield
|
749 |
+
2127 M train-clean-360 wrongshore
|
750 |
+
2133 M train-other-500 Mat Messerschmidt
|
751 |
+
2136 M train-clean-100 Great Plains
|
752 |
+
2137 M train-clean-360 Jerome Lawsen
|
753 |
+
2140 M train-other-500 Ralph Snelson
|
754 |
+
2143 F train-other-500 Cat Schirf
|
755 |
+
2146 M train-clean-360 Jeff Stuckey
|
756 |
+
2148 F train-other-500 BethAnne
|
757 |
+
2149 M train-clean-360 Mark Penfold
|
758 |
+
2152 F train-other-500 redabrus
|
759 |
+
2156 M train-clean-360 Roger Melin
|
760 |
+
2159 M train-clean-100 Matthew Westra
|
761 |
+
2162 M train-clean-360 Ray Clare
|
762 |
+
2167 M train-clean-360 spiderman0521
|
763 |
+
2182 F train-clean-100 Susan Umpleby
|
764 |
+
2185 M train-other-500 Jonathan Feldman
|
765 |
+
2194 F train-clean-360 RobbieRogers
|
766 |
+
2195 M train-other-500 Joe Earley
|
767 |
+
2196 F train-clean-100 Andrea Fiore
|
768 |
+
2198 M train-other-500 Clive Catterall
|
769 |
+
2201 M train-clean-360 Stephen Escalera
|
770 |
+
2204 F train-clean-360 Pamnache
|
771 |
+
2208 M train-other-500 Alan Brown
|
772 |
+
2229 M train-clean-360 Pete Williams, Pittsburgh, PA
|
773 |
+
2230 F train-clean-360 Isosceles
|
774 |
+
2234 M train-other-500 Lars Rolander
|
775 |
+
2237 F train-other-500 Chloey Winters
|
776 |
+
2238 M train-clean-360 Will Larson
|
777 |
+
2240 M train-clean-360 Ralph Volpi
|
778 |
+
2246 M train-other-500 RaySee
|
779 |
+
2254 F train-clean-360 Heidi Preuss
|
780 |
+
2256 F train-clean-360 tamurile
|
781 |
+
2262 M train-other-500 Andy
|
782 |
+
2269 F train-clean-360 Rhonda Federman
|
783 |
+
2270 F train-other-500 Megan Kunkel
|
784 |
+
2272 M train-clean-360 Alec Daitsman
|
785 |
+
2273 M train-other-500 Peter Kelleher
|
786 |
+
2275 F train-other-500 Lori H
|
787 |
+
2276 F train-other-500 Andrea
|
788 |
+
2277 F dev-clean zinniz
|
789 |
+
2279 M train-other-500 Gilles Lehoux
|
790 |
+
2284 M train-other-500 Zapo
|
791 |
+
2285 M train-clean-360 Bob Sage
|
792 |
+
2288 F train-other-500 Ellis Christoff
|
793 |
+
2289 M train-clean-100 David Kleparek
|
794 |
+
2292 M train-other-500 Dick Durette
|
795 |
+
2294 M train-clean-360 James Christopher
|
796 |
+
2297 F train-other-500 Philippa
|
797 |
+
2299 M train-clean-360 cpalmer17
|
798 |
+
2300 M test-clean Mitchell L Leopard
|
799 |
+
2301 F train-other-500 Chris Jones
|
800 |
+
2309 M train-other-500 Wyatt
|
801 |
+
2312 F train-other-500 Lucy Lo Faro
|
802 |
+
2319 M train-clean-360 Jack Farrell
|
803 |
+
2334 M train-clean-360 David Lipa
|
804 |
+
2339 F train-other-500 skellie
|
805 |
+
2341 M train-other-500 webround
|
806 |
+
2346 F train-other-500 FirstKnight
|
807 |
+
2348 F train-clean-360 KellyLC
|
808 |
+
2351 F train-other-500 hugoceline
|
809 |
+
2356 M train-other-500 Paul Curran
|
810 |
+
2361 F train-other-500 M. J. Boyle
|
811 |
+
2364 F train-clean-360 Anna-Maria Viola
|
812 |
+
2368 M train-clean-360 Alex C. Telander
|
813 |
+
2374 F train-other-500 M.C.Y.
|
814 |
+
2380 M train-other-500 Jacob Cherry
|
815 |
+
2384 M train-clean-100 Ger
|
816 |
+
2388 M train-clean-360 Greg Bell
|
817 |
+
2391 F train-clean-100 treefingers
|
818 |
+
2393 M train-clean-360 Michael Bradford
|
819 |
+
2397 M train-clean-360 texttalker
|
820 |
+
2401 F train-clean-360 Matt Warzel
|
821 |
+
2404 M train-clean-360 n8evv
|
822 |
+
2405 M train-other-500 musil
|
823 |
+
2407 M train-other-500 ajmacbeth
|
824 |
+
2411 F train-clean-360 kristiface
|
825 |
+
2412 F dev-clean calystra
|
826 |
+
2414 M test-other Ashwin Jain
|
827 |
+
2416 F train-clean-100 Julia Albath
|
828 |
+
2427 M train-clean-360 Ed Meade
|
829 |
+
2428 M dev-clean Stephen Kinford
|
830 |
+
2436 M train-clean-100 Seth Adam Sher
|
831 |
+
2437 M train-other-500 Wetcoast
|
832 |
+
2445 F train-other-500 musici123
|
833 |
+
2448 M train-other-500 David Federman
|
834 |
+
2473 M train-clean-360 Hoosemon
|
835 |
+
2481 F train-clean-360 Alana Jordan
|
836 |
+
2485 F train-other-500 Serin
|
837 |
+
2487 F train-other-500 Rachel Lintern
|
838 |
+
2488 F train-other-500 Lisa Wilson
|
839 |
+
2491 M train-other-500 johnb
|
840 |
+
2494 M train-clean-360 Mark Cawley
|
841 |
+
2496 M train-other-500 Ben Dutton
|
842 |
+
2498 F train-clean-360 B. Grebe
|
843 |
+
2499 M train-clean-360 Paul Henry Tremblay
|
844 |
+
2504 F train-other-500 Helen Elsbeth
|
845 |
+
2506 F dev-other Julie VW
|
846 |
+
2512 F train-clean-360 Marion
|
847 |
+
2514 M train-clean-100 S. Young
|
848 |
+
2517 M train-clean-360 Gayland Darnell
|
849 |
+
2518 M train-clean-100 Rob Powell
|
850 |
+
2522 F train-other-500 senshisteph
|
851 |
+
2526 M train-other-500 Bob Gilham
|
852 |
+
2531 M train-clean-360 Greg Weeks
|
853 |
+
2532 F train-clean-360 Jennifer Lott
|
854 |
+
2533 M train-clean-360 Steven Proctor
|
855 |
+
2541 M train-other-500 Eddie Winter
|
856 |
+
2544 F train-other-500 Annise
|
857 |
+
2545 M train-other-500 the quiet fox
|
858 |
+
2552 M train-other-500 Daniel Cranston
|
859 |
+
2553 F train-other-500 daisy55
|
860 |
+
2562 M train-clean-360 Scott Merrill
|
861 |
+
2568 F train-other-500 Elena the Quiet
|
862 |
+
2570 F train-clean-360 kindlibrarian
|
863 |
+
2573 F train-clean-360 Becca B
|
864 |
+
2574 M train-other-500 TimSC
|
865 |
+
2577 F train-clean-360 K Hindall
|
866 |
+
2581 F train-clean-360 Julie Levi
|
867 |
+
2582 F train-clean-360 dolce
|
868 |
+
2587 F train-other-500 Anne Cheng
|
869 |
+
2588 M train-other-500 Padraig O'hIceadha
|
870 |
+
2589 M train-clean-360 Jordan
|
871 |
+
2592 F train-clean-360 Anna Roberts
|
872 |
+
2598 F train-clean-360 Barbara Bulkeley
|
873 |
+
2606 M train-other-500 Marc Tanti
|
874 |
+
2607 F train-other-500 Ruth Golding
|
875 |
+
2609 M test-other Ian Hatley
|
876 |
+
2618 M train-clean-360 Phil Surette
|
877 |
+
2624 M train-other-500 David Nicol
|
878 |
+
2625 F train-other-500 Auntie Em
|
879 |
+
2628 M train-clean-360 Zloot
|
880 |
+
2638 F train-clean-360 Dawn
|
881 |
+
2652 F train-clean-360 MixieArmadillo
|
882 |
+
2654 M train-clean-360 Notelrac
|
883 |
+
2660 M train-other-500 mpetranech
|
884 |
+
2671 F train-other-500 Foreign Girl
|
885 |
+
2673 M train-clean-360 jude kaider
|
886 |
+
2674 M train-clean-360 Jason Procopio
|
887 |
+
2676 F train-other-500 missizii
|
888 |
+
2688 M train-clean-360 Christopher Jennings
|
889 |
+
2691 F train-clean-100 Donna Stewart
|
890 |
+
2694 F train-other-500 DianaJMB
|
891 |
+
2696 M train-clean-360 anonymous
|
892 |
+
2709 F train-clean-360 PopularOutcast
|
893 |
+
2712 F train-other-500 anoldfashiongirl
|
894 |
+
2724 M train-other-500 Michael Dalling
|
895 |
+
2730 F train-other-500 Shirley Anderson
|
896 |
+
2733 M train-other-500 CalmDragon
|
897 |
+
2735 F train-other-500 ASchindler
|
898 |
+
2740 M train-other-500 Tony Ashworth
|
899 |
+
2741 F train-clean-360 Jan Dawn Doronila
|
900 |
+
2748 F train-other-500 Annoying Twit
|
901 |
+
2751 F train-clean-360 Angela Kelley
|
902 |
+
2754 F train-other-500 peaceuntoyou
|
903 |
+
2758 F train-clean-360 SopranoHarmony
|
904 |
+
2762 F train-other-500 Phillipa Chantry
|
905 |
+
2764 F train-clean-100 Piper Hale
|
906 |
+
2769 M train-clean-360 Anthony Wilson
|
907 |
+
2774 M train-clean-360 William Kevin Manire
|
908 |
+
2775 F train-clean-360 ink tree
|
909 |
+
2785 F train-clean-360 humeangel
|
910 |
+
2787 M train-clean-360 Quentin Manuel
|
911 |
+
2790 F train-clean-360 Victoria Slonosky
|
912 |
+
2792 F train-other-500 Varra Unreal
|
913 |
+
2803 M dev-clean aquielisunari
|
914 |
+
2812 M train-clean-360 Greg Hartley
|
915 |
+
2815 M train-clean-360 Michael Sample
|
916 |
+
2816 M train-clean-360 Andrew Symons
|
917 |
+
2817 F train-clean-100 Catherine Millward
|
918 |
+
2823 M train-clean-360 ChrisC
|
919 |
+
2825 M train-other-500 Ernst Pattynama
|
920 |
+
2827 M train-clean-360 David Leeson
|
921 |
+
2830 M test-clean Tim Perkins
|
922 |
+
2834 F train-other-500 Ksushi
|
923 |
+
2836 F train-clean-100 Linda McDaniel
|
924 |
+
2843 M train-clean-100 ricell
|
925 |
+
2853 F train-clean-360 Jane Greensmith
|
926 |
+
2854 M train-other-500 Andrew Coleman
|
927 |
+
2882 F train-clean-360 ayngelwing
|
928 |
+
2893 M train-clean-100 Ryan Sutter
|
929 |
+
2895 F train-other-500 Jenny Lundak
|
930 |
+
2902 M dev-clean dexter
|
931 |
+
2909 F train-other-500 Petra
|
932 |
+
2910 F train-clean-100 Janna
|
933 |
+
2911 M train-clean-100 David Lawrence
|
934 |
+
2919 F train-other-500 Raerity
|
935 |
+
2920 F train-clean-360 Rechelle
|
936 |
+
2925 F train-other-500 Darla
|
937 |
+
2929 M train-clean-360 Topaz
|
938 |
+
2930 M train-other-500 BUAES
|
939 |
+
2943 F train-other-500 Sarah Gutierrez
|
940 |
+
2946 M train-other-500 Markus Wachenheim
|
941 |
+
2952 M train-clean-100 Scott Carpenter
|
942 |
+
2960 M train-clean-360 Scotty
|
943 |
+
2961 F test-clean Leni
|
944 |
+
2967 F train-other-500 Landii
|
945 |
+
2971 M train-clean-360 Matthew C. Heckel
|
946 |
+
2975 F train-other-500 Sarafina Suransky
|
947 |
+
2979 F train-other-500 Jilliane Brandt
|
948 |
+
2985 M train-other-500 Cantor
|
949 |
+
2988 F train-other-500 Larissa Little
|
950 |
+
2989 F train-clean-100 Jamie Strassenburg, Cypress, California
|
951 |
+
2990 M train-other-500 Tom Crawford
|
952 |
+
2992 M train-clean-360 davechase
|
953 |
+
2997 F train-other-500 Violet
|
954 |
+
2998 M train-other-500 Kim Jansen
|
955 |
+
2999 M train-clean-360 Joseph Finkberg
|
956 |
+
3000 M dev-clean Brian von Dedenroth
|
957 |
+
3001 F train-clean-360 priscilla hewitt
|
958 |
+
3003 F train-clean-360 Sue Anderson
|
959 |
+
3005 M test-other Ken Tischler
|
960 |
+
3006 F train-other-500 MorganScorpion
|
961 |
+
3008 F train-clean-360 Gloria Zbilicki
|
962 |
+
3009 M train-clean-360 Jim Ruddy
|
963 |
+
3020 M train-other-500 Mike Vendetti
|
964 |
+
3021 M train-other-500 leetcr
|
965 |
+
3025 F train-clean-360 MichelleHarris
|
966 |
+
3032 M train-clean-360 Utek
|
967 |
+
3033 F train-other-500 valli
|
968 |
+
3045 M train-other-500 Cameron Conaway
|
969 |
+
3046 F train-clean-360 Stephanie Land
|
970 |
+
3053 F train-other-500 Tracy Yonemoto
|
971 |
+
3054 M train-other-500 GerryR
|
972 |
+
3060 M train-other-500 Didier
|
973 |
+
3063 M train-other-500 markman
|
974 |
+
3070 M train-clean-360 Mike Schwabe
|
975 |
+
3072 M train-clean-360 Chris Amos
|
976 |
+
3079 F train-other-500 nivedita
|
977 |
+
3080 F test-other breathe
|
978 |
+
3081 F dev-clean Renata
|
979 |
+
3082 M train-clean-360 Logan McCamon
|
980 |
+
3083 F train-clean-360 Emily Jarmard
|
981 |
+
3088 M train-other-500 Sean O'Hara
|
982 |
+
3090 F train-other-500 kelcymx
|
983 |
+
3092 F train-clean-360 Maggie Russell
|
984 |
+
3094 F train-clean-360 moe
|
985 |
+
3097 M train-other-500 nitram
|
986 |
+
3098 M train-other-500 woggy298
|
987 |
+
3100 M train-other-500 David Higham
|
988 |
+
3105 M train-clean-360 gfairch511
|
989 |
+
3109 M train-other-500 Diogenes Dog
|
990 |
+
3112 F train-clean-100 Jessica Louise
|
991 |
+
3114 M train-clean-360 Geoffrey Edwards
|
992 |
+
3118 M train-clean-360 George Yeager
|
993 |
+
3119 F train-clean-360 Sharon Riskedahl
|
994 |
+
3125 F train-other-500 Fran
|
995 |
+
3132 M train-other-500 Andy Yu
|
996 |
+
3135 M train-other-500 Steve Foreman
|
997 |
+
3137 M train-other-500 Parrot
|
998 |
+
3138 F train-other-500 Labyrinth Composer
|
999 |
+
3142 M train-other-500 RogerA
|
1000 |
+
3143 F train-other-500 suzanne
|
1001 |
+
3144 M train-other-500 jfmarchini
|
1002 |
+
3148 M train-other-500 artos
|
1003 |
+
3157 F train-clean-360 TriciaG
|
1004 |
+
3168 M train-clean-100 David Anton
|
1005 |
+
3170 M dev-clean VOICEGUY
|
1006 |
+
3171 M train-clean-360 JoeD
|
1007 |
+
3172 F train-other-500 Beatrice
|
1008 |
+
3179 F train-other-500 Robin
|
1009 |
+
3180 M train-clean-360 Mike Conrad
|
1010 |
+
3185 M train-clean-360 JohnNewman
|
1011 |
+
3187 M train-clean-360 Wasichu
|
1012 |
+
3192 M train-other-500 Arfuhrm
|
1013 |
+
3196 F train-other-500 Elizabeth Harker
|
1014 |
+
3214 M train-clean-100 fourteatoo
|
1015 |
+
3215 F train-clean-360 Shirley Ellen
|
1016 |
+
3221 M train-clean-360 David Schoepf
|
1017 |
+
3224 F train-clean-360 Acacia Wood
|
1018 |
+
3227 F train-other-500 Betina
|
1019 |
+
3228 F train-clean-360 Benuathanasia
|
1020 |
+
3230 M train-clean-360 rasputin
|
1021 |
+
3235 F train-clean-100 Karen Commins
|
1022 |
+
3238 M train-other-500 nihilist00
|
1023 |
+
3240 M train-clean-100 flakker
|
1024 |
+
3242 M train-clean-100 peac
|
1025 |
+
3244 F train-other-500 wilwarin
|
1026 |
+
3245 F train-other-500 wendy
|
1027 |
+
3257 M train-other-500 Jay Vance
|
1028 |
+
3258 F train-clean-360 mwalimu
|
1029 |
+
3259 F train-clean-100 Kate West
|
1030 |
+
3261 M train-other-500 fourgrays
|
1031 |
+
3268 M train-other-500 Patrick McHaffie
|
1032 |
+
3271 M train-other-500 Ancient mariner
|
1033 |
+
3272 M train-other-500 Matthew_J_Almeida
|
1034 |
+
3274 M train-clean-360 Morgan Saletta
|
1035 |
+
3285 M train-other-500 David Collins
|
1036 |
+
3288 M train-other-500 Euan Bayliss
|
1037 |
+
3289 M train-clean-360 lukeprog
|
1038 |
+
3290 F train-other-500 Marian Martin
|
1039 |
+
3294 F train-clean-360 Marcy Fraser
|
1040 |
+
3307 M train-clean-360 Doug Allison
|
1041 |
+
3314 F train-other-500 Carol Stripling
|
1042 |
+
3318 F train-other-500 Magdalena
|
1043 |
+
3319 F train-other-500 mjbrichant
|
1044 |
+
3328 M train-clean-360 Al Dano
|
1045 |
+
3330 F train-clean-360 B. G. Oxford
|
1046 |
+
3331 F test-other Peggy
|
1047 |
+
3334 F train-other-500 joi
|
1048 |
+
3340 M train-clean-360 Preston McConkie
|
1049 |
+
3346 F train-other-500 Hannah Dowell
|
1050 |
+
3347 F train-clean-360 tornadogrrrl
|
1051 |
+
3356 F train-other-500 Diana Solomon
|
1052 |
+
3357 F train-clean-360 swade
|
1053 |
+
3361 F train-clean-360 Linda Lee Paquet
|
1054 |
+
3368 M train-clean-360 Jim Allman
|
1055 |
+
3370 M train-clean-360 Glenn Simonsen
|
1056 |
+
3373 M train-other-500 cvd
|
1057 |
+
3374 M train-clean-100 Craig Campbell
|
1058 |
+
3379 F train-clean-360 Kele
|
1059 |
+
3380 F train-clean-360 DrBeccaAnne
|
1060 |
+
3381 M train-other-500 Cagliostro
|
1061 |
+
3389 M train-clean-360 von
|
1062 |
+
3394 F train-other-500 Jackie Provau
|
1063 |
+
3400 F train-other-500 Laura Davis
|
1064 |
+
3409 F train-other-500 Philippa Brodie
|
1065 |
+
3411 F train-other-500 SuD
|
1066 |
+
3417 M train-other-500 Albatross
|
1067 |
+
3433 M train-other-500 Bob Sherman
|
1068 |
+
3436 M train-clean-100 Anders Lankford
|
1069 |
+
3440 F train-clean-100 Heidi Will
|
1070 |
+
3446 F train-clean-360 kayo
|
1071 |
+
3448 M train-clean-360 Todd Lennon
|
1072 |
+
3465 F train-other-500 ravenotation
|
1073 |
+
3467 F train-other-500 js392
|
1074 |
+
3470 M train-other-500 Jason Mills
|
1075 |
+
3479 F train-other-500 Karan Yamada
|
1076 |
+
3482 F train-clean-360 Hayden
|
1077 |
+
3483 M train-clean-360 Alan Winterrowd
|
1078 |
+
3486 M train-clean-100 Robin Balmer
|
1079 |
+
3488 M train-other-500 Tom Weiss
|
1080 |
+
3490 M train-clean-360 Gregg Margarite (1957-2012)
|
1081 |
+
3493 F train-clean-360 Gail Mattern
|
1082 |
+
3500 F train-other-500 B. Treadgold
|
1083 |
+
3503 M train-other-500 Christian Al-Kadi
|
1084 |
+
3513 F train-clean-360 Symmie
|
1085 |
+
3521 M train-clean-360 NickNumber
|
1086 |
+
3526 F train-clean-100 Bereni
|
1087 |
+
3528 F test-other minimoose83
|
1088 |
+
3536 F dev-clean Arielle Lipshaw
|
1089 |
+
3537 F train-clean-360 Tracy Datlen
|
1090 |
+
3538 F test-other Wyndelyn
|
1091 |
+
3540 M train-clean-360 Bill Ruhsam
|
1092 |
+
3541 M train-other-500 Termin Dyan
|
1093 |
+
3546 F train-clean-360 Jeannie
|
1094 |
+
3547 M train-other-500 BenW
|
1095 |
+
3549 F train-clean-360 Katie Riley
|
1096 |
+
3551 F train-clean-360 Annie Kirkpatrick
|
1097 |
+
3553 M train-other-500 Luc Kordas
|
1098 |
+
3554 F train-other-500 LaraC, Louisville, KY
|
1099 |
+
3557 F train-other-500 Rachel Triska
|
1100 |
+
3559 F train-other-500 Kerry Hiles
|
1101 |
+
3564 F train-other-500 Vanessa
|
1102 |
+
3567 M train-other-500 David Lazarus
|
1103 |
+
3570 F test-clean sarac
|
1104 |
+
3571 M train-other-500 HarryInk
|
1105 |
+
3575 F test-clean supergirl
|
1106 |
+
3576 F dev-clean JudyGibson
|
1107 |
+
3584 F train-clean-360 Bridget Gaige
|
1108 |
+
3587 M train-other-500 John Nixon
|
1109 |
+
3588 F train-other-500 Neeru Iyer
|
1110 |
+
3592 M train-other-500 Paul McCartan
|
1111 |
+
3595 M train-other-500 Martin Geeson
|
1112 |
+
3598 F train-other-500 Dawn
|
1113 |
+
3606 M train-other-500 Ashwath Ganesan
|
1114 |
+
3607 M train-clean-100 Richard Wallis
|
1115 |
+
3615 F train-clean-360 Lucy Perry
|
1116 |
+
3618 M train-other-500 Timothy Ferguson
|
1117 |
+
3630 F train-clean-360 Rachel Gatwood
|
1118 |
+
3638 F train-clean-360 AmyG
|
1119 |
+
3641 F train-other-500 Joelle Peebles
|
1120 |
+
3645 F train-clean-360 MaryAnn
|
1121 |
+
3647 F train-other-500 Channe
|
1122 |
+
3650 M train-other-500 Jonathan Ross
|
1123 |
+
3654 M train-clean-360 Mark Wilson
|
1124 |
+
3656 M train-other-500 Kai Lu
|
1125 |
+
3657 M train-other-500 Bellona Times
|
1126 |
+
3660 M dev-other Russ Clough
|
1127 |
+
3663 F dev-other ppezz
|
1128 |
+
3664 M train-clean-100 Barry Eads
|
1129 |
+
3665 M train-other-500 C.J. Casey
|
1130 |
+
3675 F train-other-500 Linda Ferguson
|
1131 |
+
3679 F train-other-500 veronasser
|
1132 |
+
3681 F train-other-500 Ann Boulais
|
1133 |
+
3686 M train-clean-360 Doug Delisle
|
1134 |
+
3691 M train-other-500 Hollis Hanover
|
1135 |
+
3698 F train-other-500 Nadine Eckert-Boulet
|
1136 |
+
3699 M train-clean-100 Bruce Pirie
|
1137 |
+
3703 F train-clean-360 Linda Andrus
|
1138 |
+
3717 M train-clean-360 Elliott Miller
|
1139 |
+
3723 M train-clean-100 Kevin Lavin
|
1140 |
+
3728 F train-clean-360 amycs
|
1141 |
+
3729 F test-clean Heather Hogan
|
1142 |
+
3733 F train-clean-360 Melanie Schleeter McCalmont
|
1143 |
+
3738 F train-clean-360 Collee McKinnon
|
1144 |
+
3744 M train-other-500 Jonathan Burchard
|
1145 |
+
3747 M train-other-500 Keith Henige
|
1146 |
+
3752 M dev-clean Mark Welch
|
1147 |
+
3757 F train-other-500 EmAllise
|
1148 |
+
3764 F test-other Gabrielle Lambrick
|
1149 |
+
3779 F train-other-500 Rachel Steely
|
1150 |
+
3780 M train-other-500 Pete
|
1151 |
+
3781 F train-clean-360 Celena Arter
|
1152 |
+
3783 M train-other-500 TexasSteve
|
1153 |
+
3790 F train-clean-360 hpark
|
1154 |
+
3792 M train-clean-360 Brian Keith Barnes
|
1155 |
+
3793 M train-other-500 Nathan
|
1156 |
+
3796 M train-other-500 Mario Pineda
|
1157 |
+
3798 F train-other-500 Bianca Kramer
|
1158 |
+
3807 M train-clean-100 Jesse Noar
|
1159 |
+
3816 F train-clean-360 Bev J Stevens
|
1160 |
+
3819 M train-other-500 StarrDog
|
1161 |
+
3825 M train-clean-360 Matt Wills
|
1162 |
+
3830 M train-clean-100 rymd80
|
1163 |
+
3835 M train-clean-360 M.White
|
1164 |
+
3843 F train-other-500 storm
|
1165 |
+
3845 M train-other-500 Ray Smith
|
1166 |
+
3848 F train-other-500 skoval
|
1167 |
+
3851 F train-clean-360 mbousquet
|
1168 |
+
3852 F train-clean-360 selniff
|
1169 |
+
3853 F dev-clean M. Bertke
|
1170 |
+
3857 M train-clean-100 Epistomolus
|
1171 |
+
3864 M train-clean-360 Tom Watts
|
1172 |
+
3866 M train-clean-360 SilverG
|
1173 |
+
3867 F train-other-500 Roberta Carlisle
|
1174 |
+
3869 M train-clean-360 Timothy Pinkham
|
1175 |
+
3871 M train-other-500 Figura
|
1176 |
+
3876 F train-clean-360 Frances Marcinkiewicz
|
1177 |
+
3879 F train-clean-100 Keneva
|
1178 |
+
3885 F train-other-500 Elli
|
1179 |
+
3889 F train-clean-360 Alina
|
1180 |
+
3894 M train-other-500 Indy Gosal
|
1181 |
+
3895 M train-other-500 porlob
|
1182 |
+
3896 M train-other-500 Will Zufall
|
1183 |
+
3905 F train-clean-360 J. Rebecca Franklin
|
1184 |
+
3906 F train-other-500 tabithat
|
1185 |
+
3909 F train-other-500 Evelyn Clarke
|
1186 |
+
3911 F train-other-500 Joseph Couves
|
1187 |
+
3912 M train-other-500 Bob Neufeld
|
1188 |
+
3914 M train-clean-360 Rob James
|
1189 |
+
3915 F dev-other JenniferW
|
1190 |
+
3922 F train-clean-360 Ashley Candland
|
1191 |
+
3923 M train-clean-360 Sean Michael Hogan
|
1192 |
+
3925 F train-other-500 Viglione
|
1193 |
+
3926 F train-other-500 Denise Lacey
|
1194 |
+
3927 M train-clean-360 Bob Stretch
|
1195 |
+
3928 F train-other-500 Marianne Coleman-Hipkins
|
1196 |
+
3934 F train-other-500 Lynne Carroll
|
1197 |
+
3945 M train-clean-360 Floyd Wilde
|
1198 |
+
3947 F train-clean-100 johnell
|
1199 |
+
3955 M train-other-500 Fredrik Karlsson
|
1200 |
+
3959 M train-other-500 rjhargrav
|
1201 |
+
3962 M train-other-500 writerboyontour
|
1202 |
+
3967 F train-clean-360 Christine Dufour
|
1203 |
+
3969 F train-other-500 CM Slosson
|
1204 |
+
3972 F train-clean-360 Joy Easton
|
1205 |
+
3977 M train-clean-360 LivelyHive
|
1206 |
+
3979 F train-clean-360 Dale A. Bade
|
1207 |
+
3982 F train-clean-100 Kate Adams
|
1208 |
+
3983 F train-clean-100 lavocedorata
|
1209 |
+
3989 M train-clean-360 Rayne
|
1210 |
+
3990 F train-other-500 Jessi
|
1211 |
+
3992 F train-other-500 perpetualdreamworld
|
1212 |
+
3994 F train-clean-360 Miriam Esther Goldman
|
1213 |
+
3997 F test-other Sophia Choi
|
1214 |
+
4005 F train-other-500 Jhiu
|
1215 |
+
4009 F train-other-500 Diana Majlinger
|
1216 |
+
4010 M train-clean-360 David Baldwin
|
1217 |
+
4013 M train-clean-360 Kevin Maxson
|
1218 |
+
4014 M train-clean-100 Tom Clifton
|
1219 |
+
4015 M train-other-500 JimOCR
|
1220 |
+
4017 M train-other-500 gsolgaard
|
1221 |
+
4018 M train-clean-100 Nicholas Clifford
|
1222 |
+
4019 M train-other-500 brrrrrr6
|
1223 |
+
4020 M train-other-500 Linda
|
1224 |
+
4021 F train-other-500 Linda Woods
|
1225 |
+
4034 F train-other-500 Sienna
|
1226 |
+
4039 M train-clean-360 Shawn Craig Smith
|
1227 |
+
4042 M train-other-500 Ryan DeRamos
|
1228 |
+
4044 F train-clean-360 serenitylee
|
1229 |
+
4051 F train-clean-100 Liz Devens
|
1230 |
+
4054 M train-clean-360 Ryan Gubele
|
1231 |
+
4057 F train-clean-360 RoseA
|
1232 |
+
4059 M train-other-500 Troy Bond
|
1233 |
+
4063 F train-other-500 Abigail Bartels
|
1234 |
+
4064 F train-clean-360 Margaret Espaillat
|
1235 |
+
4071 F train-clean-360 Nichelle von Lauder
|
1236 |
+
4077 M test-clean Nathan Markham
|
1237 |
+
4078 M train-other-500 Richard Kilmer
|
1238 |
+
4085 M train-other-500 Paul P Miller
|
1239 |
+
4088 F train-clean-100 Blazin48
|
1240 |
+
4090 F train-other-500 madmouth
|
1241 |
+
4098 F train-clean-360 Rachell Lovett
|
1242 |
+
4104 F train-other-500 Linda Dodge
|
1243 |
+
4108 M train-clean-360 garymacf
|
1244 |
+
4110 M train-clean-360 Richard Ellwood
|
1245 |
+
4111 F train-clean-360 Rachel P.
|
1246 |
+
4116 F train-clean-360 Amy Benton
|
1247 |
+
4122 M train-other-500 Wendel Topper
|
1248 |
+
4133 M train-clean-360 BigStory
|
1249 |
+
4137 F train-clean-100 Sarah LuAnn
|
1250 |
+
4138 F train-clean-360 daltongirl
|
1251 |
+
4145 F train-clean-360 Patti Cunningham
|
1252 |
+
4148 M train-clean-360 David A. Moore.
|
1253 |
+
4152 M train-clean-360 Ata Khudayberdiev
|
1254 |
+
4153 F dev-other Hilara
|
1255 |
+
4156 F train-other-500 Caroline Shapiro
|
1256 |
+
4160 F train-clean-100 Rosie
|
1257 |
+
4161 M train-other-500 Daniel Paashaus
|
1258 |
+
4172 M train-other-500 Graeme Dunlop
|
1259 |
+
4174 F train-other-500 Availle
|
1260 |
+
4179 M train-other-500 Robert Keiper
|
1261 |
+
4189 F train-other-500 Megan Argo
|
1262 |
+
4191 M train-other-500 Grant Hurlock
|
1263 |
+
4192 F train-other-500 MaryModern
|
1264 |
+
4193 M train-other-500 Ethan Rampton
|
1265 |
+
4195 F train-clean-100 bj
|
1266 |
+
4196 M train-other-500 Jim Clevenger
|
1267 |
+
4198 M test-other Examinfo
|
1268 |
+
4205 M train-other-500 psi_mon
|
1269 |
+
4211 F train-other-500 A. Knight
|
1270 |
+
4214 F train-clean-100 A. Janelle Risa
|
1271 |
+
4216 F train-other-500 Hannah Skoonberg
|
1272 |
+
4217 M train-other-500 Brendan Tannam
|
1273 |
+
4218 M train-other-500 David Cole
|
1274 |
+
4222 F train-clean-360 msjodi777
|
1275 |
+
4225 F train-other-500 gmiteva
|
1276 |
+
4226 M train-clean-360 Jud Niven
|
1277 |
+
4234 F train-other-500 laineyben
|
1278 |
+
4235 F train-other-500 Haylayer Flaga
|
1279 |
+
4236 M train-clean-360 Nicholas Feulner
|
1280 |
+
4238 F train-clean-360 Chela
|
1281 |
+
4243 M train-clean-360 Ian Grae
|
1282 |
+
4246 M train-clean-360 JLaddJr
|
1283 |
+
4257 M train-clean-360 garbageman99
|
1284 |
+
4260 F train-clean-360 Clacas
|
1285 |
+
4262 F train-other-500 LoraBeth Davis
|
1286 |
+
4263 F train-other-500 Chelsea Baker
|
1287 |
+
4267 M train-clean-100 Ric F
|
1288 |
+
4273 F train-other-500 as101
|
1289 |
+
4277 M train-other-500 JohanG
|
1290 |
+
4278 M train-clean-360 smhamon
|
1291 |
+
4280 F train-other-500 BB
|
1292 |
+
4289 F train-clean-360 Veronica Jenkins
|
1293 |
+
4290 M train-clean-360 Joshua Paul Johnson
|
1294 |
+
4294 F test-other Jessamy Gloor
|
1295 |
+
4295 M train-other-500 Slawek
|
1296 |
+
4297 F train-clean-100 Tina Horning
|
1297 |
+
4305 F train-other-500 Aspergine
|
1298 |
+
4310 F train-other-500 grace4him
|
1299 |
+
4313 F train-other-500 May Low
|
1300 |
+
4321 F train-other-500 Xenutia
|
1301 |
+
4323 F dev-other BookAngel7
|
1302 |
+
4327 F train-other-500 brokenaltar
|
1303 |
+
4331 F train-clean-360 Barbara Clements
|
1304 |
+
4335 M train-clean-360 davidb
|
1305 |
+
4340 F train-clean-100 kiwafruit
|
1306 |
+
4344 M train-other-500 Tadhg
|
1307 |
+
4345 M train-other-500 Richard Schipper
|
1308 |
+
4350 M test-other willem
|
1309 |
+
4352 F train-other-500 Martina Hutchins
|
1310 |
+
4356 F train-clean-360 Patricia Rutledge
|
1311 |
+
4358 M train-clean-360 Kim Stich
|
1312 |
+
4362 F train-clean-100 Michelle Montano
|
1313 |
+
4363 F train-clean-360 Emily Livingston
|
1314 |
+
4379 M train-other-500 Scott Dahlem
|
1315 |
+
4381 F train-clean-360 Denise Resnik
|
1316 |
+
4396 F train-other-500 Michael Wolf
|
1317 |
+
4397 M train-clean-100 John Dennison
|
1318 |
+
4402 M train-other-500 Christopher Sanner
|
1319 |
+
4406 M train-clean-100 Matthew Scott Surprenant
|
1320 |
+
4407 M train-other-500 Ted Drury
|
1321 |
+
4411 F train-other-500 Zarnaz
|
1322 |
+
4415 F train-other-500 Anita Fleming
|
1323 |
+
4420 M train-other-500 Steve Lomas
|
1324 |
+
4422 F train-other-500 Kamna
|
1325 |
+
4423 M train-other-500 David Dwight
|
1326 |
+
4425 M train-clean-360 Gary Coy
|
1327 |
+
4427 F train-clean-360 Lynne Handler
|
1328 |
+
4428 M train-other-500 Blueoyster101
|
1329 |
+
4433 M train-clean-360 Ken Sterry
|
1330 |
+
4434 F train-clean-360 Sarah Nuxoll
|
1331 |
+
4438 M train-clean-360 Greg W.
|
1332 |
+
4441 M train-clean-100 William Peck
|
1333 |
+
4442 M train-other-500 Pep
|
1334 |
+
4443 F train-other-500 THOVO
|
1335 |
+
4446 F test-clean Jen Maxwell
|
1336 |
+
4447 M train-other-500 Cascades
|
1337 |
+
4455 F train-other-500 Patrick Wells
|
1338 |
+
4463 F train-other-500 Cate Mackenzie
|
1339 |
+
4474 M train-other-500 John L. Clark
|
1340 |
+
4480 M train-other-500 Iskander Shafikov
|
1341 |
+
4481 F train-clean-100 margo zinberg
|
1342 |
+
4484 M train-other-500 Phil Griffiths
|
1343 |
+
4487 F train-other-500 Nienke
|
1344 |
+
4490 F train-clean-360 Rachel Weaver
|
1345 |
+
4492 F train-other-500 P.Hynes
|
1346 |
+
4495 M train-clean-360 Dillon Stiles
|
1347 |
+
4507 F test-clean Rachel Nelson-Smith
|
1348 |
+
4511 F train-other-500 Jeanie
|
1349 |
+
4513 F train-other-500 Gabi
|
1350 |
+
4515 M dev-other Doug
|
1351 |
+
4519 F train-clean-360 Mimi Wang
|
1352 |
+
4520 F train-other-500 Dorlene Kaplan
|
1353 |
+
4535 M train-clean-360 Brett W. Downey
|
1354 |
+
4545 M train-other-500 SunshinePaul
|
1355 |
+
4546 F train-other-500 Estelle Jobson
|
1356 |
+
4549 F train-other-500 Kristen Zaza
|
1357 |
+
4563 F train-other-500 Wiebke
|
1358 |
+
4570 M dev-other Bill Mosley
|
1359 |
+
4572 M dev-other om123
|
1360 |
+
4576 F train-other-500 Snaefaxi
|
1361 |
+
4583 M train-other-500 Jersey City Frankie
|
1362 |
+
4586 M train-clean-360 Chris Caron
|
1363 |
+
4590 M train-clean-360 Diapadion
|
1364 |
+
4591 M train-other-500 Robert White
|
1365 |
+
4592 F train-clean-360 WestWestest
|
1366 |
+
4594 M train-other-500 mailman61953
|
1367 |
+
4595 M train-clean-360 Eric Leach
|
1368 |
+
4598 F train-clean-360 cher0520
|
1369 |
+
4599 M train-other-500 xibu
|
1370 |
+
4629 M train-clean-360 Edward W. LaBonte
|
1371 |
+
4640 F train-clean-100 Karen Mason
|
1372 |
+
4652 F train-other-500 Savanna Herrold
|
1373 |
+
4659 M train-other-500 Stephen Marsh
|
1374 |
+
4660 F train-other-500 SusieSA
|
1375 |
+
4667 F train-other-500 Maria Therese
|
1376 |
+
4680 F train-clean-100 pachayes
|
1377 |
+
4681 M train-clean-360 Frank Adams
|
1378 |
+
4687 M train-other-500 mevans
|
1379 |
+
4693 M train-other-500 Robert Parker
|
1380 |
+
4697 F train-other-500 Jannie Meisberger
|
1381 |
+
4699 M train-other-500 Jason Justice
|
1382 |
+
4701 M train-other-500 CC
|
1383 |
+
4703 F train-other-500 HurstPP
|
1384 |
+
4705 M train-other-500 Algy Pug
|
1385 |
+
4706 F train-other-500 SallyMc
|
1386 |
+
4710 M train-other-500 David Huston
|
1387 |
+
4712 F train-other-500 Alisson Veldhuis
|
1388 |
+
4719 M train-clean-360 M. Craun
|
1389 |
+
4731 F train-clean-360 Becky Cook
|
1390 |
+
4733 M train-clean-360 dwegowy
|
1391 |
+
4734 M train-clean-360 Adib Masumian
|
1392 |
+
4738 M train-other-500 Leonard Wilson
|
1393 |
+
4741 M train-other-500 Nullifidian
|
1394 |
+
4742 F train-other-500 Little Tee
|
1395 |
+
4744 F train-clean-360 Amy Gramour
|
1396 |
+
4748 M train-other-500 Dirk Eichhorn
|
1397 |
+
4750 M train-other-500 Paul Huckerby
|
1398 |
+
4757 F train-other-500 Grace Dobson
|
1399 |
+
4766 F train-other-500 Melanie
|
1400 |
+
4767 M train-other-500 Delysid
|
1401 |
+
4770 F train-clean-360 Jeanne Luft
|
1402 |
+
4771 M train-other-500 scrawl
|
1403 |
+
4773 F train-other-500 Kathryn Lois
|
1404 |
+
4779 F train-other-500 Angel5
|
1405 |
+
4788 M train-clean-100 Bill Boerst
|
1406 |
+
4791 F train-other-500 MelanieMae
|
1407 |
+
4799 M train-other-500 Matt Judd
|
1408 |
+
4800 F train-clean-360 Mary Herndon Bell
|
1409 |
+
4806 M train-clean-360 Jason Ingolfsland
|
1410 |
+
4807 F train-clean-360 Fuzz
|
1411 |
+
4813 M train-clean-100 Steve Mattern
|
1412 |
+
4821 M train-other-500 Zachary Johnson
|
1413 |
+
4824 F train-other-500 meyerli
|
1414 |
+
4830 M train-clean-100 George Aalto
|
1415 |
+
4831 F dev-other Lisa Meyers
|
1416 |
+
4836 M train-other-500 Preston Scrape
|
1417 |
+
4837 F train-clean-360 Sharon Kilmer
|
1418 |
+
4839 F train-clean-360 Julie K. Rose
|
1419 |
+
4841 F train-other-500 Haley Pereira
|
1420 |
+
4846 F train-clean-360 Kathrin Salazar
|
1421 |
+
4848 M train-clean-360 Dee Wykoff
|
1422 |
+
4852 M test-other Arthur Piantadosi
|
1423 |
+
4853 F train-clean-100 Barbara Derksen
|
1424 |
+
4854 M train-clean-360 Doctor_wu
|
1425 |
+
4856 M train-clean-360 Steven Seitel
|
1426 |
+
4859 M train-clean-100 nathank
|
1427 |
+
4860 M train-clean-360 Jonah Cummings
|
1428 |
+
4863 M train-other-500 I M CLIFFORD
|
1429 |
+
4872 M train-other-500 R E Faust
|
1430 |
+
4894 M train-other-500 Gary Dzierlenga
|
1431 |
+
4898 M train-clean-100 greatbasinrain
|
1432 |
+
4899 F train-clean-360 Theresa L. Downey
|
1433 |
+
4910 F train-other-500 Amanda Martin Sandino
|
1434 |
+
4915 M train-other-500 Andrew Bowles
|
1435 |
+
4926 F train-clean-360 browneyedgirl32382
|
1436 |
+
4930 M train-other-500 Adrian Levitsky
|
1437 |
+
4931 M train-other-500 KevS
|
1438 |
+
4936 F train-other-500 jedopi
|
1439 |
+
4945 M train-clean-360 Charles RUHE
|
1440 |
+
4948 M train-other-500 Tom Barron
|
1441 |
+
4955 M train-other-500 Elwood Mott
|
1442 |
+
4957 F train-clean-360 P Moscato
|
1443 |
+
4958 M train-other-500 David P. Sroka
|
1444 |
+
4959 F train-other-500 Piper Hayes
|
1445 |
+
4964 F train-other-500 rashada
|
1446 |
+
4965 F train-other-500 Rachel Craig
|
1447 |
+
4967 F train-clean-360 Karen
|
1448 |
+
4969 M train-other-500 Garth Burton
|
1449 |
+
4970 F test-clean airandwaters
|
1450 |
+
4973 M train-clean-360 Michael Lipschultz
|
1451 |
+
4979 M train-other-500 Eric
|
1452 |
+
4991 F train-other-500 Jacqueline (Jacqui) Grady
|
1453 |
+
4992 F test-clean Joyce Martin
|
1454 |
+
4993 M train-other-500 BillMac
|
1455 |
+
5000 F train-other-500 Anna-Lisa Ott
|
1456 |
+
5002 M train-clean-360 Brendan Stallard
|
1457 |
+
5005 F train-other-500 pinhsien
|
1458 |
+
5007 F train-clean-360 Kathleen Nelson
|
1459 |
+
5009 M train-other-500 Michael Reuss
|
1460 |
+
5012 F train-clean-360 Morgan Schlicker
|
1461 |
+
5013 M train-other-500 Joseph Dsouza
|
1462 |
+
5019 F train-other-500 Sandra Estenson
|
1463 |
+
5022 F train-clean-100 Kathleen Costa
|
1464 |
+
5023 F train-other-500 Elizabeth Zaranka
|
1465 |
+
5029 F train-clean-360 Courtney Sandhu
|
1466 |
+
5036 F train-other-500 NicolaRuth
|
1467 |
+
5038 M train-other-500 John Kooz
|
1468 |
+
5039 F train-clean-360 Inga Parsons
|
1469 |
+
5043 M train-other-500 edbucks
|
1470 |
+
5044 F train-other-500 Andrea Keene
|
1471 |
+
5045 F train-other-500 Mounica
|
1472 |
+
5049 M train-clean-100 Bradley Smith
|
1473 |
+
5054 F train-clean-360 Denice Stradling
|
1474 |
+
5060 F train-other-500 Linda Moreau
|
1475 |
+
5062 F train-clean-360 E Ogston
|
1476 |
+
5063 F train-clean-360 susanfrom
|
1477 |
+
5076 M train-other-500 Jules Hawryluk
|
1478 |
+
5077 F train-other-500 Sandra G
|
1479 |
+
5082 F train-other-500 SummerWind
|
1480 |
+
5092 M train-clean-360 Josh Smith
|
1481 |
+
5093 F train-clean-360 Nicole Kay
|
1482 |
+
5101 F train-other-500 E.Lee
|
1483 |
+
5104 M train-clean-100 Chuck Burke
|
1484 |
+
5105 M test-clean elongman
|
1485 |
+
5115 F train-clean-360 Terry Goodyer
|
1486 |
+
5118 M train-other-500 klbonds
|
1487 |
+
5123 M train-clean-360 wvthcomp
|
1488 |
+
5126 M train-clean-360 Tom Lennon
|
1489 |
+
5132 M train-other-500 David Stryker
|
1490 |
+
5133 F train-clean-360 Jo Karabasz
|
1491 |
+
5136 F train-other-500 Felicity C
|
1492 |
+
5139 F train-clean-360 Katine
|
1493 |
+
5141 M train-other-500 David Goldfarb
|
1494 |
+
5142 F test-clean Mary Ballard-Johansson
|
1495 |
+
5147 M train-clean-360 Cody2
|
1496 |
+
5152 M train-other-500 Liam Neely
|
1497 |
+
5154 F train-clean-360 Danarra
|
1498 |
+
5157 M train-clean-360 drewmac
|
1499 |
+
5163 F train-clean-100 LilyAnne
|
1500 |
+
5164 F train-other-500 Vsilverlining
|
1501 |
+
5172 M train-other-500 Equilibrium33
|
1502 |
+
5181 M train-other-500 Joel Nisbet
|
1503 |
+
5183 M train-other-500 Kenneth Sergeant Gaghan
|
1504 |
+
5185 M train-other-500 okei
|
1505 |
+
5186 M train-clean-360 Brendan Brown
|
1506 |
+
5189 M train-clean-360 Samanem
|
1507 |
+
5190 M train-clean-360 Rom Maczka
|
1508 |
+
5192 M train-clean-100 Jason Esteves
|
1509 |
+
5198 M train-other-500 Brian
|
1510 |
+
5199 F train-other-500 Diana Fast
|
1511 |
+
5206 M train-clean-360 Simon Dexter
|
1512 |
+
5217 F train-other-500 Anqi Wang
|
1513 |
+
5220 F train-other-500 Mary Schneider
|
1514 |
+
5224 M train-other-500 Matt Soar
|
1515 |
+
5230 F train-other-500 Aubrey Anne
|
1516 |
+
5233 F train-other-500 summerdaze
|
1517 |
+
5239 M train-clean-360 compozr
|
1518 |
+
5242 M train-clean-360 Michael Monhollon
|
1519 |
+
5244 F train-other-500 Carolin Ksr
|
1520 |
+
5245 M train-other-500 Dymmesdale
|
1521 |
+
5246 M train-clean-360 Mike Bloomfield
|
1522 |
+
5248 M train-other-500 Don Stirno
|
1523 |
+
5252 M train-other-500 Michael Deng
|
1524 |
+
5261 M train-clean-360 Ali Kazerani
|
1525 |
+
5266 F train-clean-360 Jill
|
1526 |
+
5269 F train-other-500 Elizabeth Barr
|
1527 |
+
5271 F train-other-500 Amanda
|
1528 |
+
5278 M train-other-500 Mike Harris
|
1529 |
+
5280 M train-other-500 penboy7000
|
1530 |
+
5285 F train-other-500 Sweetlilbirdy
|
1531 |
+
5287 F train-other-500 adsum iam
|
1532 |
+
5290 F train-clean-360 Natalie
|
1533 |
+
5293 M train-clean-360 Ned Troxel
|
1534 |
+
5296 F train-other-500 Joselyn Hasty
|
1535 |
+
5299 F train-other-500 Becky Doughty
|
1536 |
+
5304 M train-clean-360 Don W. Jenkins
|
1537 |
+
5319 M train-clean-360 Guero
|
1538 |
+
5321 M train-other-500 Adam Whybray
|
1539 |
+
5322 M train-clean-100 Jay Bidal
|
1540 |
+
5325 M train-other-500 Rory Lawton
|
1541 |
+
5328 M train-other-500 Nathan Jordan
|
1542 |
+
5333 M train-clean-360 Robert Fletcher
|
1543 |
+
5337 F train-clean-360 Danielle
|
1544 |
+
5338 F dev-clean S R Colon
|
1545 |
+
5339 F train-clean-100 Lauren McCullough
|
1546 |
+
5340 F train-other-500 Mary-Beth Blackburn
|
1547 |
+
5350 F train-other-500 Cath Garde
|
1548 |
+
5355 F train-other-500 Carrie Heyes
|
1549 |
+
5361 F train-other-500 scarlettraces
|
1550 |
+
5375 F train-other-500 BumbleVee
|
1551 |
+
5379 M train-other-500 lennich
|
1552 |
+
5386 M train-clean-360 Tim Ferreira
|
1553 |
+
5389 M train-clean-360 Joseph Lawler
|
1554 |
+
5390 M train-clean-100 Charles Bice
|
1555 |
+
5393 F train-clean-100 Amy Hengst
|
1556 |
+
5400 F train-clean-360 Natalie Sullivan
|
1557 |
+
5401 M train-clean-360 Andrew Nelson
|
1558 |
+
5405 F train-other-500 Anka
|
1559 |
+
5412 F train-other-500 tommybascue
|
1560 |
+
5424 F train-other-500 Julia Niedermaier
|
1561 |
+
5429 M train-other-500 Dennis Lane Pretoria
|
1562 |
+
5439 F train-other-500 Laine S.
|
1563 |
+
5442 F test-other oneiros81
|
1564 |
+
5445 F train-other-500 Liz DeLassus
|
1565 |
+
5448 M train-clean-360 Bryan Reid
|
1566 |
+
5456 M train-clean-100 e_scarab
|
1567 |
+
5459 M train-other-500 bryan.peterson
|
1568 |
+
5460 M train-other-500 Max Lindberg
|
1569 |
+
5463 M train-clean-100 GLM
|
1570 |
+
5468 F train-other-500 ashleighjane
|
1571 |
+
5471 F train-other-500 ElleyKat
|
1572 |
+
5480 F train-other-500 ESFJ Girl
|
1573 |
+
5484 F test-other Nastassia
|
1574 |
+
5487 F train-other-500 Michaela O'Connor
|
1575 |
+
5489 F train-clean-360 LizMourant
|
1576 |
+
5506 M train-other-500 Frank Booker
|
1577 |
+
5513 M train-clean-360 David Callahan
|
1578 |
+
5514 F train-clean-100 Ella Jane Quentin
|
1579 |
+
5519 M train-clean-360 scoutman77
|
1580 |
+
5536 M dev-clean David Mix
|
1581 |
+
5538 F train-clean-360 Linda Velwest
|
1582 |
+
5543 F dev-other Anya
|
1583 |
+
5545 M train-other-500 Gary Olman
|
1584 |
+
5561 F train-clean-100 Ellen Jones
|
1585 |
+
5565 M train-other-500 Ken Padgitt
|
1586 |
+
5567 M train-other-500 BStapley
|
1587 |
+
5569 F train-other-500 Beth Hitesman
|
1588 |
+
5570 F train-clean-360 Corinna Schultz
|
1589 |
+
5583 F train-clean-360 Claudia Wilson
|
1590 |
+
5588 F train-clean-360 Gail Timmerman Vaughan
|
1591 |
+
5604 F train-clean-360 kittyandcheese
|
1592 |
+
5606 F train-clean-360 PrincessG
|
1593 |
+
5618 F train-clean-360 Shirleyroses
|
1594 |
+
5620 M train-other-500 jerryB
|
1595 |
+
5622 F train-clean-360 Roseanne Schmidt
|
1596 |
+
5628 M train-other-500 Adrian Wheal
|
1597 |
+
5635 M train-clean-360 Matthew Reece
|
1598 |
+
5636 F train-other-500 Joyce Couch
|
1599 |
+
5637 M train-clean-360 Anthony
|
1600 |
+
5639 M test-clean Ulf Bjorklund
|
1601 |
+
5641 M train-other-500 Gerald Peter Morgan
|
1602 |
+
5649 F train-other-500 hazelra
|
1603 |
+
5652 F train-clean-100 amicrazy2u
|
1604 |
+
5653 F train-other-500 Kimberly Anderson
|
1605 |
+
5655 F train-clean-360 Christine Rodriguez
|
1606 |
+
5656 M train-clean-360 Joe Mabry
|
1607 |
+
5660 F train-clean-360 hollz
|
1608 |
+
5661 F train-other-500 Dianne Lanning
|
1609 |
+
5665 F train-other-500 Lynda Sizemore
|
1610 |
+
5671 F train-other-500 Trihypoo
|
1611 |
+
5672 M train-clean-360 Jacob Paul Starr
|
1612 |
+
5678 M train-clean-100 jgoffena
|
1613 |
+
5682 F train-other-500 Lmwong
|
1614 |
+
5683 F test-clean Rachael Lapidis
|
1615 |
+
5684 F train-clean-360 Elsa Youngsteadt
|
1616 |
+
5688 F train-clean-100 Jennifer Dionne
|
1617 |
+
5694 M dev-clean Winston Tharp
|
1618 |
+
5700 M train-other-500 Paul Adams
|
1619 |
+
5703 M train-clean-100 Garth Comira
|
1620 |
+
5712 F train-clean-360 Alexandra Huckabay
|
1621 |
+
5717 M train-clean-360 Phil Chenevert
|
1622 |
+
5719 M train-other-500 John Fricker
|
1623 |
+
5720 F train-other-500 Thelma Meyer
|
1624 |
+
5723 F train-clean-360 Linda Hogan
|
1625 |
+
5724 F train-clean-360 paintgirl
|
1626 |
+
5725 F train-other-500 doublemirrors
|
1627 |
+
5727 M train-clean-360 JDavidMoore
|
1628 |
+
5731 F train-clean-360 Andrea Boltz
|
1629 |
+
5733 F train-other-500 Spinhop
|
1630 |
+
5735 F train-other-500 Filipa
|
1631 |
+
5740 F train-clean-360 Alisa
|
1632 |
+
5746 M train-clean-360 DL Pead
|
1633 |
+
5750 M train-clean-100 laurencetrask
|
1634 |
+
5756 F train-other-500 Mich_elle
|
1635 |
+
5764 M test-other Herman Roskams
|
1636 |
+
5765 M train-other-500 A. J. Carroll
|
1637 |
+
5767 M train-clean-360 taijohn
|
1638 |
+
5772 M train-other-500 jessecoy
|
1639 |
+
5776 M train-clean-360 Chris Pauley
|
1640 |
+
5778 F train-clean-100 Laura Victoria
|
1641 |
+
5781 M train-other-500 Parrot17
|
1642 |
+
5784 M train-other-500 Chris Donnelly
|
1643 |
+
5789 F train-clean-100 Kirsten Wever
|
1644 |
+
5791 M train-other-500 croudy
|
1645 |
+
5796 F train-other-500 Linette Geisel
|
1646 |
+
5802 M train-clean-360 Christopher Maust
|
1647 |
+
5808 M train-clean-100 jeandelfrio
|
1648 |
+
5809 F train-clean-360 kattekliek
|
1649 |
+
5810 M train-clean-360 Patrick Reinhart
|
1650 |
+
5825 F train-other-500 Vira Denton
|
1651 |
+
5826 M train-other-500 Phineas Redux
|
1652 |
+
5831 F train-other-500 Kirsty Leishman
|
1653 |
+
5837 F train-other-500 Debbie Pieterse
|
1654 |
+
5840 M train-other-500 Dick Summerfield
|
1655 |
+
5849 F dev-other ashleyspence
|
1656 |
+
5854 M train-other-500 Gabriel Glenn
|
1657 |
+
5860 F train-other-500 J L Raimundo
|
1658 |
+
5867 F train-clean-100 Sharon Omi
|
1659 |
+
5868 M train-clean-360 alwpoe
|
1660 |
+
5874 M train-other-500 Paul Andrews
|
1661 |
+
5876 F train-clean-360 kelleywyskiel
|
1662 |
+
5883 M train-clean-360 Jerry Romero
|
1663 |
+
5886 M train-other-500 Simon Brown
|
1664 |
+
5890 F train-other-500 GabrielleC
|
1665 |
+
5893 F train-other-500 Elizabeth Fiedler
|
1666 |
+
5894 M train-other-500 Paul Stephens
|
1667 |
+
5895 F dev-clean iamartin
|
1668 |
+
5906 F train-other-500 Lily-LLM
|
1669 |
+
5909 M train-clean-360 Mark Mickelson
|
1670 |
+
5910 M train-other-500 Anthony Lee
|
1671 |
+
5911 M train-other-500 Paul C. Newman
|
1672 |
+
5913 M train-other-500 dmbrought
|
1673 |
+
5914 M train-clean-360 bobbybrill
|
1674 |
+
5918 M train-clean-360 Mike Wajda
|
1675 |
+
5929 F train-other-500 Gryphon Perkins
|
1676 |
+
5933 M train-other-500 Barry O'Neill
|
1677 |
+
5935 M train-clean-360 Mike Okonek
|
1678 |
+
5940 M train-clean-360 Gargoyle
|
1679 |
+
5949 F train-other-500 debolee
|
1680 |
+
5951 M train-other-500 Stevan Simmons
|
1681 |
+
5952 F train-other-500 sherlock85
|
1682 |
+
5968 F train-clean-360 Cate Barratt
|
1683 |
+
5970 M train-other-500 Larry Degala
|
1684 |
+
5975 M train-clean-360 Tony Maxey
|
1685 |
+
5977 M train-other-500 Ken Felt
|
1686 |
+
5979 M train-other-500 Pentti Hirvonen
|
1687 |
+
5980 F train-other-500 Nichole Thompson
|
1688 |
+
5983 F train-other-500 Katew
|
1689 |
+
5984 F train-clean-360 sbburke
|
1690 |
+
5985 M train-clean-360 James K. White
|
1691 |
+
5993 M train-other-500 garyday
|
1692 |
+
6000 F train-clean-100 MissRose
|
1693 |
+
6003 M train-other-500 sparks0314
|
1694 |
+
6006 F train-clean-360 Stephanie Lee
|
1695 |
+
6009 M train-other-500 AVG
|
1696 |
+
6010 M train-other-500 Ralph Kerwin
|
1697 |
+
6014 F train-clean-360 Tina Nuzzi
|
1698 |
+
6019 M train-clean-100 DerekP
|
1699 |
+
6025 F train-other-500 Lonelle Yoder
|
1700 |
+
6030 F train-other-500 Shiromi
|
1701 |
+
6032 F train-clean-360 Beverly Scott
|
1702 |
+
6035 M train-other-500 Marty Kris
|
1703 |
+
6037 M train-clean-360 bish
|
1704 |
+
6038 F train-clean-360 Sirmelja
|
1705 |
+
6051 M train-other-500 Ric Cornwall
|
1706 |
+
6054 F train-clean-360 Leslie Stevens Suhy
|
1707 |
+
6060 M train-clean-360 Jonathan Lange
|
1708 |
+
6064 F train-clean-100 Deborah Knight
|
1709 |
+
6065 M train-other-500 David Olson
|
1710 |
+
6070 F test-other Saab
|
1711 |
+
6072 F train-other-500 CrowGirl
|
1712 |
+
6075 M train-clean-360 Rob Smith
|
1713 |
+
6076 M train-other-500 Saethram
|
1714 |
+
6077 M train-other-500 Steve Belleguelle
|
1715 |
+
6078 F train-clean-100 dobsonfly
|
1716 |
+
6080 M train-clean-360 progressingamerica
|
1717 |
+
6081 M train-clean-100 Lazuli
|
1718 |
+
6082 F train-clean-360 EyeBones
|
1719 |
+
6084 M train-other-500 Amallen
|
1720 |
+
6087 F train-other-500 Caroline Driggs
|
1721 |
+
6088 F train-other-500 burk
|
1722 |
+
6097 M train-other-500 Phil Benson
|
1723 |
+
6098 M train-clean-360 Kancamagus
|
1724 |
+
6099 F train-clean-360 Cheri Gardner
|
1725 |
+
6102 F train-other-500 Rachel Bossier
|
1726 |
+
6104 F train-clean-360 Juliana M.
|
1727 |
+
6106 F train-other-500 Ruth Kidson
|
1728 |
+
6111 F train-other-500 Jill Preston
|
1729 |
+
6115 M train-clean-360 MitchHerd
|
1730 |
+
6119 M train-clean-360 Vinnie Tesla
|
1731 |
+
6120 F train-clean-360 Terra Mendoza
|
1732 |
+
6121 F train-other-500 Imagine
|
1733 |
+
6123 F dev-other chocmuse
|
1734 |
+
6126 M train-other-500 David Abbott
|
1735 |
+
6127 F train-other-500 Andee
|
1736 |
+
6128 F test-other Isabelle Brasme
|
1737 |
+
6131 F train-other-500 Malane
|
1738 |
+
6135 F train-other-500 Spike Holcomb
|
1739 |
+
6138 F train-other-500 Deborah Brabyn
|
1740 |
+
6139 F train-clean-360 Lois C. Johnson
|
1741 |
+
6145 F train-other-500 Madeleine Brook
|
1742 |
+
6147 F train-clean-100 Liberty Stump
|
1743 |
+
6153 F train-other-500 anjieliu
|
1744 |
+
6157 M train-clean-360 HotConflict
|
1745 |
+
6159 M train-other-500 Ted Garvin
|
1746 |
+
6160 F train-clean-360 FaithR
|
1747 |
+
6167 F train-clean-360 Janet
|
1748 |
+
6173 F train-other-500 Carol Box
|
1749 |
+
6177 M train-other-500 wminbru
|
1750 |
+
6178 F train-other-500 alegriavida
|
1751 |
+
6181 M train-clean-100 Mike
|
1752 |
+
6184 M train-other-500 Adam Tomkins
|
1753 |
+
6188 F train-clean-360 Roxanna Nazari
|
1754 |
+
6189 F train-clean-360 Shana Cohen
|
1755 |
+
6196 M train-other-500 Martin Gradwell
|
1756 |
+
6199 M train-other-500 bobolink
|
1757 |
+
6206 F train-clean-360 Yvonne Smith
|
1758 |
+
6209 M train-clean-100 deckerteach
|
1759 |
+
6211 F train-other-500 Caeliveres
|
1760 |
+
6215 F train-clean-360 Janet248
|
1761 |
+
6221 M train-other-500 pwu909
|
1762 |
+
6224 M train-other-500 dave k
|
1763 |
+
6227 F train-other-500 EliMarieHK
|
1764 |
+
6232 M train-other-500 Paul Denton
|
1765 |
+
6233 F train-clean-360 Gen Jones
|
1766 |
+
6235 F train-clean-360 ReadWriteLib
|
1767 |
+
6236 M train-other-500 jcwyatt
|
1768 |
+
6241 M dev-clean badey
|
1769 |
+
6242 F train-other-500 Lucinda Gainey
|
1770 |
+
6248 M train-other-500 Kevin Green
|
1771 |
+
6249 M train-other-500 Thomas A. Copeland
|
1772 |
+
6251 F train-other-500 Theresa Sheridan
|
1773 |
+
6254 F train-other-500 Chelsea S.
|
1774 |
+
6258 M train-clean-360 haggisreflux
|
1775 |
+
6267 M dev-other Cata
|
1776 |
+
6269 M train-clean-360 Don Halpert
|
1777 |
+
6272 F train-clean-100 jlenardon
|
1778 |
+
6276 M train-other-500 dan_h
|
1779 |
+
6281 F train-other-500 Beth Thomas
|
1780 |
+
6284 F train-other-500 cklee
|
1781 |
+
6286 F train-clean-360 Wendy Almeida
|
1782 |
+
6288 F train-clean-360 Sunni West
|
1783 |
+
6294 M train-clean-360 humanode
|
1784 |
+
6295 M dev-clean Michael Packard
|
1785 |
+
6300 F train-clean-360 Sarah Crampton
|
1786 |
+
6308 F train-clean-360 Easton
|
1787 |
+
6311 M train-other-500 TRUEBRIT
|
1788 |
+
6313 F dev-clean Jennifer Wiginton
|
1789 |
+
6317 F train-clean-360 Sarah K
|
1790 |
+
6319 F dev-clean thestorygirl
|
1791 |
+
6323 M train-other-500 Caluminium
|
1792 |
+
6324 F train-other-500 Barbara E. McCarthy
|
1793 |
+
6330 M train-clean-360 David Cummings
|
1794 |
+
6332 F train-other-500 Kelli England
|
1795 |
+
6333 M train-other-500 Max Korlinge
|
1796 |
+
6339 F train-clean-360 Michelle Remington
|
1797 |
+
6341 F train-clean-360 Tiffany J. Kim
|
1798 |
+
6345 F dev-clean Jean Bascom
|
1799 |
+
6346 M train-other-500 Matthew Pagan
|
1800 |
+
6351 F train-other-500 C. L. W. Rollins
|
1801 |
+
6352 F train-clean-360 stmacduff
|
1802 |
+
6353 F train-other-500 Jennifer Randall
|
1803 |
+
6356 M train-other-500 John O
|
1804 |
+
6358 F train-other-500 selway
|
1805 |
+
6359 F train-clean-360 Susan Hanfield
|
1806 |
+
6364 M train-other-500 Todd Ulbrich
|
1807 |
+
6367 M train-clean-100 Vince Dee
|
1808 |
+
6368 M train-other-500 Marc Pizzuti
|
1809 |
+
6370 M train-other-500 Dan Craig
|
1810 |
+
6371 F train-clean-360 Rebecca King
|
1811 |
+
6373 F train-clean-360 Sandie Guenther
|
1812 |
+
6377 M train-other-500 Maxim Babich
|
1813 |
+
6378 F train-clean-360 Michelle Day
|
1814 |
+
6385 F train-clean-100 Novella Serena
|
1815 |
+
6388 F train-clean-360 Leda
|
1816 |
+
6391 F train-other-500 polkadotish
|
1817 |
+
6395 M train-clean-360 Richard Carpenter
|
1818 |
+
6399 M train-other-500 Edmund Bloxam
|
1819 |
+
6402 M train-other-500 Chiquito Crasto
|
1820 |
+
6406 F train-clean-360 Abigail Rasmussen
|
1821 |
+
6407 M train-other-500 AdamH
|
1822 |
+
6411 F train-other-500 Feyaza
|
1823 |
+
6415 F train-clean-100 Daryl Wor
|
1824 |
+
6418 M train-other-500 Iolo Jones
|
1825 |
+
6426 F train-clean-360 Pat Redstone
|
1826 |
+
6432 M test-other Ditchdog
|
1827 |
+
6436 M train-other-500 Steve Mattingly
|
1828 |
+
6437 M train-clean-100 John Hoerr
|
1829 |
+
6446 M train-clean-360 Bob Gonzalez
|
1830 |
+
6454 M train-clean-100 David Wales
|
1831 |
+
6455 F dev-other Betty Chen
|
1832 |
+
6458 M train-clean-360 Dennis Blake
|
1833 |
+
6459 M train-other-500 Nigel Boydell
|
1834 |
+
6467 M dev-other sid
|
1835 |
+
6476 F train-clean-100 Viridian
|
1836 |
+
6482 M train-other-500 Delmar H Dolbier
|
1837 |
+
6484 F train-other-500 ilianthe
|
1838 |
+
6488 F train-other-500 Kendall Ashyby
|
1839 |
+
6492 M train-clean-360 Hugh Gillis
|
1840 |
+
6494 M train-clean-360 Morey Kunin
|
1841 |
+
6497 M train-clean-360 James E. Carson
|
1842 |
+
6499 M train-clean-360 dave7
|
1843 |
+
6505 F train-clean-360 Elena
|
1844 |
+
6506 M train-other-500 Tim Quinn
|
1845 |
+
6509 F train-clean-360 Marianna Foos
|
1846 |
+
6510 M train-clean-360 JimD
|
1847 |
+
6512 M train-other-500 mcgovern1934
|
1848 |
+
6513 F train-other-500 Susan de Raadt
|
1849 |
+
6518 F train-clean-360 Wayfarer
|
1850 |
+
6519 F train-clean-360 Monica Knuppe
|
1851 |
+
6529 M train-clean-100 Fred DeBerardinis
|
1852 |
+
6531 F train-clean-100 janesandberg
|
1853 |
+
6533 M train-other-500 drewmore
|
1854 |
+
6534 F train-other-500 Helen Falconer
|
1855 |
+
6535 M train-other-500 Ron Altman
|
1856 |
+
6538 M train-clean-360 Juan Federico
|
1857 |
+
6539 M train-other-500 David W. Wolfe
|
1858 |
+
6540 M train-other-500 Craig Gulliver
|
1859 |
+
6544 F train-clean-360 Amanda Friday
|
1860 |
+
6548 F train-other-500 Kristin Gjerlw
|
1861 |
+
6549 F train-other-500 Sandra Luna
|
1862 |
+
6550 M train-clean-360 elfpen
|
1863 |
+
6553 M train-clean-360 DublinGothic
|
1864 |
+
6555 M train-clean-360 Alexandre Laplante
|
1865 |
+
6557 F train-other-500 Tika Sabu
|
1866 |
+
6563 M train-clean-100 William Tomcho
|
1867 |
+
6567 F train-clean-360 vikvenom
|
1868 |
+
6568 F train-other-500 Heather Hamtil
|
1869 |
+
6574 M train-clean-360 Caden Vaughn Clegg
|
1870 |
+
6575 M train-clean-360 Patrick Painter
|
1871 |
+
6583 F train-other-500 NastassiaS
|
1872 |
+
6590 F train-other-500 Marea Brook
|
1873 |
+
6594 F train-other-500 Amelia Chantarotwong
|
1874 |
+
6599 M dev-other rohde
|
1875 |
+
6609 M train-other-500 Patrick Wallace
|
1876 |
+
6610 F train-other-500 sylly
|
1877 |
+
6614 F train-other-500 Veronica Schlette
|
1878 |
+
6620 F train-clean-360 Amy Koenig
|
1879 |
+
6625 M train-other-500 hearmeout7
|
1880 |
+
6627 F train-other-500 Amber Hamilton
|
1881 |
+
6636 M train-other-500 Philip Martin
|
1882 |
+
6637 F train-clean-360 Christine Nendza
|
1883 |
+
6641 F train-other-500 Julienne
|
1884 |
+
6643 F train-clean-360 cbooren
|
1885 |
+
6652 M train-other-500 Brendon Wright
|
1886 |
+
6660 F train-other-500 Nicole Lee
|
1887 |
+
6668 M train-other-500 Ecological Humanist
|
1888 |
+
6670 M train-other-500 Mike Pelton
|
1889 |
+
6673 F train-clean-360 Jenna Lanman
|
1890 |
+
6674 M train-other-500 jimmylee
|
1891 |
+
6676 F train-other-500 Chill28
|
1892 |
+
6683 F train-clean-360 Julia Kelley
|
1893 |
+
6685 M train-other-500 Jonathan Drury
|
1894 |
+
6686 M train-clean-360 Elin
|
1895 |
+
6687 M train-other-500 KirksVoice
|
1896 |
+
6689 F train-other-500 Tiffany Halla Colonna
|
1897 |
+
6690 M train-clean-360 T Michael Burke
|
1898 |
+
6694 M train-clean-360 Ross Williamson
|
1899 |
+
6695 F train-other-500 Linda Fredericks
|
1900 |
+
6696 F train-clean-360 Katryn Wiese
|
1901 |
+
6701 M train-clean-360 Dayle
|
1902 |
+
6705 F train-other-500 D. A. Frank
|
1903 |
+
6707 M train-other-500 Lewis
|
1904 |
+
6709 M train-other-500 vinphizz
|
1905 |
+
6713 M train-other-500 stephenreader
|
1906 |
+
6724 F train-other-500 Kristin Young
|
1907 |
+
6726 F train-other-500 metgmz
|
1908 |
+
6727 M train-clean-360 Tony Russell
|
1909 |
+
6733 F train-other-500 Snapdragon
|
1910 |
+
6735 F train-other-500 fshort
|
1911 |
+
6741 F train-other-500 Sharon C.
|
1912 |
+
6743 M train-other-500 Rick Rodney
|
1913 |
+
6746 M train-other-500 Robin Skelcey
|
1914 |
+
6747 M train-other-500 Ryan Lothian
|
1915 |
+
6749 F train-other-500 MaryA
|
1916 |
+
6752 M train-other-500 maxvon_d
|
1917 |
+
6753 M train-other-500 T.E. McHenry
|
1918 |
+
6754 M train-other-500 ToddHW
|
1919 |
+
6758 F train-other-500 The Gypsy
|
1920 |
+
6763 F train-clean-360 Manjit Bains
|
1921 |
+
6773 M train-other-500 MostafaRazavi
|
1922 |
+
6777 M train-other-500 Rick Saffery
|
1923 |
+
6782 F train-clean-360 zcameo
|
1924 |
+
6784 M train-other-500 SteveBuys
|
1925 |
+
6788 F train-clean-360 Pamela Krantz
|
1926 |
+
6792 M train-other-500 montmorency
|
1927 |
+
6794 F train-other-500 Rachel Moyar
|
1928 |
+
6798 M train-other-500 Aesthete's Readings
|
1929 |
+
6804 M train-other-500 Nick Duncan
|
1930 |
+
6807 F train-other-500 Lisa Caputo
|
1931 |
+
6818 F train-clean-100 beckyboyd
|
1932 |
+
6821 F train-other-500 Rholdah
|
1933 |
+
6828 F train-clean-360 Lori Fuller Chugiak, AK
|
1934 |
+
6829 F test-clean LadyBug
|
1935 |
+
6836 M train-clean-100 John
|
1936 |
+
6841 M dev-other A. E. Maroney
|
1937 |
+
6846 M train-other-500 John Leonard
|
1938 |
+
6848 M train-clean-100 KarlHenning
|
1939 |
+
6849 M train-other-500 Dan Raynham
|
1940 |
+
6853 F train-other-500 J. McKnight
|
1941 |
+
6865 F train-clean-360 Jing Li
|
1942 |
+
6875 M train-other-500 Bill Miller
|
1943 |
+
6877 M train-clean-360 Bear Schacht
|
1944 |
+
6880 M train-clean-100 Capybara
|
1945 |
+
6882 M train-other-500 David Isenhower
|
1946 |
+
6883 M train-other-500 Adam Doughty
|
1947 |
+
6892 M train-other-500 Piotr Nater
|
1948 |
+
6895 F train-clean-360 Reeses118
|
1949 |
+
6902 F train-other-500 Barbara Edelman
|
1950 |
+
6904 F train-clean-360 Kirsten Nelson
|
1951 |
+
6906 F train-other-500 Joanna1
|
1952 |
+
6912 M train-other-500 Richard Beck
|
1953 |
+
6913 F train-other-500 daisyb
|
1954 |
+
6914 F train-other-500 Katalina Watt
|
1955 |
+
6918 F train-clean-360 Marilyn Mack
|
1956 |
+
6923 M train-other-500 Szindbad
|
1957 |
+
6924 F train-clean-360 Rapunzelina
|
1958 |
+
6925 M train-clean-100 Thomas Meaney
|
1959 |
+
6927 F train-clean-360 Sarika Pawar
|
1960 |
+
6930 M test-clean Nolan Fout
|
1961 |
+
6937 F train-clean-360 DVoice
|
1962 |
+
6938 F test-other Simmy
|
1963 |
+
6943 F train-other-500 Chieko Steely
|
1964 |
+
6945 M train-other-500 Daniel George
|
1965 |
+
6947 F train-other-500 Grace
|
1966 |
+
6950 F train-other-500 elmay
|
1967 |
+
6951 F train-other-500 redhed3095
|
1968 |
+
6954 M train-other-500 Paul Richards
|
1969 |
+
6956 M train-clean-360 DannyHauger
|
1970 |
+
6962 M train-other-500 mattoscarlomas
|
1971 |
+
6963 M train-other-500 Kasper
|
1972 |
+
6965 M train-clean-360 NoelBadrian
|
1973 |
+
6967 F train-other-500 sganatra81
|
1974 |
+
6974 M train-other-500 Michael Armenta
|
1975 |
+
6978 F train-other-500 Debra
|
1976 |
+
6981 M train-clean-360 nlonghu
|
1977 |
+
6993 M train-clean-360 Seyed
|
1978 |
+
7000 M train-clean-360 Kevin Alix
|
1979 |
+
7001 F train-other-500 Arienne
|
1980 |
+
7008 M train-other-500 John Trevithick
|
1981 |
+
7009 M train-other-500 roeg11
|
1982 |
+
7011 M train-clean-360 Icprice
|
1983 |
+
7012 F train-other-500 Erin McKelle
|
1984 |
+
7018 M test-other FSharp
|
1985 |
+
7021 M test-clean Nodo420
|
1986 |
+
7026 F train-other-500 Michele Eaton
|
1987 |
+
7030 M train-clean-360 Conrad T
|
1988 |
+
7046 M train-other-500 Pascal Ramseier
|
1989 |
+
7051 M train-clean-360 Andrew White
|
1990 |
+
7055 M train-other-500 gemtwist
|
1991 |
+
7059 F train-clean-100 Joannemmp
|
1992 |
+
7061 M train-clean-360 AllenJohns
|
1993 |
+
7062 F train-other-500 Rebecca Thomas
|
1994 |
+
7065 M train-other-500 smitaj
|
1995 |
+
7067 M train-clean-100 Matthew Wall
|
1996 |
+
7069 M train-clean-360 John Schuurman
|
1997 |
+
7073 F train-other-500 Jill Janovetz
|
1998 |
+
7078 F train-clean-100 Mary in Arkansas
|
1999 |
+
7079 F train-other-500 Chuck Williamson
|
2000 |
+
7085 M train-clean-360 voicebynatalie
|
2001 |
+
7090 M train-clean-360 Jon Sindell
|
2002 |
+
7092 F train-other-500 Lorraine B
|
2003 |
+
7095 M train-clean-360 Wesseling
|
2004 |
+
7096 M train-other-500 Gary Iredale
|
2005 |
+
7097 F train-other-500 novelreader
|
2006 |
+
7105 M test-other jennycbnyn
|
2007 |
+
7107 M train-other-500 titankin77
|
2008 |
+
7113 F train-clean-100 Sukaina Jaffer
|
2009 |
+
7117 F train-clean-360 Art Leung
|
2010 |
+
7120 F train-clean-360 L D Hamilton
|
2011 |
+
7121 M train-other-500 384403
|
2012 |
+
7125 F train-other-500 Peggy
|
2013 |
+
7126 M train-clean-360 pekein
|
2014 |
+
7127 M test-clean Bill Kneeland
|
2015 |
+
7128 M train-clean-360 morganreads
|
2016 |
+
7131 F train-other-500 Eden Rea-Hedrick
|
2017 |
+
7134 M train-clean-360 Steve Jackson
|
2018 |
+
7135 F train-other-500 Maggie Smallwood
|
2019 |
+
7138 F train-other-500 CaprishaPage
|
2020 |
+
7139 M train-clean-360 gabrielv
|
2021 |
+
7140 F train-clean-360 Deanna Bovee
|
2022 |
+
7143 F train-other-500 Minni Ang
|
2023 |
+
7145 F train-clean-360 Lita Ledesma
|
2024 |
+
7147 M train-other-500 S.Nevets
|
2025 |
+
7148 F train-clean-100 Vickie Ranz
|
2026 |
+
7150 M train-other-500 asterix
|
2027 |
+
7155 M train-other-500 pklipp
|
2028 |
+
7169 M train-clean-360 Ryan Ransom
|
2029 |
+
7170 M train-other-500 alanmapstone
|
2030 |
+
7176 M test-clean KalenXI
|
2031 |
+
7177 F train-other-500 shana
|
2032 |
+
7178 F train-clean-100 J.K. Neely
|
2033 |
+
7188 M train-clean-360 Marty
|
2034 |
+
7189 M train-other-500 doonaboon
|
2035 |
+
7190 M train-clean-100 Tony Posante
|
2036 |
+
7197 F train-other-500 Christine Richardson
|
2037 |
+
7198 F train-other-500 Daniela Austin
|
2038 |
+
7199 F train-other-500 T.K. Kirven
|
2039 |
+
7205 F train-other-500 genierose
|
2040 |
+
7208 M train-other-500 KK
|
2041 |
+
7215 M train-other-500 BensonBrunswin
|
2042 |
+
7218 F train-other-500 MJ Franck
|
2043 |
+
7220 F train-other-500 LynnAlison
|
2044 |
+
7223 F train-other-500 eye hear voices
|
2045 |
+
7226 M train-clean-100 Jonathan Moore
|
2046 |
+
7228 M train-other-500 Peter John Keeble
|
2047 |
+
7229 F train-clean-360 Linda Ciano
|
2048 |
+
7238 M train-other-500 Uday Sagar
|
2049 |
+
7239 M train-other-500 manofwealth
|
2050 |
+
7240 F train-clean-360 Lucretia B.
|
2051 |
+
7241 M train-clean-360 AdrianBisson
|
2052 |
+
7242 F train-other-500 Renate
|
2053 |
+
7245 F train-clean-360 Laura Atkinson
|
2054 |
+
7246 F train-other-500 Lyn Silva
|
2055 |
+
7247 M train-clean-360 Robert Hoffman
|
2056 |
+
7250 F train-other-500 A. J. Elliot
|
2057 |
+
7255 F train-other-500 Jendia
|
2058 |
+
7258 M train-clean-360 acloward
|
2059 |
+
7263 F train-other-500 rachaelg
|
2060 |
+
7264 M train-clean-100 Sean McClain
|
2061 |
+
7265 F train-other-500 Annie
|
2062 |
+
7276 F train-clean-360 ASPotter
|
2063 |
+
7277 F train-other-500 Jenny Bradshaw
|
2064 |
+
7278 M train-clean-100 Jon Smith
|
2065 |
+
7285 F train-clean-360 Christina M. Glavas
|
2066 |
+
7286 F train-clean-360 kindfish
|
2067 |
+
7294 F train-clean-360 Muriel
|
2068 |
+
7297 F train-clean-360 Mudlark
|
2069 |
+
7299 F train-other-500 Barbara Miller
|
2070 |
+
7301 M train-other-500 jonseverity
|
2071 |
+
7302 F train-clean-100 Asta1234
|
2072 |
+
7307 M train-other-500 Anthony Ogus
|
2073 |
+
7312 M train-clean-100 nkneer
|
2074 |
+
7313 M train-clean-360 Mark DeVol
|
2075 |
+
7314 M train-clean-360 Rick Cahill
|
2076 |
+
7315 F train-other-500 Charlotte Duckett
|
2077 |
+
7316 F train-clean-360 Joy S Grape
|
2078 |
+
7318 F train-clean-360 Anise
|
2079 |
+
7320 F train-other-500 Monika Rolley
|
2080 |
+
7326 M train-other-500 Adam
|
2081 |
+
7327 M train-other-500 Tommy Howell
|
2082 |
+
7331 F train-other-500 AnabelleC
|
2083 |
+
7333 F train-other-500 Lydia Paterson
|
2084 |
+
7335 F train-clean-360 Kathryn Louise
|
2085 |
+
7337 F train-other-500 Adina Owen
|
2086 |
+
7338 M train-other-500 Eberle Thomas
|
2087 |
+
7339 M train-clean-360 wildalaska
|
2088 |
+
7342 F train-clean-360 Carol
|
2089 |
+
7346 M train-other-500 James Bendall
|
2090 |
+
7348 F train-other-500 acousticwave
|
2091 |
+
7354 M train-other-500 TrevorD777
|
2092 |
+
7357 M train-other-500 rebcult
|
2093 |
+
7360 F train-other-500 Caroline Hemmerly Kunkle
|
2094 |
+
7367 M train-clean-100 NIneFive83
|
2095 |
+
7376 F train-other-500 Nyssa E. Schmidt
|
2096 |
+
7383 F train-clean-360 Meg Cowan
|
2097 |
+
7384 F train-clean-360 Diana Dolan
|
2098 |
+
7387 F train-other-500 Tara Dow
|
2099 |
+
7389 M train-other-500 Steve C
|
2100 |
+
7391 M train-other-500 Cary Simz
|
2101 |
+
7392 F train-other-500 MicheleW
|
2102 |
+
7395 F train-clean-360 Katherine
|
2103 |
+
7398 F train-clean-360 Marie Daum
|
2104 |
+
7402 M train-clean-100 Canby Ibarra
|
2105 |
+
7408 M train-other-500 David Clarke
|
2106 |
+
7416 F train-clean-360 Jeanni Hall
|
2107 |
+
7423 M train-other-500 Gilles G. Le Blanc
|
2108 |
+
7424 M train-other-500 Christopher Smith
|
2109 |
+
7433 F train-other-500 Gabriela Cowan
|
2110 |
+
7434 F train-clean-360 Emily Feuka
|
2111 |
+
7436 M train-other-500 Gregory Eccles
|
2112 |
+
7437 M train-clean-360 Graham McMillan
|
2113 |
+
7445 F train-clean-360 Emily Anderson
|
2114 |
+
7447 M train-clean-100 dasbury
|
2115 |
+
7448 M train-other-500 Kevin Johnson
|
2116 |
+
7460 M train-clean-360 Larry Beasley
|
2117 |
+
7463 M train-other-500 Pete Milan
|
2118 |
+
7467 F train-other-500 freshface
|
2119 |
+
7475 M train-clean-360 Jared Hess
|
2120 |
+
7478 M train-clean-360 Dan Froese
|
2121 |
+
7480 F train-other-500 Tricia F.
|
2122 |
+
7481 F train-clean-360 Karen Howard
|
2123 |
+
7484 M train-clean-360 Tyran Rexx
|
2124 |
+
7491 F train-other-500 Lilaread
|
2125 |
+
7492 F train-other-500 Scheherazade
|
2126 |
+
7495 F train-clean-360 Arlene Joyce
|
2127 |
+
7498 F train-clean-360 MarianneVictoria
|
2128 |
+
7502 M train-other-500 mikefernlea
|
2129 |
+
7505 M train-clean-100 Ron Lockhart
|
2130 |
+
7507 F train-other-500 UnaVersal
|
2131 |
+
7510 F train-other-500 Kathrine Engan
|
2132 |
+
7511 F train-clean-100 Sherri Vance
|
2133 |
+
7512 M train-other-500 dudeman
|
2134 |
+
7514 F train-other-500 Barbara Baker
|
2135 |
+
7515 F train-clean-360 Cynthia Moyer
|
2136 |
+
7517 F train-clean-100 Raz Mason
|
2137 |
+
7518 M train-clean-360 TJDasch
|
2138 |
+
7520 M train-clean-360 Richard Jackson
|
2139 |
+
7522 F train-other-500 Kelsey P
|
2140 |
+
7525 F train-clean-360 Jeannie Tirado
|
2141 |
+
7538 M train-clean-360 Logan West
|
2142 |
+
7540 M train-clean-360 Christopher Webber
|
2143 |
+
7552 F train-other-500 KateC
|
2144 |
+
7553 M train-clean-360 BDSEmpire
|
2145 |
+
7555 F train-clean-360 Suebee
|
2146 |
+
7556 M train-other-500 Alex Lau
|
2147 |
+
7558 M train-clean-360 J. A. Cook
|
2148 |
+
7559 M train-other-500 gassumpcao
|
2149 |
+
7561 M train-other-500 Shawn Bayern
|
2150 |
+
7565 M train-other-500 Derek
|
2151 |
+
7569 M train-clean-360 Stephen L. Moss
|
2152 |
+
7584 F train-other-500 kandice stehlik
|
2153 |
+
7585 M train-other-500 MaxSitting
|
2154 |
+
7594 F train-clean-360 Kristel Tretter
|
2155 |
+
7597 F train-other-500 Inah Derby
|
2156 |
+
7601 M dev-other Malone
|
2157 |
+
7603 M train-other-500 Wupperhippo
|
2158 |
+
7607 F train-other-500 C F de Rosset
|
2159 |
+
7608 M train-other-500 rookieblue
|
2160 |
+
7609 F train-other-500 detroitreads
|
2161 |
+
7618 M train-other-500 Stipsky
|
2162 |
+
7635 F train-clean-100 Judy Guinan
|
2163 |
+
7640 M train-other-500 Dan Darbandi
|
2164 |
+
7641 M dev-other Moromis
|
2165 |
+
7644 F train-other-500 Raphael Platt
|
2166 |
+
7647 M train-clean-360 Daniel T. Miller
|
2167 |
+
7649 F train-other-500 Lanerd
|
2168 |
+
7654 M train-other-500 Word And Mouth
|
2169 |
+
7657 F train-clean-360 shalclark
|
2170 |
+
7665 M train-clean-360 Christian Mitchell
|
2171 |
+
7672 M train-other-500 Cooper Leith
|
2172 |
+
7679 F train-other-500 Libby Gohn
|
2173 |
+
7683 F train-other-500 Carolyne
|
2174 |
+
7687 F train-other-500 Demosthenes
|
2175 |
+
7688 M train-clean-360 Leslie Walden
|
2176 |
+
7691 M train-other-500 engineerdst
|
2177 |
+
7697 M dev-other JustinJYN
|
2178 |
+
7699 F train-other-500 DylanTG
|
2179 |
+
7700 M train-other-500 Dave Wills
|
2180 |
+
7702 F train-other-500 Linda Jenner
|
2181 |
+
7704 M train-clean-360 Robert Harder
|
2182 |
+
7705 M train-clean-360 Timothy Luke
|
2183 |
+
7708 F train-other-500 Savannah
|
2184 |
+
7713 M train-other-500 Sacha Chander
|
2185 |
+
7717 F train-clean-360 Astrid Fingerhut
|
2186 |
+
7720 M train-clean-360 jeffwiltzius
|
2187 |
+
7729 M test-clean Tim Bower
|
2188 |
+
7730 F train-clean-360 Fiddlesticks
|
2189 |
+
7732 M train-clean-360 Daniel Vimont
|
2190 |
+
7733 F train-clean-360 Jewel Raquel
|
2191 |
+
7737 F train-other-500 Elisabeth Sollog
|
2192 |
+
7739 F train-clean-360 Melissa Burns-Price
|
2193 |
+
7746 M train-other-500 Tom Causby
|
2194 |
+
7749 M train-other-500 Sammy Bean
|
2195 |
+
7752 F train-clean-360 Samantha Miles
|
2196 |
+
7754 F train-clean-360 Iridescat
|
2197 |
+
7756 F train-other-500 Lynne Thompson
|
2198 |
+
7762 F train-other-500 Fannie
|
2199 |
+
7764 M train-other-500 Mike Nelson
|
2200 |
+
7766 F train-clean-360 Maryanka
|
2201 |
+
7769 M train-other-500 David Biro
|
2202 |
+
7777 M train-clean-360 Jacob Paine
|
2203 |
+
7780 F train-clean-100 tazzle
|
2204 |
+
7783 F train-clean-360 Rebecca Owens
|
2205 |
+
7786 M train-other-500 Kevin W. Davidson
|
2206 |
+
7789 F train-clean-360 Lauren Jane
|
2207 |
+
7794 F train-clean-100 mlcui
|
2208 |
+
7795 M train-other-500 Cubrick
|
2209 |
+
7796 M train-other-500 Raybrite
|
2210 |
+
7800 F train-clean-100 Arie
|
2211 |
+
7802 F train-clean-360 Samantha J Gubitz
|
2212 |
+
7809 M train-clean-360 D. T. McGregor
|
2213 |
+
7816 F train-clean-360 Stefanie Heinrichs
|
2214 |
+
7823 M train-other-500 Bart in 't Veld
|
2215 |
+
7825 M train-clean-360 PDyer
|
2216 |
+
7826 M train-other-500 Dave Shaw
|
2217 |
+
7828 M train-clean-360 Dan Mason
|
2218 |
+
7832 M train-clean-360 DJRickyV
|
2219 |
+
7833 M train-clean-360 Jesse Crisp-Sears
|
2220 |
+
7835 M train-other-500 kageokami
|
2221 |
+
7837 M train-clean-360 Alfian
|
2222 |
+
7839 F train-other-500 Loveday
|
2223 |
+
7843 F train-other-500 Annette McGuinness
|
2224 |
+
7848 M train-other-500 bala
|
2225 |
+
7850 F dev-clean Jill Engle
|
2226 |
+
7859 F train-clean-100 xinamarieuhl
|
2227 |
+
7867 M train-clean-360 nomorejeffs
|
2228 |
+
7868 F train-clean-360 Chessie Joy
|
2229 |
+
7871 M train-other-500 Rocit
|
2230 |
+
7874 M train-clean-360 dgulino
|
2231 |
+
7879 F train-other-500 deongines
|
2232 |
+
7881 M train-clean-360 Sam Naishtat
|
2233 |
+
7883 F train-other-500 Annapurna
|
2234 |
+
7886 F train-other-500 Mariah Lyons
|
2235 |
+
7892 F train-other-500 Alexis Castro
|
2236 |
+
7898 F train-other-500 Coreena
|
2237 |
+
7902 M test-other Kyle Van DeGlast
|
2238 |
+
7909 M train-clean-360 MGreenberg
|
2239 |
+
7910 F train-clean-360 southernemma
|
2240 |
+
7912 M train-other-500 Nathan Dickey
|
2241 |
+
7923 M train-other-500 amaskill
|
2242 |
+
7925 F train-other-500 Etel Buss
|
2243 |
+
7926 M train-clean-360 Steven Reynolds
|
2244 |
+
7932 F train-clean-360 Tammy Stalcup
|
2245 |
+
7933 F train-clean-360 Highlandoaks
|
2246 |
+
7938 M train-clean-360 Goss45
|
2247 |
+
7939 M train-clean-360 DPranitis
|
2248 |
+
7942 M train-other-500 Luke Sartor
|
2249 |
+
7945 F train-clean-360 Lois Browne
|
2250 |
+
7946 F train-other-500 Flash
|
2251 |
+
7949 M train-clean-360 Jon Miller
|
2252 |
+
7956 M train-clean-360 Devon Purtz
|
2253 |
+
7957 M train-clean-360 Wiley Combs
|
2254 |
+
7959 F train-clean-360 Lily Took
|
2255 |
+
7962 F train-clean-360 Jolie O'Dell
|
2256 |
+
7967 F train-clean-360 Lois Hill
|
2257 |
+
7975 M test-other William A Crenshaw
|
2258 |
+
7976 M dev-clean JenniferRutters
|
2259 |
+
7981 M train-clean-360 timothyFR
|
2260 |
+
7982 F train-clean-360 Lori Arsenault
|
2261 |
+
7988 M train-other-500 JaySands
|
2262 |
+
7991 M train-clean-360 Aaron Weber
|
2263 |
+
7994 F train-clean-360 Marian Cervassi
|
2264 |
+
7995 F train-clean-360 Marie Hoffman
|
2265 |
+
7997 M train-other-500 Tom Merritt
|
2266 |
+
8005 F train-other-500 Julia Wells
|
2267 |
+
8006 M train-clean-360 TyroneS
|
2268 |
+
8008 M train-clean-360 Paul Adamson
|
2269 |
+
8009 F train-other-500 Frances Brown
|
2270 |
+
8011 M train-clean-360 Greg Giordano
|
2271 |
+
8012 F train-other-500 WoollyBee
|
2272 |
+
8014 F train-clean-100 constatine
|
2273 |
+
8015 F train-other-500 Underhill
|
2274 |
+
8023 M train-other-500 JamesMcAndrew
|
2275 |
+
8028 M train-clean-360 Tom Geller
|
2276 |
+
8033 M train-other-500 geoffbl
|
2277 |
+
8040 F train-other-500 NatalieOram
|
2278 |
+
8042 M train-other-500 Jack Watson Warr
|
2279 |
+
8044 F train-other-500 Sarah Hannah
|
2280 |
+
8050 M train-clean-360 Jake Woldstad
|
2281 |
+
8051 F train-clean-100 Maria Kasper
|
2282 |
+
8057 F train-clean-360 Linda Dougherty
|
2283 |
+
8058 M train-other-500 RLC
|
2284 |
+
8063 M train-clean-100 Robert Snoza
|
2285 |
+
8066 M train-clean-360 Tim Cote
|
2286 |
+
8071 F train-other-500 Vanessa Garcia
|
2287 |
+
8072 F train-other-500 Kimberly Krause
|
2288 |
+
8075 F train-clean-360 Melora
|
2289 |
+
8080 F train-clean-360 e.a.zokaites
|
2290 |
+
8087 M train-other-500 Arnie Horton
|
2291 |
+
8088 M train-clean-100 Jason Bolestridge
|
2292 |
+
8095 M train-clean-100 Theodulf
|
2293 |
+
8097 F train-clean-360 lewildesen
|
2294 |
+
8098 M train-clean-100 Arnold
|
2295 |
+
8108 M train-clean-100 drakaunus
|
2296 |
+
8112 F train-other-500 Christine Lamberton
|
2297 |
+
8113 F train-clean-360 PennyAnn
|
2298 |
+
8118 F train-clean-360 Katie McClain
|
2299 |
+
8119 M train-clean-360 Malcolm Cameron
|
2300 |
+
8123 F train-clean-100 Sheila Wood
|
2301 |
+
8131 M test-other Christian Alexander
|
2302 |
+
8138 M train-clean-360 Lee Smalley
|
2303 |
+
8142 M train-clean-360 Timothy Lucas
|
2304 |
+
8143 M train-other-500 Nick Whitley
|
2305 |
+
8148 F train-other-500 Xiph
|
2306 |
+
8152 M train-clean-360 Bigcowfeet
|
2307 |
+
8156 F train-other-500 Brooke Cunningham
|
2308 |
+
8163 F train-clean-360 Greengecko
|
2309 |
+
8164 M train-other-500 Rob Board
|
2310 |
+
8168 F train-other-500 Kiera Davidson
|
2311 |
+
8169 M train-other-500 tovarisch
|
2312 |
+
8172 M train-other-500 Alan Weyman
|
2313 |
+
8173 F dev-other emmablob
|
2314 |
+
8176 M train-clean-360 Jon Kerfoot
|
2315 |
+
8180 F train-other-500 Elanor Sakamoto
|
2316 |
+
8183 F train-clean-360 Cheri Jordan
|
2317 |
+
8188 M test-other Matthew Calvin
|
2318 |
+
8190 F train-clean-360 Lisa Phelps Gonzalez
|
2319 |
+
8193 F train-clean-360 helengraves
|
2320 |
+
8194 F train-clean-360 MsMO
|
2321 |
+
8195 M train-clean-360 Mr Krause
|
2322 |
+
8197 F train-other-500 Victoria P
|
2323 |
+
8199 F train-other-500 maryagneskatherine
|
2324 |
+
8200 M train-other-500 Dan S
|
2325 |
+
8208 M train-other-500 zaanta
|
2326 |
+
8215 M train-other-500 readread
|
2327 |
+
8222 M train-clean-360 Greg Golding
|
2328 |
+
8224 M test-clean Leanne Kinkopf
|
2329 |
+
8225 M train-clean-360 Matt Lusher
|
2330 |
+
8226 M train-clean-100 Adam Picot
|
2331 |
+
8228 F train-clean-360 hgal2010
|
2332 |
+
8230 M test-clean David Jenkins
|
2333 |
+
8238 F train-clean-100 Madam Fickle
|
2334 |
+
8240 F train-other-500 Gertrude Durette
|
2335 |
+
8242 F train-other-500 Anita Slusser
|
2336 |
+
8245 M train-other-500 gscheids
|
2337 |
+
8246 M train-other-500 beeveeo
|
2338 |
+
8250 M train-other-500 Stephen Gibbons
|
2339 |
+
8254 F dev-other Jeana Wei
|
2340 |
+
8259 F train-other-500 Lawrence
|
2341 |
+
8262 M train-other-500 Jack Powell
|
2342 |
+
8266 M train-clean-360 Jeff K.
|
2343 |
+
8272 F train-other-500 Haili
|
2344 |
+
8273 M train-other-500 Lucas Boulding
|
2345 |
+
8280 F test-other AlaynaMay
|
2346 |
+
8288 M dev-other Wayne Donovan
|
2347 |
+
8291 M train-other-500 Elliot Gage
|
2348 |
+
8295 F train-other-500 Susan Morin
|
2349 |
+
8296 F train-other-500 Bria Snow
|
2350 |
+
8297 M dev-clean David Mecionis
|
2351 |
+
8300 F train-clean-360 Judith Parker
|
2352 |
+
8302 F train-other-500 Charlotte Day
|
2353 |
+
8307 M train-other-500 Nick Bulka
|
2354 |
+
8312 F train-clean-100 Jaimie Noy
|
2355 |
+
8316 M train-other-500 Rocket Rodger
|
2356 |
+
8321 F train-other-500 SamR
|
2357 |
+
8322 M train-other-500 yeknod
|
2358 |
+
8324 F train-clean-100 Kathy Wright
|
2359 |
+
8328 M train-other-500 William Gavula
|
2360 |
+
8329 F train-clean-360 Betty Perry
|
2361 |
+
8334 M train-other-500 Doug Reed
|
2362 |
+
8337 F train-other-500 Claudia Salto
|
2363 |
+
8346 M train-other-500 Al Rocca
|
2364 |
+
8347 M train-clean-360 Terry Torres
|
2365 |
+
8356 M train-other-500 Paul Mazumdar
|
2366 |
+
8367 M train-other-500 ophiuroidea
|
2367 |
+
8382 F train-other-500 Claire Schreuder
|
2368 |
+
8388 F train-clean-360 Jacki Horn
|
2369 |
+
8389 M train-other-500 Steven Bateman
|
2370 |
+
8392 F train-other-500 Katharina Huang
|
2371 |
+
8394 M train-other-500 Matthew Walker
|
2372 |
+
8396 M train-clean-360 gloriousjob
|
2373 |
+
8401 M train-clean-360 Alexander Hatton
|
2374 |
+
8404 F train-clean-360 Lynne Ray
|
2375 |
+
8410 F train-clean-360 Shauna Kennett
|
2376 |
+
8413 M train-other-500 PaulMichael1084
|
2377 |
+
8414 F train-other-500 jtueller
|
2378 |
+
8415 F train-other-500 Rusty Dancer
|
2379 |
+
8419 M train-clean-100 Jon Kissack
|
2380 |
+
8421 F train-clean-360 Jackie Drown
|
2381 |
+
8422 M train-other-500 pjhoury
|
2382 |
+
8424 F train-other-500 Schums
|
2383 |
+
8425 M train-clean-100 Larry Wilson
|
2384 |
+
8430 F train-other-500 shihping
|
2385 |
+
8432 F train-other-500 Emma Joyce
|
2386 |
+
8441 F train-other-500 ryoko
|
2387 |
+
8443 F train-other-500 Marsha Payne
|
2388 |
+
8444 M train-other-500 Anthony Webster
|
2389 |
+
8445 M train-other-500 Brett G. Hirsch
|
2390 |
+
8447 F train-other-500 Anastasiia Solokha
|
2391 |
+
8455 M test-clean thecheops
|
2392 |
+
8459 M train-clean-360 sdaeley17
|
2393 |
+
8461 F test-other Allie Cingi
|
2394 |
+
8463 F test-clean Michele Fry
|
2395 |
+
8464 M train-clean-360 HappyMiamiDad
|
2396 |
+
8465 F train-clean-100 TinaNygard2
|
2397 |
+
8466 M train-other-500 Chris Cartwright
|
2398 |
+
8468 F train-clean-100 Jennifer Dorr
|
2399 |
+
8470 F train-other-500 Rebecca Braunert-Plunkett
|
2400 |
+
8474 M train-clean-360 Scott Snowman
|
2401 |
+
8476 F train-other-500 Julie Mansius
|
2402 |
+
8479 M train-clean-360 R.W. Rushing
|
2403 |
+
8490 M train-clean-360 Matt Parker
|
2404 |
+
8494 M train-clean-360 Bill Yallalee
|
2405 |
+
8498 M train-clean-360 Ian Quinlan
|
2406 |
+
8499 M train-other-500 ReadAllDay
|
2407 |
+
8500 M train-other-500 Ravi Shankar
|
2408 |
+
8506 F train-clean-360 Denise Nordell
|
2409 |
+
8527 M train-clean-360 Gary Bohannon
|
2410 |
+
8531 M train-other-500 imenadel
|
2411 |
+
8534 M train-clean-360 Chris Clark
|
2412 |
+
8536 M train-other-500 Jonathan Brubaker
|
2413 |
+
8543 F train-other-500 luckyemma
|
2414 |
+
8544 F train-other-500 Pooja DSr
|
2415 |
+
8545 F train-clean-360 Joanne Rochon
|
2416 |
+
8555 F test-clean Michelle Goode
|
2417 |
+
8565 M train-other-500 Patrick Eaton
|
2418 |
+
8573 F train-clean-360 Paige G
|
2419 |
+
8575 M train-clean-360 Jeremy Robertson
|
2420 |
+
8576 M train-other-500 Phil Schempf
|
2421 |
+
8580 M train-clean-100 Gary Dana
|
2422 |
+
8587 M train-other-500 Drew Johnson
|
2423 |
+
8590 M train-other-500 bobrose
|
2424 |
+
8591 F train-clean-360 Jude Somers
|
2425 |
+
8592 M train-clean-360 Dylan Posa
|
2426 |
+
8605 F train-clean-360 Kate Sterner
|
2427 |
+
8609 M train-clean-100 noblesavage
|
2428 |
+
8619 M train-clean-360 Tad E.
|
2429 |
+
8625 F train-other-500 Ellen Preckel
|
2430 |
+
8629 M train-clean-100 Shivansh Dhar
|
2431 |
+
8630 M train-clean-100 Eduardo
|
2432 |
+
8631 M train-other-500 Edward Kirkby
|
2433 |
+
8632 M train-other-500 Geremia
|
2434 |
+
8635 M train-clean-360 ACBowgus
|
2435 |
+
8643 M train-clean-360 jabc1950
|
2436 |
+
8644 F train-other-500 Eenae
|
2437 |
+
8664 F train-other-500 Pam Castille
|
2438 |
+
8666 M train-other-500 josembi
|
2439 |
+
8671 M train-other-500 Simon Smoke
|
2440 |
+
8675 M train-other-500 Larry Greene
|
2441 |
+
8677 F train-clean-360 KHand
|
2442 |
+
8678 F train-other-500 Amy
|
2443 |
+
8684 F train-clean-360 Alison Stewart
|
2444 |
+
8687 M train-clean-360 EccentricOwl
|
2445 |
+
8699 F train-clean-360 Jessica Atha
|
2446 |
+
8705 M train-clean-360 dsilber01
|
2447 |
+
8710 M train-other-500 Ralph Crown
|
2448 |
+
8713 M train-clean-360 Expatriate
|
2449 |
+
8718 F train-clean-360 Deena Rhoads
|
2450 |
+
8722 F train-clean-360 Emily Maynard
|
2451 |
+
8725 M train-clean-360 Gary Ericson
|
2452 |
+
8742 M train-clean-360 Adam Taylor
|
2453 |
+
8747 M train-clean-100 DeanOBuchanan
|
2454 |
+
8753 M train-other-500 Walt Allan
|
2455 |
+
8758 M train-clean-360 Krzysztof Rowinski
|
2456 |
+
8765 M train-other-500 jciesielski
|
2457 |
+
8770 M train-clean-100 Paul Simonin
|
2458 |
+
8771 F train-clean-360 Anna Millard
|
2459 |
+
8772 M train-clean-360 Martin Reyto
|
2460 |
+
8776 F train-clean-360 Taliesin
|
2461 |
+
8778 F train-other-500 Francoise
|
2462 |
+
8786 M train-clean-360 Bruce Kachuk
|
2463 |
+
8791 M train-clean-360 ScottReyonoldsVoice
|
2464 |
+
8797 M train-clean-100 Sean Grabosky
|
2465 |
+
8799 M train-other-500 Peter Tucker
|
2466 |
+
8803 M train-other-500 Ben Lindsey-Clark
|
2467 |
+
8808 M train-other-500 davidpr
|
2468 |
+
8820 M train-clean-360 Ignare
|
2469 |
+
8824 M train-clean-360 Mark Johnston
|
2470 |
+
8825 F train-clean-360 Erin Schellhase
|
2471 |
+
8838 M train-clean-100 Kevin Owens
|
2472 |
+
8842 F dev-clean Mary J
|
2473 |
+
8846 F train-other-500 MariaS
|
2474 |
+
8848 M train-clean-360 Craig Kenneth Bryant
|
2475 |
+
8855 M train-clean-360 Eric Metzler
|
2476 |
+
8867 F train-other-500 sorbet87
|
2477 |
+
8875 M train-clean-360 David D'Huet
|
2478 |
+
8879 M train-clean-360 Son of the Exiles
|
2479 |
+
8887 M train-clean-360 Andrew Hernandez
|
2480 |
+
8897 F train-other-500 beyondutopia
|
2481 |
+
8975 F train-clean-100 Daisy Flaim
|
2482 |
+
9000 M train-other-500 Ramon Escamilla
|
2483 |
+
9022 F train-clean-360 Claire M
|
2484 |
+
9023 F train-clean-360 P. J. Morgan
|
2485 |
+
9026 F train-clean-360 Tammy Porter
|
config/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config/vocab_phonemes.txt
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[MASK]
|
2 |
+
[PAD]
|
3 |
+
[UNK]
|
4 |
+
[COMMA]
|
5 |
+
[EXCLAMATION MARK]
|
6 |
+
[FULL STOP]
|
7 |
+
[QUESTION MARK]
|
8 |
+
[SEMICOLON]
|
9 |
+
[SILENCE]
|
10 |
+
aɪ
|
11 |
+
aʊ
|
12 |
+
b
|
13 |
+
d
|
14 |
+
dʒ
|
15 |
+
eɪ
|
16 |
+
f
|
17 |
+
h
|
18 |
+
i
|
19 |
+
j
|
20 |
+
k
|
21 |
+
l
|
22 |
+
m
|
23 |
+
n
|
24 |
+
oʊ
|
25 |
+
p
|
26 |
+
s
|
27 |
+
t
|
28 |
+
tʃ
|
29 |
+
u
|
30 |
+
v
|
31 |
+
w
|
32 |
+
z
|
33 |
+
æ
|
34 |
+
ð
|
35 |
+
ŋ
|
36 |
+
ɑ
|
37 |
+
ɔ
|
38 |
+
ɔɪ
|
39 |
+
ɛ
|
40 |
+
ɜ˞
|
41 |
+
ɡ
|
42 |
+
ɪ
|
43 |
+
ɹ
|
44 |
+
ʃ
|
45 |
+
ʊ
|
46 |
+
ʌ
|
47 |
+
ʒ
|
48 |
+
ˌaɪ
|
49 |
+
ˌaʊ
|
50 |
+
ˌeɪ
|
51 |
+
ˌi
|
52 |
+
ˌoʊ
|
53 |
+
ˌu
|
54 |
+
ˌæ
|
55 |
+
ˌɑ
|
56 |
+
ˌɔ
|
57 |
+
ˌɔɪ
|
58 |
+
ˌɛ
|
59 |
+
ˌɜ˞
|
60 |
+
ˌɪ
|
61 |
+
ˌʊ
|
62 |
+
ˌʌ
|
63 |
+
θ
|
demo/__init__.py
ADDED
File without changes
|
demo/config.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
speakers_delightful_22050 = {
|
2 |
+
"Dan Threetrees": 50,
|
3 |
+
"Cori Samuel": 52,
|
4 |
+
"Linda Wilcox": 63,
|
5 |
+
"Christiane Levesque": 64,
|
6 |
+
"Fox in the Stars": 80,
|
7 |
+
"Chris Goringe": 91,
|
8 |
+
"Maureen S. O'Brien": 102,
|
9 |
+
"Kevin McAsh": 108,
|
10 |
+
"Brenda Dayne": 118,
|
11 |
+
"Sean McGaughey": 123,
|
12 |
+
"Ed Good": 164,
|
13 |
+
"Paul Harvey": 171,
|
14 |
+
"Nocturna": 192,
|
15 |
+
"Joy Chan": 218,
|
16 |
+
"fieldsofgold": 248,
|
17 |
+
"Eric Connover": 308,
|
18 |
+
"Carl Vonnoh, III": 314,
|
19 |
+
"Brooks Seveer": 373,
|
20 |
+
"swroot": 394,
|
21 |
+
"Christabel": 414,
|
22 |
+
"Kiki Baessell": 417,
|
23 |
+
"RedToby": 425,
|
24 |
+
"Heather Duncan": 450,
|
25 |
+
"Christian Pecaut": 469,
|
26 |
+
"Scott Sherris": 481,
|
27 |
+
"Madame Tusk": 517,
|
28 |
+
"Miranda Stinson": 544,
|
29 |
+
"Daniel Shorten": 574,
|
30 |
+
"Jo": 596,
|
31 |
+
"Anne-Marie": 604,
|
32 |
+
"PJ": 617,
|
33 |
+
"Cynthia Zocca": 644,
|
34 |
+
"Micah": 645,
|
35 |
+
"Scarlett!": 649,
|
36 |
+
"cucciasv": 653,
|
37 |
+
"James Gladwin": 661,
|
38 |
+
"Kelly Dougherty": 666,
|
39 |
+
"Jan Baxter": 668,
|
40 |
+
"Nikki Sullivan": 685,
|
41 |
+
"Sheila Morton": 710,
|
42 |
+
"Tysto": 732,
|
43 |
+
"Pete Williams, Pittsburgh, PA": 770,
|
44 |
+
"Alec Daitsman": 782,
|
45 |
+
"David Kleparek": 791,
|
46 |
+
"FirstKnight": 804,
|
47 |
+
"texttalker": 817,
|
48 |
+
"kristiface": 822,
|
49 |
+
"Rachel Lintern": 835,
|
50 |
+
"Jennifer Lott": 851,
|
51 |
+
"mpetranech": 881,
|
52 |
+
"Quentin Manuel": 908,
|
53 |
+
"Jane Greensmith": 923,
|
54 |
+
"Petra": 929,
|
55 |
+
"Raerity": 932,
|
56 |
+
"Parrot": 995,
|
57 |
+
"mjbrichant": 1041,
|
58 |
+
"Martin Geeson": 1109,
|
59 |
+
"Linda Andrus": 1135,
|
60 |
+
"Jonathan Burchard": 1142,
|
61 |
+
"Dale A. Bade": 1204,
|
62 |
+
"Troy Bond": 1230,
|
63 |
+
"Sarah LuAnn": 1247,
|
64 |
+
"garbageman99": 1281,
|
65 |
+
"davidb": 1302,
|
66 |
+
"Savanna Herrold": 1370,
|
67 |
+
"Angel5": 1402,
|
68 |
+
"Preston Scrape": 1414,
|
69 |
+
"browneyedgirl32382": 1433,
|
70 |
+
"P Moscato": 1440,
|
71 |
+
"Joyce Couch": 1596,
|
72 |
+
"Sharon Omi": 1656,
|
73 |
+
"Steve Belleguelle": 1712,
|
74 |
+
"Caroline Driggs": 1718,
|
75 |
+
"Vinnie Tesla": 1728,
|
76 |
+
"anjieliu": 1741,
|
77 |
+
"Yvonne Smith": 1755,
|
78 |
+
"Sarah Crampton": 1783,
|
79 |
+
"Vince Dee": 1805,
|
80 |
+
"Rebecca King": 1808,
|
81 |
+
"Kendall Ashyby": 1836,
|
82 |
+
"NastassiaS": 1869,
|
83 |
+
"acloward": 2056,
|
84 |
+
"Eberle Thomas": 2084,
|
85 |
+
"Larry Beasley": 2114,
|
86 |
+
"Pete Milan": 2115,
|
87 |
+
"Suebee": 2143,
|
88 |
+
"Sammy Bean": 2192,
|
89 |
+
"Mike Nelson": 2197,
|
90 |
+
"Samantha J Gubitz": 2209,
|
91 |
+
"Haili": 2341,
|
92 |
+
"Alexander Hatton": 2371,
|
93 |
+
"KHand": 2439,
|
94 |
+
"Deena Rhoads": 2447,
|
95 |
+
"Erin Schellhase": 2468,
|
96 |
+
}
|
97 |
+
|
98 |
+
speakers_hifi_tts = {
|
99 |
+
"Cori Samuel": 92,
|
100 |
+
"Phil Benson": 6097,
|
101 |
+
"John Van Stan": 9017,
|
102 |
+
"Mike Pelton": 6670,
|
103 |
+
"Tony Oliva": 6671,
|
104 |
+
"Maria Kasper": 8051,
|
105 |
+
"Helen Taylor": 9136,
|
106 |
+
"Sylviamb": 11614,
|
107 |
+
"Celine Major": 11697,
|
108 |
+
"LikeManyWaters": 12787,
|
109 |
+
}
|
en_us_cmudict_ipa_forward.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cadce3d77597b55e772799cb46994ab29a460f1a62a87207b52f3cdb29894e02
|
3 |
+
size 65637046
|
epoch=5816-step=390418.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65f41d587e37cc12a05e43c9f0ed107dcca634f3987bee7facec6f62571aeda9
|
3 |
+
size 2381456584
|
mocks/audio_example.wav
ADDED
Binary file (109 kB). View file
|
|
mocks/data/Alice/0001.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61f5942c46d80a7517d7979589b5c2f6613138fedb921b23ed0cdd7b065f2409
|
3 |
+
size 97172
|
mocks/data/Bob/0002.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2765d71f271f668d80c266deb449cee5d94ad19e4949db10f4b50cf53b6d1c5e
|
3 |
+
size 97172
|
mocks/data/Charlie/0003.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f3de9a2b066779141176513f2e0ee80d0ec87157fd30e0c59289562d58f9fe2
|
3 |
+
size 97172
|
mocks/metadata.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
0001|Alice
|
2 |
+
0002|Bob
|
3 |
+
0003|Charlie
|
mocks/speakers.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Alice": 0,
|
3 |
+
"Bob": 1,
|
4 |
+
"Charlie": 2
|
5 |
+
}
|
mocks/test_compute_yin.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9a4db041f1f2f053d1477775dc177d27989d5186c0849cc2ab24e337c2c4115
|
3 |
+
size 5632
|
models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .delightful_hifi import DelightfulHiFi
|
models/config/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .configs import *
|
2 |
+
from .langs import *
|
3 |
+
from .symbols import *
|
models/config/configs.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from typing import List, Literal, Tuple, Union
|
3 |
+
|
4 |
+
PreprocessLangType = Literal["english_only", "multilingual"]
|
5 |
+
|
6 |
+
|
7 |
+
@dataclass
|
8 |
+
class STFTConfig:
|
9 |
+
filter_length: int
|
10 |
+
hop_length: int
|
11 |
+
win_length: int
|
12 |
+
n_mel_channels: int
|
13 |
+
mel_fmin: int
|
14 |
+
mel_fmax: int
|
15 |
+
|
16 |
+
|
17 |
+
# Base class used with the Univnet vocoder
|
18 |
+
@dataclass
|
19 |
+
class PreprocessingConfig:
|
20 |
+
language: PreprocessLangType
|
21 |
+
stft: STFTConfig
|
22 |
+
sampling_rate: int = 22050
|
23 |
+
min_seconds: float = 0.5
|
24 |
+
max_seconds: float = 6.0
|
25 |
+
use_audio_normalization: bool = True
|
26 |
+
workers: int = 8
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class PreprocessingConfigUnivNet(PreprocessingConfig):
|
31 |
+
stft: STFTConfig = field(
|
32 |
+
default_factory=lambda: STFTConfig(
|
33 |
+
filter_length=1024,
|
34 |
+
hop_length=256,
|
35 |
+
win_length=1024,
|
36 |
+
n_mel_channels=100, # univnet
|
37 |
+
mel_fmin=20,
|
38 |
+
mel_fmax=11025,
|
39 |
+
),
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class PreprocessingConfigHifiGAN(PreprocessingConfig):
|
45 |
+
stft: STFTConfig = field(
|
46 |
+
default_factory=lambda: STFTConfig(
|
47 |
+
filter_length=1024,
|
48 |
+
hop_length=256,
|
49 |
+
win_length=1024,
|
50 |
+
n_mel_channels=80, # For univnet 100
|
51 |
+
mel_fmin=20,
|
52 |
+
mel_fmax=11025,
|
53 |
+
),
|
54 |
+
)
|
55 |
+
|
56 |
+
def __post_init__(self):
|
57 |
+
r"""It modifies the 'stft' attribute based on the 'sampling_rate' attribute.
|
58 |
+
If 'sampling_rate' is 44100, 'stft' is set with specific values for this rate.
|
59 |
+
If 'sampling_rate' is not 22050 or 44100, a ValueError is raised.
|
60 |
+
|
61 |
+
Raises:
|
62 |
+
ValueError: If 'sampling_rate' is not 22050 or 44100.
|
63 |
+
"""
|
64 |
+
if self.sampling_rate == 44100:
|
65 |
+
self.stft = STFTConfig(
|
66 |
+
filter_length=2048,
|
67 |
+
hop_length=512, # NOTE: 441 ?? https://github.com/jik876/hifi-gan/issues/116#issuecomment-1436999858
|
68 |
+
win_length=2048,
|
69 |
+
n_mel_channels=80, # Based on https://github.com/jik876/hifi-gan/issues/116
|
70 |
+
mel_fmin=20,
|
71 |
+
mel_fmax=11025,
|
72 |
+
)
|
73 |
+
if self.sampling_rate not in [22050, 44100]:
|
74 |
+
raise ValueError("Sampling rate must be 22050 or 44100")
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class AcousticTrainingOptimizerConfig:
|
79 |
+
learning_rate: float
|
80 |
+
weight_decay: float
|
81 |
+
lr_decay: float
|
82 |
+
betas: Tuple[float, float] = (0.9, 0.98)
|
83 |
+
eps: float = 0.000000001
|
84 |
+
grad_clip_thresh: float = 1.0
|
85 |
+
warm_up_step: float = 4000
|
86 |
+
anneal_steps: List[int] = field(default_factory=list)
|
87 |
+
anneal_rate: float = 0.3
|
88 |
+
|
89 |
+
|
90 |
+
@dataclass
|
91 |
+
class AcousticFinetuningConfig:
|
92 |
+
batch_size = 5
|
93 |
+
grad_acc_step = 3
|
94 |
+
train_steps = 30000
|
95 |
+
log_step = 100
|
96 |
+
synth_step = 250
|
97 |
+
val_step = 4000
|
98 |
+
save_step = 250
|
99 |
+
freeze_bert_until = 0
|
100 |
+
mcd_gen_max_samples = 400
|
101 |
+
only_train_speaker_until = 5000
|
102 |
+
optimizer_config: AcousticTrainingOptimizerConfig = field(
|
103 |
+
default_factory=lambda: AcousticTrainingOptimizerConfig(
|
104 |
+
learning_rate=0.0002,
|
105 |
+
weight_decay=0.001,
|
106 |
+
lr_decay=0.99999,
|
107 |
+
),
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
@dataclass
|
112 |
+
class AcousticPretrainingConfig:
|
113 |
+
batch_size = 5
|
114 |
+
grad_acc_step = 5
|
115 |
+
train_steps = 500000
|
116 |
+
log_step = 20
|
117 |
+
synth_step = 250
|
118 |
+
val_step = 4000
|
119 |
+
save_step = 1000
|
120 |
+
freeze_bert_until = 4000
|
121 |
+
mcd_gen_max_samples = 400
|
122 |
+
only_train_speaker_until = 0
|
123 |
+
optimizer_config: AcousticTrainingOptimizerConfig = field(
|
124 |
+
default_factory=lambda: AcousticTrainingOptimizerConfig(
|
125 |
+
learning_rate=0.0002,
|
126 |
+
weight_decay=0.01,
|
127 |
+
lr_decay=1.0,
|
128 |
+
),
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
AcousticTrainingConfig = Union[AcousticFinetuningConfig, AcousticPretrainingConfig]
|
133 |
+
|
134 |
+
|
135 |
+
@dataclass
|
136 |
+
class ConformerConfig:
|
137 |
+
n_layers: int
|
138 |
+
n_heads: int
|
139 |
+
n_hidden: int
|
140 |
+
p_dropout: float
|
141 |
+
kernel_size_conv_mod: int
|
142 |
+
kernel_size_depthwise: int
|
143 |
+
with_ff: bool
|
144 |
+
|
145 |
+
|
146 |
+
@dataclass
|
147 |
+
class ReferenceEncoderConfig:
|
148 |
+
bottleneck_size_p: int
|
149 |
+
bottleneck_size_u: int
|
150 |
+
ref_enc_filters: List[int]
|
151 |
+
ref_enc_size: int
|
152 |
+
ref_enc_strides: List[int]
|
153 |
+
ref_enc_pad: List[int]
|
154 |
+
ref_enc_gru_size: int
|
155 |
+
ref_attention_dropout: float
|
156 |
+
token_num: int
|
157 |
+
predictor_kernel_size: int
|
158 |
+
|
159 |
+
|
160 |
+
@dataclass
|
161 |
+
class VarianceAdaptorConfig:
|
162 |
+
n_hidden: int
|
163 |
+
kernel_size: int
|
164 |
+
emb_kernel_size: int
|
165 |
+
p_dropout: float
|
166 |
+
n_bins: int
|
167 |
+
|
168 |
+
|
169 |
+
@dataclass
|
170 |
+
class AcousticLossConfig:
|
171 |
+
ssim_loss_alpha: float
|
172 |
+
mel_loss_alpha: float
|
173 |
+
aligner_loss_alpha: float
|
174 |
+
pitch_loss_alpha: float
|
175 |
+
energy_loss_alpha: float
|
176 |
+
u_prosody_loss_alpha: float
|
177 |
+
p_prosody_loss_alpha: float
|
178 |
+
dur_loss_alpha: float
|
179 |
+
binary_align_loss_alpha: float
|
180 |
+
binary_loss_warmup_epochs: int
|
181 |
+
|
182 |
+
|
183 |
+
@dataclass
|
184 |
+
class AcousticENModelConfig:
|
185 |
+
speaker_embed_dim: int = 1024
|
186 |
+
lang_embed_dim: int = 1
|
187 |
+
encoder: ConformerConfig = field(
|
188 |
+
default_factory=lambda: ConformerConfig(
|
189 |
+
n_layers=6,
|
190 |
+
n_heads=8,
|
191 |
+
n_hidden=512,
|
192 |
+
p_dropout=0.1,
|
193 |
+
kernel_size_conv_mod=7,
|
194 |
+
kernel_size_depthwise=7,
|
195 |
+
with_ff=True,
|
196 |
+
),
|
197 |
+
)
|
198 |
+
decoder: ConformerConfig = field(
|
199 |
+
default_factory=lambda: ConformerConfig(
|
200 |
+
n_layers=6,
|
201 |
+
n_heads=8,
|
202 |
+
n_hidden=512,
|
203 |
+
p_dropout=0.1,
|
204 |
+
kernel_size_conv_mod=11,
|
205 |
+
kernel_size_depthwise=11,
|
206 |
+
with_ff=True,
|
207 |
+
),
|
208 |
+
)
|
209 |
+
reference_encoder: ReferenceEncoderConfig = field(
|
210 |
+
default_factory=lambda: ReferenceEncoderConfig(
|
211 |
+
bottleneck_size_p=4,
|
212 |
+
bottleneck_size_u=256,
|
213 |
+
ref_enc_filters=[32, 32, 64, 64, 128, 128],
|
214 |
+
ref_enc_size=3,
|
215 |
+
ref_enc_strides=[1, 2, 1, 2, 1],
|
216 |
+
ref_enc_pad=[1, 1],
|
217 |
+
ref_enc_gru_size=32,
|
218 |
+
ref_attention_dropout=0.2,
|
219 |
+
token_num=32,
|
220 |
+
predictor_kernel_size=5,
|
221 |
+
),
|
222 |
+
)
|
223 |
+
variance_adaptor: VarianceAdaptorConfig = field(
|
224 |
+
default_factory=lambda: VarianceAdaptorConfig(
|
225 |
+
n_hidden=512,
|
226 |
+
kernel_size=5,
|
227 |
+
emb_kernel_size=3,
|
228 |
+
p_dropout=0.5,
|
229 |
+
n_bins=256,
|
230 |
+
),
|
231 |
+
)
|
232 |
+
loss: AcousticLossConfig = field(
|
233 |
+
default_factory=lambda: AcousticLossConfig(
|
234 |
+
ssim_loss_alpha=1.0,
|
235 |
+
mel_loss_alpha=1.0,
|
236 |
+
aligner_loss_alpha=1.0,
|
237 |
+
pitch_loss_alpha=1.0,
|
238 |
+
energy_loss_alpha=1.0,
|
239 |
+
u_prosody_loss_alpha=0.25,
|
240 |
+
p_prosody_loss_alpha=0.25,
|
241 |
+
dur_loss_alpha=1.0,
|
242 |
+
binary_align_loss_alpha=0.1,
|
243 |
+
binary_loss_warmup_epochs=10,
|
244 |
+
),
|
245 |
+
)
|
246 |
+
|
247 |
+
|
248 |
+
@dataclass
|
249 |
+
class AcousticMultilingualModelConfig:
|
250 |
+
speaker_embed_dim: int = 1024
|
251 |
+
lang_embed_dim: int = 256
|
252 |
+
encoder: ConformerConfig = field(
|
253 |
+
default_factory=lambda: ConformerConfig(
|
254 |
+
n_layers=6,
|
255 |
+
n_heads=8,
|
256 |
+
n_hidden=512,
|
257 |
+
p_dropout=0.1,
|
258 |
+
kernel_size_conv_mod=7,
|
259 |
+
kernel_size_depthwise=7,
|
260 |
+
with_ff=True,
|
261 |
+
),
|
262 |
+
)
|
263 |
+
decoder: ConformerConfig = field(
|
264 |
+
default_factory=lambda: ConformerConfig(
|
265 |
+
n_layers=6,
|
266 |
+
n_heads=8,
|
267 |
+
n_hidden=512,
|
268 |
+
p_dropout=0.1,
|
269 |
+
kernel_size_conv_mod=11,
|
270 |
+
kernel_size_depthwise=11,
|
271 |
+
with_ff=True,
|
272 |
+
),
|
273 |
+
)
|
274 |
+
reference_encoder: ReferenceEncoderConfig = field(
|
275 |
+
default_factory=lambda: ReferenceEncoderConfig(
|
276 |
+
bottleneck_size_p=4,
|
277 |
+
bottleneck_size_u=256,
|
278 |
+
ref_enc_filters=[32, 32, 64, 64, 128, 128],
|
279 |
+
ref_enc_size=3,
|
280 |
+
ref_enc_strides=[1, 2, 1, 2, 1],
|
281 |
+
ref_enc_pad=[1, 1],
|
282 |
+
ref_enc_gru_size=32,
|
283 |
+
ref_attention_dropout=0.2,
|
284 |
+
token_num=32,
|
285 |
+
predictor_kernel_size=5,
|
286 |
+
),
|
287 |
+
)
|
288 |
+
variance_adaptor: VarianceAdaptorConfig = field(
|
289 |
+
default_factory=lambda: VarianceAdaptorConfig(
|
290 |
+
n_hidden=512,
|
291 |
+
kernel_size=5,
|
292 |
+
emb_kernel_size=3,
|
293 |
+
p_dropout=0.5,
|
294 |
+
n_bins=256,
|
295 |
+
),
|
296 |
+
)
|
297 |
+
loss: AcousticLossConfig = field(
|
298 |
+
default_factory=lambda: AcousticLossConfig(
|
299 |
+
ssim_loss_alpha=1.0,
|
300 |
+
mel_loss_alpha=1.0,
|
301 |
+
aligner_loss_alpha=1.0,
|
302 |
+
pitch_loss_alpha=1.0,
|
303 |
+
energy_loss_alpha=1.0,
|
304 |
+
u_prosody_loss_alpha=0.25,
|
305 |
+
p_prosody_loss_alpha=0.25,
|
306 |
+
dur_loss_alpha=1.0,
|
307 |
+
binary_align_loss_alpha=0.1,
|
308 |
+
binary_loss_warmup_epochs=10,
|
309 |
+
),
|
310 |
+
)
|
311 |
+
|
312 |
+
|
313 |
+
AcousticModelConfigType = Union[AcousticENModelConfig, AcousticMultilingualModelConfig]
|
314 |
+
|
315 |
+
|
316 |
+
@dataclass
|
317 |
+
class VocoderBasicConfig:
|
318 |
+
segment_size: int = 16384
|
319 |
+
learning_rate: float = 0.0001
|
320 |
+
adam_b1: float = 0.5
|
321 |
+
adam_b2: float = 0.9
|
322 |
+
lr_decay: float = 0.995
|
323 |
+
synth_interval: int = 250
|
324 |
+
checkpoint_interval: int = 250
|
325 |
+
stft_lamb: float = 2.5
|
326 |
+
|
327 |
+
|
328 |
+
@dataclass
|
329 |
+
class VocoderPretrainingConfig(VocoderBasicConfig):
|
330 |
+
batch_size: int = 14
|
331 |
+
grad_accum_steps: int = 1
|
332 |
+
train_steps: int = 1000000
|
333 |
+
stdout_interval: int = 25
|
334 |
+
validation_interval: int = 2000
|
335 |
+
|
336 |
+
|
337 |
+
@dataclass
|
338 |
+
class VocoderFinetuningConfig(VocoderBasicConfig):
|
339 |
+
batch_size: int = 5
|
340 |
+
grad_accum_steps: int = 3
|
341 |
+
train_steps: int = 10000
|
342 |
+
stdout_interval: int = 100
|
343 |
+
validation_interval: int = 4000
|
344 |
+
|
345 |
+
|
346 |
+
VoicoderTrainingConfig = Union[VocoderPretrainingConfig, VocoderFinetuningConfig]
|
347 |
+
|
348 |
+
|
349 |
+
@dataclass
|
350 |
+
class VocoderGeneratorConfig:
|
351 |
+
noise_dim: int
|
352 |
+
channel_size: int
|
353 |
+
dilations: List[int]
|
354 |
+
strides: List[int]
|
355 |
+
lReLU_slope: float
|
356 |
+
kpnet_conv_size: int
|
357 |
+
|
358 |
+
|
359 |
+
@dataclass
|
360 |
+
class VocoderMPDConfig:
|
361 |
+
periods: List[int]
|
362 |
+
kernel_size: int
|
363 |
+
stride: int
|
364 |
+
use_spectral_norm: bool
|
365 |
+
lReLU_slope: float
|
366 |
+
|
367 |
+
|
368 |
+
@dataclass
|
369 |
+
class VocoderMRDConfig:
|
370 |
+
resolutions: List[Tuple[int, int, int]]
|
371 |
+
use_spectral_norm: bool
|
372 |
+
lReLU_slope: float
|
373 |
+
|
374 |
+
|
375 |
+
@dataclass
|
376 |
+
class VocoderModelConfig:
|
377 |
+
gen: VocoderGeneratorConfig = field(
|
378 |
+
default_factory=lambda: VocoderGeneratorConfig(
|
379 |
+
noise_dim=64,
|
380 |
+
channel_size=32,
|
381 |
+
dilations=[1, 3, 9, 27],
|
382 |
+
strides=[8, 8, 4],
|
383 |
+
lReLU_slope=0.2,
|
384 |
+
kpnet_conv_size=3,
|
385 |
+
),
|
386 |
+
)
|
387 |
+
mpd: VocoderMPDConfig = field(
|
388 |
+
default_factory=lambda: VocoderMPDConfig(
|
389 |
+
periods=[2, 3, 5, 7, 11],
|
390 |
+
kernel_size=5,
|
391 |
+
stride=3,
|
392 |
+
use_spectral_norm=False,
|
393 |
+
lReLU_slope=0.2,
|
394 |
+
),
|
395 |
+
)
|
396 |
+
mrd: VocoderMRDConfig = field(
|
397 |
+
default_factory=lambda: VocoderMRDConfig(
|
398 |
+
resolutions=[(1024, 120, 600), (2048, 240, 1200), (512, 50, 240)],
|
399 |
+
use_spectral_norm=False,
|
400 |
+
lReLU_slope=0.2,
|
401 |
+
),
|
402 |
+
)
|
403 |
+
|
404 |
+
|
405 |
+
#####################
|
406 |
+
# HI-FI GAN CONFIGS #
|
407 |
+
#####################
|
408 |
+
|
409 |
+
|
410 |
+
@dataclass
|
411 |
+
class HifiGanPretrainingConfig(VocoderBasicConfig):
|
412 |
+
segment_size: int = 16384
|
413 |
+
learning_rate: float = 0.0002
|
414 |
+
adam_b1: float = 0.8
|
415 |
+
adam_b2: float = 0.99
|
416 |
+
lr_decay: float = 0.9995
|
417 |
+
lReLU_slope: float = 0.1
|
418 |
+
l1_factor: int = 45
|
419 |
+
sampling_rate_acoustic: int = 22050
|
420 |
+
sampling_rate_vocoder: int = 44100
|
421 |
+
|
422 |
+
|
423 |
+
@dataclass
|
424 |
+
class HifiGanConfig:
|
425 |
+
resblock: str = "1"
|
426 |
+
upsample_rates: List[int] = field(
|
427 |
+
default_factory=lambda: [8, 8, 4, 2],
|
428 |
+
)
|
429 |
+
upsample_kernel_sizes: List[int] = field(
|
430 |
+
default_factory=lambda: [16, 16, 4, 4],
|
431 |
+
)
|
432 |
+
upsample_initial_channel: int = 512
|
433 |
+
resblock_kernel_sizes: List[int] = field(
|
434 |
+
default_factory=lambda: [3, 7, 11],
|
435 |
+
)
|
436 |
+
resblock_dilation_sizes: List[List[int]] = field(
|
437 |
+
default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
438 |
+
)
|
models/config/experimental_configs.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
|
4 |
+
# TODO: DEPRECATED!
|
5 |
+
@dataclass
|
6 |
+
class PostNetConfig:
|
7 |
+
p_dropout: float
|
8 |
+
postnet_embedding_dim: int
|
9 |
+
postnet_kernel_size: int
|
10 |
+
postnet_n_convolutions: int
|
11 |
+
|
12 |
+
postnet_expetimental = PostNetConfig(
|
13 |
+
p_dropout=0.1,
|
14 |
+
postnet_embedding_dim=512,
|
15 |
+
postnet_kernel_size=5,
|
16 |
+
postnet_n_convolutions=3,
|
17 |
+
)
|
18 |
+
|
19 |
+
# TODO: DEPRECATED!
|
20 |
+
@dataclass
|
21 |
+
class DiffusionConfig:
|
22 |
+
# model parameters
|
23 |
+
model: str
|
24 |
+
n_mel_channels: int
|
25 |
+
multi_speaker: bool
|
26 |
+
# denoiser parameters
|
27 |
+
residual_channels: int
|
28 |
+
residual_layers: int
|
29 |
+
denoiser_dropout: float
|
30 |
+
noise_schedule_naive: str
|
31 |
+
timesteps: int
|
32 |
+
shallow_timesteps: int
|
33 |
+
min_beta: float
|
34 |
+
max_beta: float
|
35 |
+
s: float
|
36 |
+
pe_scale: int
|
37 |
+
keep_bins: int
|
38 |
+
# trainsformer params
|
39 |
+
encoder_hidden: int
|
40 |
+
decoder_hidden: int
|
41 |
+
speaker_embed_dim: int
|
42 |
+
# loss params
|
43 |
+
noise_loss: str
|
44 |
+
|
45 |
+
|
46 |
+
diff_en = DiffusionConfig(
|
47 |
+
# model parameters
|
48 |
+
model="shallow",
|
49 |
+
n_mel_channels=100,
|
50 |
+
multi_speaker=True,
|
51 |
+
# denoiser parameters
|
52 |
+
# residual_channels=256,
|
53 |
+
# residual_channels=384,
|
54 |
+
residual_channels=100,
|
55 |
+
residual_layers=20,
|
56 |
+
denoiser_dropout=0.2,
|
57 |
+
noise_schedule_naive="vpsde",
|
58 |
+
timesteps=10,
|
59 |
+
shallow_timesteps=1,
|
60 |
+
min_beta=0.1,
|
61 |
+
max_beta=40,
|
62 |
+
s=0.008,
|
63 |
+
keep_bins=80,
|
64 |
+
pe_scale=1000,
|
65 |
+
# trainsformer params
|
66 |
+
# encoder_hidden=100,
|
67 |
+
encoder_hidden=512,
|
68 |
+
decoder_hidden=512,
|
69 |
+
# Speaker_emb + lang_emb
|
70 |
+
speaker_embed_dim=1025,
|
71 |
+
# loss params
|
72 |
+
noise_loss="l1",
|
73 |
+
)
|
74 |
+
|
75 |
+
diff_multi = DiffusionConfig(
|
76 |
+
# model parameters
|
77 |
+
model="shallow",
|
78 |
+
n_mel_channels=100,
|
79 |
+
multi_speaker=True,
|
80 |
+
# denoiser parameters
|
81 |
+
# residual_channels=256,
|
82 |
+
residual_channels=100,
|
83 |
+
residual_layers=20,
|
84 |
+
denoiser_dropout=0.2,
|
85 |
+
noise_schedule_naive="vpsde",
|
86 |
+
timesteps=10,
|
87 |
+
shallow_timesteps=1,
|
88 |
+
min_beta=0.1,
|
89 |
+
max_beta=40,
|
90 |
+
s=0.008,
|
91 |
+
pe_scale=1000,
|
92 |
+
keep_bins=80,
|
93 |
+
# trainsformer params
|
94 |
+
encoder_hidden=512,
|
95 |
+
decoder_hidden=512,
|
96 |
+
# Speaker_emb + lang_emb
|
97 |
+
speaker_embed_dim=1280,
|
98 |
+
# loss params
|
99 |
+
noise_loss="l1",
|
100 |
+
)
|
models/config/langs.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Dict
|
3 |
+
|
4 |
+
from models.config import PreprocessLangType
|
5 |
+
|
6 |
+
# TODO: now we only support english, but we need to support other languages!
|
7 |
+
SUPPORTED_LANGUAGES = [
|
8 |
+
"bg",
|
9 |
+
"cs",
|
10 |
+
"de",
|
11 |
+
"en",
|
12 |
+
"es",
|
13 |
+
"fr",
|
14 |
+
"ha",
|
15 |
+
"hr",
|
16 |
+
"ko",
|
17 |
+
"pl",
|
18 |
+
"pt",
|
19 |
+
"ru",
|
20 |
+
"sv",
|
21 |
+
"sw",
|
22 |
+
"th",
|
23 |
+
"tr",
|
24 |
+
"uk",
|
25 |
+
"vi",
|
26 |
+
"zh",
|
27 |
+
]
|
28 |
+
|
29 |
+
# Mappings from symbol to numeric ID and vice versa:
|
30 |
+
lang2id = {s: i for i, s in enumerate(SUPPORTED_LANGUAGES)}
|
31 |
+
id2lang = dict(enumerate(SUPPORTED_LANGUAGES))
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class LangItem:
|
35 |
+
r"""A class for storing language information."""
|
36 |
+
|
37 |
+
phonemizer: str
|
38 |
+
phonemizer_espeak: str
|
39 |
+
nemo: str
|
40 |
+
processing_lang_type: PreprocessLangType
|
41 |
+
|
42 |
+
langs_map: Dict[str, LangItem] = {
|
43 |
+
"en": LangItem(
|
44 |
+
phonemizer="en_us",
|
45 |
+
phonemizer_espeak="en-us",
|
46 |
+
nemo="en",
|
47 |
+
processing_lang_type="english_only",
|
48 |
+
),
|
49 |
+
}
|
50 |
+
|
51 |
+
def get_lang_map(lang: str) -> LangItem:
|
52 |
+
r"""Returns a LangItem object for the given language.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
lang (str): The language to get the LangItem for.
|
56 |
+
|
57 |
+
Raises:
|
58 |
+
ValueError: If the language is not supported.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
LangItem: The LangItem object for the given language.
|
62 |
+
"""
|
63 |
+
if lang not in langs_map:
|
64 |
+
raise ValueError(f"Language {lang} is not supported!")
|
65 |
+
return langs_map[lang]
|
models/config/speakers.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from typing import Dict, List
|
3 |
+
|
4 |
+
# Load the ID mapping
|
5 |
+
with open("training/datasets/speaker_id_mapping_libri.json") as f:
|
6 |
+
id_mapping = json.load(f)
|
7 |
+
|
8 |
+
# Create a reverse mapping
|
9 |
+
reverse_mapping: Dict[int, int] = {int(v): int(k) for k, v in id_mapping.items()}
|
10 |
+
|
11 |
+
# Selected for the fine-tuning
|
12 |
+
# train-960 subset of LibriTTS
|
13 |
+
selected_speakers = [
|
14 |
+
574, # Daniel Shorten M train-clean-100
|
15 |
+
242, # J. Hall M train-other-500
|
16 |
+
536, # Robert Flach M train-other-500
|
17 |
+
82, # Andy Minter M train-other-500
|
18 |
+
672, # Stuart Bell M train-other-500
|
19 |
+
315, # Jean Crevier M train-other-500
|
20 |
+
628, # Bryan Ness M train-clean-100
|
21 |
+
61, # John Greenman M train-other-500
|
22 |
+
649, # Scarlett! F train-clean-360
|
23 |
+
105, # Marian Brown F train-clean-360
|
24 |
+
399, # entada F train-clean-360
|
25 |
+
89, # Paula Berinstein F train-clean-360
|
26 |
+
502, # Lee Elliott F train-other-500
|
27 |
+
102, # Maureen S. O'Brien F train-clean-100
|
28 |
+
544, # Miranda Stinson F train-clean-360
|
29 |
+
653, # cucciasv F train-other-500
|
30 |
+
465, # Leonie Rose F train-clean-100
|
31 |
+
96, # Kymm Zuckert F train-other-500
|
32 |
+
447, # Lee Ann Howlett F train-clean-360
|
33 |
+
165, # Elisabeth Shields F train-clean-100
|
34 |
+
430, # Millbeach F train-other-500
|
35 |
+
214, # Scott Splavec M train-clean-100
|
36 |
+
666, # Kelly Dougherty M train-clean-360
|
37 |
+
481, # Scott Sherris M train-clean-360
|
38 |
+
463, # Chris Hughes M train-other-500
|
39 |
+
273, # Andrew Lebrun M train-other-500
|
40 |
+
172, # Harvey Chinn M train-other-500
|
41 |
+
83, # Graham Williams M train-other-500
|
42 |
+
523, # Michael Loftus M train-clean-360
|
43 |
+
38, # Kurt Copeland M train-clean-360
|
44 |
+
248, # fieldsofgold M train-other-500
|
45 |
+
234, # Menno M train-other-500
|
46 |
+
145, # Mr. Baby Man M train-clean-360
|
47 |
+
250, # Quentin M train-clean-360
|
48 |
+
498, # Chris Gladis M train-clean-100
|
49 |
+
123, # Sean McGaughey M train-clean-360
|
50 |
+
171, # Paul Harvey M train-clean-360
|
51 |
+
49, # Kristen McQuillin F train-clean-100
|
52 |
+
588, # Kalynda F train-clean-360
|
53 |
+
117, # Caitlin Kelly F train-clean-360
|
54 |
+
657, # Shannon F train-other-500
|
55 |
+
275, # Zale Schafer (Rose May Chamberlin Memorial Foundat F train-clean-360
|
56 |
+
604, # Anne-Marie F train-other-500
|
57 |
+
64, # Christiane Levesque F train-clean-360
|
58 |
+
685, # Nikki Sullivan F train-clean-100
|
59 |
+
355, # Lana Taylor F train-clean-100
|
60 |
+
185, # Kim Braun F train-clean-360
|
61 |
+
52, # Cori Samuel F train-other-500
|
62 |
+
218, # Joy Chan F train-other-500
|
63 |
+
549, # AmyAG F train-other-500
|
64 |
+
617, # PJ F train-other-500
|
65 |
+
414, # Christabel F train-clean-100
|
66 |
+
382, # Kelli Robinson F train-clean-360
|
67 |
+
76, # ML Cohen M train-other-500
|
68 |
+
176, # Micah Sheppard M train-clean-360
|
69 |
+
233, # mikenkat M train-clean-360
|
70 |
+
390, # JimmyLogan M train-clean-360
|
71 |
+
393, # Tim Lundeen M train-clean-360
|
72 |
+
425, # RedToby M train-clean-360
|
73 |
+
398, # Sam Fold M train-other-500
|
74 |
+
372, # Jim Mullins M train-clean-360
|
75 |
+
99, # Stewart Wills M train-clean-100
|
76 |
+
340, # Nick Gallant M train-clean-100
|
77 |
+
40, # JemmaBlythe F train-other-500
|
78 |
+
118, # Brenda Dayne F train-clean-360
|
79 |
+
640, # David A. Stokely M train-other-500
|
80 |
+
50, # Dan Threetrees M train-clean-360
|
81 |
+
373, # Brooks Seveer M train-clean-360
|
82 |
+
124, # Steve Karafit M train-clean-100
|
83 |
+
314, # Carl Vonnoh, III M train-clean-360
|
84 |
+
531, # Fr. Richard Zeile of Detroit M train-other-500
|
85 |
+
383, # Mike Roop M train-other-500
|
86 |
+
710, # Sheila Morton F train-clean-100
|
87 |
+
450, # Heather Duncan F train-clean-360
|
88 |
+
645, # Micah M train-other-500
|
89 |
+
517, # Madame Tusk F train-other-500
|
90 |
+
479, # Wina Hathaway F train-other-500
|
91 |
+
30, # Ophelia Darcy F train-other-500
|
92 |
+
220, # Tina Tilney F train-clean-360
|
93 |
+
63, # Linda Wilcox F train-other-500
|
94 |
+
283, # Bethany Simpson F train-clean-360
|
95 |
+
644, # Cynthia Zocca F train-clean-360
|
96 |
+
677, # Allyson Hester F train-other-500
|
97 |
+
21, # Kelly Bescherer F train-other-500
|
98 |
+
552, # Mim Ritty F train-clean-100
|
99 |
+
80, # Fox in the Stars F train-clean-100
|
100 |
+
394, # swroot F train-clean-360
|
101 |
+
426, # Megan Stemm-Wade F train-clean-100
|
102 |
+
91, # Chris Goringe M train-other-500
|
103 |
+
108, # Kevin McAsh M train-clean-360
|
104 |
+
130, # Peter of Buckinghamshire England M train-other-500
|
105 |
+
661, # James Gladwin M train-other-500
|
106 |
+
216, # Dave Ranson M train-clean-100
|
107 |
+
164, # Ed Good M train-other-500
|
108 |
+
308, # Eric Connover M train-other-500
|
109 |
+
569, # Arouet M train-clean-360
|
110 |
+
313, # Tim Bulkeley M train-other-500
|
111 |
+
212, # Glen Hallstrom M train-other-500
|
112 |
+
15, # Chip M train-other-500
|
113 |
+
469, # Christian Pecaut M train-clean-360
|
114 |
+
294, # Diana Kiesners F train-clean-360
|
115 |
+
192, # Nocturna F train-clean-100
|
116 |
+
73, # Claire Goget F train-clean-100
|
117 |
+
417, # Kiki Baessell F train-clean-360
|
118 |
+
636, # Matthew Howell F train-other-500
|
119 |
+
36, # chriss the girl F train-other-500
|
120 |
+
668, # Jan Baxter F train-clean-360
|
121 |
+
403, # Igor Teaforay F train-clean-360
|
122 |
+
618, # Linnea F train-other-500
|
123 |
+
596, # Jo F train-other-500
|
124 |
+
499, # Tammy Sanders F train-clean-100
|
125 |
+
207, # Sage Tyrtle F train-other-500
|
126 |
+
1346, # Jeanie F train-other-500
|
127 |
+
1109, # Martin Geeson M train-other-500
|
128 |
+
770, # Pete Williams, Pittsburgh, PA M train-clean-360
|
129 |
+
1247, # Sarah LuAnn F train-clean-100
|
130 |
+
1526, # Mike Harris M train-other-500
|
131 |
+
908, # Quentin Manuel M train-clean-360
|
132 |
+
1183, # Evelyn Clarke F train-other-500
|
133 |
+
1438, # Tom Barron M train-other-500
|
134 |
+
1022, # peac M train-clean-100
|
135 |
+
1603, # Christine Rodriguez F train-clean-360
|
136 |
+
1425, # Jonah Cummings M train-clean-360
|
137 |
+
731, # Priya, India F train-other-500
|
138 |
+
782, # Alec Daitsman M train-clean-360
|
139 |
+
1090, # Termin Dyan M train-other-500
|
140 |
+
995, # Parrot M train-other-500
|
141 |
+
923, # Jane Greensmith F train-clean-360
|
142 |
+
766, # Clive Catterall M train-other-500
|
143 |
+
822, # kristiface F train-clean-360
|
144 |
+
897, # Jan Dawn Doronila F train-clean-360
|
145 |
+
1579, # Linda Velwest F train-clean-360
|
146 |
+
964, # Utek M train-clean-360
|
147 |
+
1414, # Preston Scrape M train-other-500
|
148 |
+
834, # Serin F train-other-500
|
149 |
+
1302, # davidb M train-clean-360
|
150 |
+
1135, # Linda Andrus F train-clean-360
|
151 |
+
1440, # P Moscato F train-clean-360
|
152 |
+
870, # Barbara Bulkeley F train-clean-360
|
153 |
+
1256, # Graeme Dunlop M train-other-500
|
154 |
+
1255, # Daniel Paashaus M train-other-500
|
155 |
+
1157, # Bev J Stevens F train-clean-360
|
156 |
+
934, # Darla F train-other-500
|
157 |
+
1281, # garbageman99 M train-clean-360
|
158 |
+
819, # n8evv M train-clean-360
|
159 |
+
1041, # mjbrichant F train-other-500
|
160 |
+
863, # K Hindall F train-clean-360
|
161 |
+
1303, # kiwafruit F train-clean-100
|
162 |
+
1115, # Rachel Gatwood F train-clean-360
|
163 |
+
1539, # Nathan Jordan M train-other-500
|
164 |
+
1428, # Gary Dzierlenga M train-other-500
|
165 |
+
1049, # Diana Solomon F train-other-500
|
166 |
+
1546, # Carrie Heyes F train-other-500
|
167 |
+
1089, # Bill Ruhsam M train-clean-360
|
168 |
+
1142, # Jonathan Burchard M train-other-500
|
169 |
+
1375, # Frank Adams M train-clean-360
|
170 |
+
881, # mpetranech M train-other-500
|
171 |
+
798, # Wyatt M train-other-500
|
172 |
+
1647, # Patrick Reinhart M train-clean-360
|
173 |
+
1587, # Claudia Wilson F train-clean-360
|
174 |
+
830, # musici123 F train-other-500
|
175 |
+
1592, # jerryB M train-other-500
|
176 |
+
839, # Ben Dutton M train-other-500
|
177 |
+
835, # Rachel Lintern F train-other-500
|
178 |
+
1273, # gmiteva F train-other-500
|
179 |
+
932, # Raerity F train-other-500
|
180 |
+
1108, # Paul McCartan M train-other-500
|
181 |
+
732, # Tysto M train-clean-360
|
182 |
+
781, # Megan Kunkel F train-other-500
|
183 |
+
1555, # Andrew Nelson M train-clean-360
|
184 |
+
1437, # Charles RUHE M train-clean-360
|
185 |
+
1402, # Angel5 F train-other-500
|
186 |
+
963, # MichelleHarris F train-clean-360
|
187 |
+
1181, # J. Rebecca Franklin F train-clean-360
|
188 |
+
818, # Matt Warzel F train-clean-360
|
189 |
+
1285, # Ric F M train-clean-100
|
190 |
+
797, # Chris Jones F train-other-500
|
191 |
+
1505, # Rom Maczka M train-clean-360
|
192 |
+
1214, # David Baldwin M train-clean-360
|
193 |
+
1636, # jessecoy M train-other-500
|
194 |
+
929, # Petra F train-other-500
|
195 |
+
1171, # Roberta Carlisle F train-other-500
|
196 |
+
817, # texttalker M train-clean-360
|
197 |
+
1433, # browneyedgirl32382 F train-clean-360
|
198 |
+
1158, # StarrDog M train-other-500
|
199 |
+
1000, # artos M train-other-500
|
200 |
+
848, # senshisteph F train-other-500
|
201 |
+
1596, # Joyce Couch F train-other-500
|
202 |
+
757, # Roger Melin M train-clean-360
|
203 |
+
1168, # Epistomolus M train-clean-100
|
204 |
+
741, # Nick Marsh M train-other-500
|
205 |
+
1649, # Phineas Redux M train-other-500
|
206 |
+
851, # Jennifer Lott F train-clean-360
|
207 |
+
808, # M. J. Boyle F train-other-500
|
208 |
+
1595, # Matthew Reece M train-clean-360
|
209 |
+
1370, # Savanna Herrold F train-other-500
|
210 |
+
1565, # bryan.peterson M train-other-500
|
211 |
+
944, # Sarafina Suransky F train-other-500
|
212 |
+
1268, # A. Janelle Risa F train-clean-100
|
213 |
+
771, # Isosceles F train-clean-360
|
214 |
+
752, # Cat Schirf F train-other-500
|
215 |
+
800, # Jack Farrell M train-clean-360
|
216 |
+
1005, # Beatrice F train-other-500
|
217 |
+
1229, # RoseA F train-clean-360
|
218 |
+
943, # Matthew C. Heckel M train-clean-360
|
219 |
+
891, # anoldfashiongirl F train-other-500
|
220 |
+
1226, # serenitylee F train-clean-360
|
221 |
+
1253, # Caroline Shapiro F train-other-500
|
222 |
+
1204, # Dale A. Bade F train-clean-360
|
223 |
+
1230, # Troy Bond M train-other-500
|
224 |
+
791, # David Kleparek M train-clean-100
|
225 |
+
1184, # Joseph Couves F train-other-500
|
226 |
+
1001, # TriciaG F train-clean-360
|
227 |
+
804, # FirstKnight F train-other-500
|
228 |
+
1641, # Kirsten Wever F train-clean-100
|
229 |
+
1259, # Megan Argo F train-other-500
|
230 |
+
1231, # Abigail Bartels F train-other-500
|
231 |
+
1410, # Zachary Johnson M train-other-500
|
232 |
+
1030, # Ancient mariner M train-other-500
|
233 |
+
1093, # Katie Riley F train-clean-360
|
234 |
+
1254, # Rosie F train-clean-100
|
235 |
+
1365, # Eric Leach M train-clean-360
|
236 |
+
831, # David Federman M train-other-500
|
237 |
+
1989, # Joannemmp F train-clean-100
|
238 |
+
1707, # David Olson M train-other-500
|
239 |
+
1849, # Fred DeBerardinis M train-clean-100
|
240 |
+
1808, # Rebecca King F train-clean-360
|
241 |
+
2292, # Arnold M train-clean-100
|
242 |
+
2415, # Patrick Eaton M train-other-500
|
243 |
+
1656, # Sharon Omi F train-clean-100
|
244 |
+
1676, # Gargoyle M train-clean-360
|
245 |
+
1881, # Julienne F train-other-500
|
246 |
+
2036, # T.K. Kirven F train-other-500
|
247 |
+
1761, # EliMarieHK F train-other-500
|
248 |
+
2115, # Pete Milan M train-other-500
|
249 |
+
1803, # Susan Hanfield F train-clean-360
|
250 |
+
1798, # C. L. W. Rollins F train-other-500
|
251 |
+
1723, # Rachel Bossier F train-other-500
|
252 |
+
2341, # Haili F train-other-500
|
253 |
+
2468, # Erin Schellhase F train-clean-360
|
254 |
+
1725, # Ruth Kidson F train-other-500
|
255 |
+
2010, # Peggy F train-other-500
|
256 |
+
1853, # Ron Altman M train-other-500
|
257 |
+
2359, # Doug Reed M train-other-500
|
258 |
+
2422, # Jude Somers F train-clean-360
|
259 |
+
2234, # Coreena F train-other-500
|
260 |
+
2156, # C F de Rosset F train-other-500
|
261 |
+
2483, # Tammy Porter F train-clean-360
|
262 |
+
1781, # humanode M train-clean-360
|
263 |
+
2275, # NatalieOram F train-other-500
|
264 |
+
2390, # sdaeley17 M train-clean-360
|
265 |
+
2314, # Cheri Jordan F train-clean-360
|
266 |
+
2413, # Joanne Rochon F train-clean-360
|
267 |
+
1697, # Lonelle Yoder F train-other-500
|
268 |
+
1718, # Caroline Driggs F train-other-500
|
269 |
+
2387, # Brett G. Hirsch M train-other-500
|
270 |
+
2331, # Madam Fickle F train-clean-100
|
271 |
+
1783, # Sarah Crampton F train-clean-360
|
272 |
+
2397, # Rebecca Braunert-Plunkett F train-other-500
|
273 |
+
2357, # William Gavula M train-other-500
|
274 |
+
1670, # dmbrought M train-other-500
|
275 |
+
1987, # Andrew White M train-clean-360
|
276 |
+
1755, # Yvonne Smith F train-clean-360
|
277 |
+
2192, # Sammy Bean M train-other-500
|
278 |
+
1716, # EyeBones F train-clean-360
|
279 |
+
1828, # David Wales M train-clean-100
|
280 |
+
2251, # Wiley Combs M train-clean-360
|
281 |
+
2065, # Muriel F train-clean-360
|
282 |
+
2017, # CaprishaPage F train-other-500
|
283 |
+
1947, # Barbara Edelman F train-other-500
|
284 |
+
1738, # Lois C. Johnson F train-clean-360
|
285 |
+
1791, # David Cummings M train-clean-360
|
286 |
+
2045, # Linda Ciano F train-clean-360
|
287 |
+
2452, # Walt Allan M train-other-500
|
288 |
+
2040, # MJ Franck F train-other-500
|
289 |
+
1831, # Nigel Boydell M train-other-500
|
290 |
+
2371, # Alexander Hatton M train-clean-360
|
291 |
+
1954, # Szindbad M train-other-500
|
292 |
+
1836, # Kendall Ashyby F train-other-500
|
293 |
+
2436, # josembi M train-other-500
|
294 |
+
2383, # Emma Joyce F train-other-500
|
295 |
+
2278, # Jake Woldstad M train-clean-360
|
296 |
+
1741, # anjieliu F train-other-500
|
297 |
+
1857, # Amanda Friday F train-clean-360
|
298 |
+
2370, # gloriousjob M train-clean-360
|
299 |
+
1907, # Snapdragon F train-other-500
|
300 |
+
2225, # nomorejeffs M train-clean-360
|
301 |
+
2439, # KHand F train-clean-360
|
302 |
+
2239, # amaskill M train-other-500
|
303 |
+
2007, # Art Leung F train-clean-360
|
304 |
+
2283, # Tim Cote M train-clean-360
|
305 |
+
1712, # Steve Belleguelle M train-other-500
|
306 |
+
2094, # Meg Cowan F train-clean-360
|
307 |
+
1772, # haggisreflux M train-clean-360
|
308 |
+
2317, # helengraves F train-clean-360
|
309 |
+
2241, # Steven Reynolds M train-clean-360
|
310 |
+
2011, # pekein M train-clean-360
|
311 |
+
1826, # John Hoerr M train-clean-100
|
312 |
+
1695, # Tina Nuzzi F train-clean-360
|
313 |
+
2451, # DeanOBuchanan M train-clean-100
|
314 |
+
1771, # Chelsea S. F train-other-500
|
315 |
+
2441, # Alison Stewart F train-clean-360
|
316 |
+
1745, # Janet F train-clean-360
|
317 |
+
2358, # Betty Perry F train-clean-360
|
318 |
+
2197, # Mike Nelson M train-other-500
|
319 |
+
2014, # Eden Rea-Hedrick F train-other-500
|
320 |
+
1672, # Mike Wajda M train-clean-360
|
321 |
+
2394, # TinaNygard2 F train-clean-100
|
322 |
+
1657, # alwpoe M train-clean-360
|
323 |
+
1728, # Vinnie Tesla M train-clean-360
|
324 |
+
1805, # Vince Dee M train-clean-100
|
325 |
+
2143, # Suebee F train-clean-360
|
326 |
+
2084, # Eberle Thomas M train-other-500
|
327 |
+
2479, # Daisy Flaim F train-clean-100
|
328 |
+
2152, # Kristel Tretter F train-clean-360
|
329 |
+
2268, # Greg Giordano M train-clean-360
|
330 |
+
1839, # James E. Carson M train-clean-360
|
331 |
+
2056, # acloward M train-clean-360
|
332 |
+
1814, # polkadotish F train-other-500
|
333 |
+
2127, # Ron Lockhart M train-clean-100
|
334 |
+
2114, # Larry Beasley M train-clean-360
|
335 |
+
2469, # Kevin Owens M train-clean-100
|
336 |
+
2447, # Deena Rhoads F train-clean-360
|
337 |
+
1724, # Juliana M. F train-clean-360
|
338 |
+
1869, # NastassiaS F train-other-500
|
339 |
+
2209, # Samantha J Gubitz F train-clean-360
|
340 |
+
2171, # Carolyne F train-other-500
|
341 |
+
2403, # Ian Quinlan M train-clean-360
|
342 |
+
2032, # doonaboon M train-other-500
|
343 |
+
2075, # Joy S Grape F train-clean-360
|
344 |
+
]
|
345 |
+
|
346 |
+
# Convert the model speaker IDs back to the dataset speaker IDs
|
347 |
+
# dataset_speaker_ids: List[int] = [
|
348 |
+
# reverse_mapping.get(int(speaker_id)) for speaker_id in selected_speakers
|
349 |
+
# ] # type: ignore
|
350 |
+
|
351 |
+
# Save the selected speaker IDs
|
352 |
+
latest_selection: List[int] = [
|
353 |
+
574,
|
354 |
+
649,
|
355 |
+
102,
|
356 |
+
544,
|
357 |
+
653,
|
358 |
+
666,
|
359 |
+
481,
|
360 |
+
248,
|
361 |
+
123,
|
362 |
+
171,
|
363 |
+
604,
|
364 |
+
64,
|
365 |
+
685,
|
366 |
+
52,
|
367 |
+
218,
|
368 |
+
617,
|
369 |
+
414,
|
370 |
+
425,
|
371 |
+
118,
|
372 |
+
50,
|
373 |
+
373,
|
374 |
+
314,
|
375 |
+
710,
|
376 |
+
450,
|
377 |
+
645,
|
378 |
+
517,
|
379 |
+
63,
|
380 |
+
644,
|
381 |
+
80,
|
382 |
+
394,
|
383 |
+
91,
|
384 |
+
108,
|
385 |
+
661,
|
386 |
+
164,
|
387 |
+
308,
|
388 |
+
469,
|
389 |
+
192,
|
390 |
+
417,
|
391 |
+
668,
|
392 |
+
596,
|
393 |
+
1109,
|
394 |
+
770,
|
395 |
+
1247,
|
396 |
+
908,
|
397 |
+
782,
|
398 |
+
995,
|
399 |
+
923,
|
400 |
+
822,
|
401 |
+
1414,
|
402 |
+
1302,
|
403 |
+
1135,
|
404 |
+
1440,
|
405 |
+
1281,
|
406 |
+
1041,
|
407 |
+
1142,
|
408 |
+
881,
|
409 |
+
835,
|
410 |
+
932,
|
411 |
+
732,
|
412 |
+
1402,
|
413 |
+
929,
|
414 |
+
817,
|
415 |
+
1433,
|
416 |
+
1596,
|
417 |
+
851,
|
418 |
+
1370,
|
419 |
+
1204,
|
420 |
+
1230,
|
421 |
+
791,
|
422 |
+
804,
|
423 |
+
1808,
|
424 |
+
1656,
|
425 |
+
2115,
|
426 |
+
2341,
|
427 |
+
2468,
|
428 |
+
1718,
|
429 |
+
1783,
|
430 |
+
1755,
|
431 |
+
2192,
|
432 |
+
2371,
|
433 |
+
1836,
|
434 |
+
1741,
|
435 |
+
2439,
|
436 |
+
1712,
|
437 |
+
2197,
|
438 |
+
1728,
|
439 |
+
1805,
|
440 |
+
2143,
|
441 |
+
2084,
|
442 |
+
2056,
|
443 |
+
2114,
|
444 |
+
2447,
|
445 |
+
1869,
|
446 |
+
2209,
|
447 |
+
]
|
448 |
+
|
449 |
+
dataset_speaker_ids: List[int] = [
|
450 |
+
reverse_mapping.get(int(speaker_id)) for speaker_id in latest_selection
|
451 |
+
] # type: ignore
|
models/config/stats.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pitch": [85.0, 255.0]
|
3 |
+
}
|
models/config/symbols.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NOTE: for the backward comp.
|
2 |
+
# Prepare the phonemes list and dictionary for the embedding
|
3 |
+
phoneme_basic_symbols = [
|
4 |
+
# IPA symbols
|
5 |
+
"a",
|
6 |
+
"b",
|
7 |
+
"d",
|
8 |
+
"e",
|
9 |
+
"f",
|
10 |
+
"g",
|
11 |
+
"h",
|
12 |
+
"i",
|
13 |
+
"j",
|
14 |
+
"k",
|
15 |
+
"l",
|
16 |
+
"m",
|
17 |
+
"n",
|
18 |
+
"o",
|
19 |
+
"p",
|
20 |
+
"r",
|
21 |
+
"s",
|
22 |
+
"t",
|
23 |
+
"u",
|
24 |
+
"v",
|
25 |
+
"w",
|
26 |
+
"x",
|
27 |
+
"y",
|
28 |
+
"z",
|
29 |
+
"æ",
|
30 |
+
"ç",
|
31 |
+
"ð",
|
32 |
+
"ø",
|
33 |
+
"ŋ",
|
34 |
+
"œ",
|
35 |
+
"ɐ",
|
36 |
+
"ɑ",
|
37 |
+
"ɔ",
|
38 |
+
"ə",
|
39 |
+
"ɛ",
|
40 |
+
"ɝ",
|
41 |
+
"ɹ",
|
42 |
+
"ɡ",
|
43 |
+
"ɪ",
|
44 |
+
"ʁ",
|
45 |
+
"ʃ",
|
46 |
+
"ʊ",
|
47 |
+
"ʌ",
|
48 |
+
"ʏ",
|
49 |
+
"ʒ",
|
50 |
+
"ʔ",
|
51 |
+
"ˈ",
|
52 |
+
"ˌ",
|
53 |
+
"ː",
|
54 |
+
"̃",
|
55 |
+
"̍",
|
56 |
+
"̥",
|
57 |
+
"̩",
|
58 |
+
"̯",
|
59 |
+
"͡",
|
60 |
+
"θ",
|
61 |
+
# Punctuation
|
62 |
+
"!",
|
63 |
+
"?",
|
64 |
+
",",
|
65 |
+
".",
|
66 |
+
"-",
|
67 |
+
":",
|
68 |
+
";",
|
69 |
+
'"',
|
70 |
+
"'",
|
71 |
+
"(",
|
72 |
+
")",
|
73 |
+
" ",
|
74 |
+
]
|
75 |
+
|
76 |
+
# TODO: add support for other languages
|
77 |
+
# _letters_accented = "µßàáâäåæçèéêëìíîïñòóôöùúûüąćęłńœśşźżƒ"
|
78 |
+
# _letters_cyrilic = "абвгдежзийклмнопрстуфхцчшщъыьэюяёєіїґӧ"
|
79 |
+
# _pad = "$"
|
80 |
+
|
81 |
+
# This is the list of symbols from StyledTTS2
|
82 |
+
_punctuation = ';:,.!?¡¿—…"«»“”'
|
83 |
+
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
84 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
85 |
+
|
86 |
+
# Combine all symbols
|
87 |
+
symbols = list(_punctuation) + list(_letters) + list(_letters_ipa)
|
88 |
+
|
89 |
+
# Add only unique symbols
|
90 |
+
phones = phoneme_basic_symbols + [
|
91 |
+
symbol for symbol in symbols if symbol not in phoneme_basic_symbols
|
92 |
+
]
|
93 |
+
|
94 |
+
# TODO: Need to understand how to replace this
|
95 |
+
# len(phones) == 184, leave it as is at this point
|
96 |
+
symbols = [str(el) for el in range(256)]
|
97 |
+
symbol2id = {s: i for i, s in enumerate(symbols)}
|
98 |
+
id2symbol = {i: s for i, s in enumerate(symbols)}
|
models/delightful_hifi.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from lightning.pytorch.core import LightningModule
|
2 |
+
from torch import Tensor
|
3 |
+
|
4 |
+
from models.config import PreprocessingConfigHifiGAN as PreprocessingConfig
|
5 |
+
from models.tts.delightful_tts.delightful_tts import DelightfulTTS
|
6 |
+
from models.vocoder.hifigan import HifiGan
|
7 |
+
|
8 |
+
|
9 |
+
class DelightfulHiFi(LightningModule):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
delightful_checkpoint_path: str,
|
13 |
+
hifi_checkpoint_path: str,
|
14 |
+
lang: str = "en",
|
15 |
+
sampling_rate: int = 44100,
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
self.sampling_rate = sampling_rate
|
20 |
+
|
21 |
+
self.preprocess_config = PreprocessingConfig(
|
22 |
+
"multilingual",
|
23 |
+
sampling_rate=sampling_rate,
|
24 |
+
)
|
25 |
+
|
26 |
+
self.delightful_tts = DelightfulTTS.load_from_checkpoint(
|
27 |
+
delightful_checkpoint_path,
|
28 |
+
# kwargs to be used in the model
|
29 |
+
lang=lang,
|
30 |
+
sampling_rate=sampling_rate,
|
31 |
+
preprocess_config=self.preprocess_config,
|
32 |
+
)
|
33 |
+
self.delightful_tts.freeze()
|
34 |
+
|
35 |
+
self.hifi_gan = HifiGan.load_from_checkpoint(
|
36 |
+
hifi_checkpoint_path,
|
37 |
+
)
|
38 |
+
self.hifi_gan.freeze()
|
39 |
+
|
40 |
+
def forward(
|
41 |
+
self,
|
42 |
+
text: str,
|
43 |
+
speaker_idx: Tensor,
|
44 |
+
) -> Tensor:
|
45 |
+
r"""Performs a forward pass through the AcousticModel.
|
46 |
+
This code must be run only with the loaded weights from the checkpoint!
|
47 |
+
|
48 |
+
Args:
|
49 |
+
text (str): The input text.
|
50 |
+
speaker_idx (Tensor): The index of the speaker.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
Tensor: The generated waveform with hifi-gan.
|
54 |
+
"""
|
55 |
+
mel_pred = self.delightful_tts.forward(text, speaker_idx)
|
56 |
+
|
57 |
+
wav = self.hifi_gan.generator.forward(mel_pred)
|
58 |
+
|
59 |
+
return wav
|
models/delightful_univnet.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from lightning.pytorch.core import LightningModule
|
2 |
+
from torch import Tensor
|
3 |
+
|
4 |
+
from models.config import AcousticENModelConfig
|
5 |
+
from models.config import PreprocessingConfigUnivNet as PreprocessingConfig
|
6 |
+
from models.tts.delightful_tts.delightful_tts import DelightfulTTS
|
7 |
+
from models.vocoder.univnet import UnivNet
|
8 |
+
|
9 |
+
|
10 |
+
class DelightfulUnivnet(LightningModule):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
delightful_checkpoint_path: str,
|
14 |
+
lang: str = "en",
|
15 |
+
sampling_rate: int = 22050,
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
self.sampling_rate = sampling_rate
|
20 |
+
|
21 |
+
self.preprocess_config = PreprocessingConfig(
|
22 |
+
"english_only",
|
23 |
+
sampling_rate=sampling_rate,
|
24 |
+
)
|
25 |
+
|
26 |
+
self.delightful_tts = DelightfulTTS.load_from_checkpoint(
|
27 |
+
delightful_checkpoint_path,
|
28 |
+
strict=False,
|
29 |
+
# kwargs to be used in the model
|
30 |
+
preprocess_config=self.preprocess_config,
|
31 |
+
model_config=AcousticENModelConfig(),
|
32 |
+
lang=lang,
|
33 |
+
sampling_rate=sampling_rate,
|
34 |
+
)
|
35 |
+
self.delightful_tts.freeze()
|
36 |
+
|
37 |
+
# Don't need to use separated checkpoint, prev checkpoint used
|
38 |
+
self.univnet = UnivNet()
|
39 |
+
self.univnet.freeze()
|
40 |
+
|
41 |
+
def forward(
|
42 |
+
self,
|
43 |
+
text: str,
|
44 |
+
speaker_idx: Tensor,
|
45 |
+
) -> Tensor:
|
46 |
+
r"""Performs a forward pass through the AcousticModel.
|
47 |
+
This code must be run only with the loaded weights from the checkpoint!
|
48 |
+
|
49 |
+
Args:
|
50 |
+
text (str): The input text.
|
51 |
+
speaker_idx (Tensor): The index of the speaker.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
Tensor: The generated waveform with hifi-gan.
|
55 |
+
"""
|
56 |
+
mel_pred = self.delightful_tts.forward(text, speaker_idx)
|
57 |
+
|
58 |
+
wav = self.univnet.forward(mel_pred)
|
59 |
+
|
60 |
+
return wav
|
models/generators/__init__.py
ADDED
File without changes
|
models/generators/delightful_univnet.py
ADDED
@@ -0,0 +1,547 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from lightning.pytorch.core import LightningModule
|
4 |
+
import torch
|
5 |
+
from torch.optim import AdamW, Optimizer, swa_utils
|
6 |
+
from torch.optim.lr_scheduler import ExponentialLR
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
|
9 |
+
from models.config import (
|
10 |
+
AcousticENModelConfig,
|
11 |
+
AcousticFinetuningConfig,
|
12 |
+
AcousticPretrainingConfig,
|
13 |
+
AcousticTrainingConfig,
|
14 |
+
VocoderFinetuningConfig,
|
15 |
+
VocoderModelConfig,
|
16 |
+
VocoderPretrainingConfig,
|
17 |
+
VoicoderTrainingConfig,
|
18 |
+
get_lang_map,
|
19 |
+
lang2id,
|
20 |
+
)
|
21 |
+
from models.config import (
|
22 |
+
PreprocessingConfigUnivNet as PreprocessingConfig,
|
23 |
+
)
|
24 |
+
from models.helpers.dataloaders import train_dataloader
|
25 |
+
from models.helpers.tools import get_mask_from_lengths
|
26 |
+
|
27 |
+
# Models
|
28 |
+
from models.tts.delightful_tts.acoustic_model import AcousticModel
|
29 |
+
from models.vocoder.univnet.discriminator import Discriminator
|
30 |
+
from models.vocoder.univnet.generator import Generator
|
31 |
+
from training.loss import FastSpeech2LossGen, UnivnetLoss
|
32 |
+
from training.preprocess.normalize_text import NormalizeText
|
33 |
+
|
34 |
+
# Updated version of the tokenizer
|
35 |
+
from training.preprocess.tokenizer_ipa_espeak import TokenizerIpaEspeak as TokenizerIPA
|
36 |
+
|
37 |
+
|
38 |
+
class DelightfulUnivnet(LightningModule):
|
39 |
+
r"""DEPRECATED: This idea is basically wrong. The model should synthesis pretty well mel spectrograms and then use them to generate the waveform based on the good quality mel-spec.
|
40 |
+
|
41 |
+
Trainer for the acoustic model.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
fine_tuning (bool, optional): Whether to use fine-tuning mode or not. Defaults to False.
|
45 |
+
lang (str): Language of the dataset.
|
46 |
+
n_speakers (int): Number of speakers in the dataset.generation during training.
|
47 |
+
batch_size (int): The batch size.
|
48 |
+
acc_grad_steps (int): The number of gradient accumulation steps.
|
49 |
+
swa_steps (int): The number of steps for the SWA update.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
fine_tuning: bool = True,
|
55 |
+
lang: str = "en",
|
56 |
+
n_speakers: int = 5392,
|
57 |
+
batch_size: int = 12,
|
58 |
+
acc_grad_steps: int = 5,
|
59 |
+
swa_steps: int = 1000,
|
60 |
+
):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
# Switch to manual optimization
|
64 |
+
self.automatic_optimization = False
|
65 |
+
self.acc_grad_steps = acc_grad_steps
|
66 |
+
self.swa_steps = swa_steps
|
67 |
+
|
68 |
+
self.lang = lang
|
69 |
+
self.fine_tuning = fine_tuning
|
70 |
+
self.batch_size = batch_size
|
71 |
+
|
72 |
+
lang_map = get_lang_map(lang)
|
73 |
+
normilize_text_lang = lang_map.nemo
|
74 |
+
|
75 |
+
self.tokenizer = TokenizerIPA(lang)
|
76 |
+
self.normilize_text = NormalizeText(normilize_text_lang)
|
77 |
+
|
78 |
+
# Acoustic model
|
79 |
+
self.train_config_acoustic: AcousticTrainingConfig
|
80 |
+
|
81 |
+
if self.fine_tuning:
|
82 |
+
self.train_config_acoustic = AcousticFinetuningConfig()
|
83 |
+
else:
|
84 |
+
self.train_config_acoustic = AcousticPretrainingConfig()
|
85 |
+
|
86 |
+
self.preprocess_config = PreprocessingConfig("english_only")
|
87 |
+
self.model_config_acoustic = AcousticENModelConfig()
|
88 |
+
|
89 |
+
# TODO: fix the arguments!
|
90 |
+
self.acoustic_model = AcousticModel(
|
91 |
+
preprocess_config=self.preprocess_config,
|
92 |
+
model_config=self.model_config_acoustic,
|
93 |
+
# NOTE: this parameter may be hyperparameter that you can define based on the demands
|
94 |
+
n_speakers=n_speakers,
|
95 |
+
)
|
96 |
+
|
97 |
+
# Initialize SWA
|
98 |
+
self.swa_averaged_acoustic = swa_utils.AveragedModel(self.acoustic_model)
|
99 |
+
|
100 |
+
# NOTE: in case of training from 0 bin_warmup should be True!
|
101 |
+
self.loss_acoustic = FastSpeech2LossGen(bin_warmup=False)
|
102 |
+
|
103 |
+
# Vocoder models
|
104 |
+
self.model_config_vocoder = VocoderModelConfig()
|
105 |
+
|
106 |
+
self.train_config: VoicoderTrainingConfig = (
|
107 |
+
VocoderFinetuningConfig() if fine_tuning else VocoderPretrainingConfig()
|
108 |
+
)
|
109 |
+
|
110 |
+
self.univnet = Generator(
|
111 |
+
model_config=self.model_config_vocoder,
|
112 |
+
preprocess_config=self.preprocess_config,
|
113 |
+
)
|
114 |
+
self.swa_averaged_univnet = swa_utils.AveragedModel(self.univnet)
|
115 |
+
|
116 |
+
self.discriminator = Discriminator(model_config=self.model_config_vocoder)
|
117 |
+
self.swa_averaged_discriminator = swa_utils.AveragedModel(self.discriminator)
|
118 |
+
|
119 |
+
self.loss_univnet = UnivnetLoss()
|
120 |
+
|
121 |
+
def forward(
|
122 |
+
self, text: str, speaker_idx: torch.Tensor, lang: str = "en"
|
123 |
+
) -> torch.Tensor:
|
124 |
+
r"""Performs a forward pass through the AcousticModel.
|
125 |
+
This code must be run only with the loaded weights from the checkpoint!
|
126 |
+
|
127 |
+
Args:
|
128 |
+
text (str): The input text.
|
129 |
+
speaker_idx (torch.Tensor): The index of the speaker.
|
130 |
+
lang (str): The language.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
torch.Tensor: The output of the AcousticModel.
|
134 |
+
"""
|
135 |
+
normalized_text = self.normilize_text(text)
|
136 |
+
_, phones = self.tokenizer(normalized_text)
|
137 |
+
|
138 |
+
# Convert to tensor
|
139 |
+
x = torch.tensor(
|
140 |
+
phones,
|
141 |
+
dtype=torch.int,
|
142 |
+
device=speaker_idx.device,
|
143 |
+
).unsqueeze(0)
|
144 |
+
|
145 |
+
speakers = speaker_idx.repeat(x.shape[1]).unsqueeze(0)
|
146 |
+
|
147 |
+
langs = (
|
148 |
+
torch.tensor(
|
149 |
+
[lang2id[lang]],
|
150 |
+
dtype=torch.int,
|
151 |
+
device=speaker_idx.device,
|
152 |
+
)
|
153 |
+
.repeat(x.shape[1])
|
154 |
+
.unsqueeze(0)
|
155 |
+
)
|
156 |
+
|
157 |
+
y_pred = self.acoustic_model.forward(
|
158 |
+
x=x,
|
159 |
+
speakers=speakers,
|
160 |
+
langs=langs,
|
161 |
+
)
|
162 |
+
|
163 |
+
mel_lens = torch.tensor(
|
164 |
+
[y_pred.shape[2]],
|
165 |
+
dtype=torch.int32,
|
166 |
+
device=y_pred.device,
|
167 |
+
)
|
168 |
+
|
169 |
+
wav = self.univnet.infer(y_pred, mel_lens)
|
170 |
+
|
171 |
+
return wav
|
172 |
+
|
173 |
+
# TODO: don't forget about torch.no_grad() !
|
174 |
+
# default used by the Trainer
|
175 |
+
# trainer = Trainer(inference_mode=True)
|
176 |
+
# Use `torch.no_grad` instead
|
177 |
+
# trainer = Trainer(inference_mode=False)
|
178 |
+
def training_step(self, batch: List, batch_idx: int):
|
179 |
+
r"""Performs a training step for the model.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
batch (List): The batch of data for training. The batch should contain:
|
183 |
+
- ids: List of indexes.
|
184 |
+
- raw_texts: Raw text inputs.
|
185 |
+
- speakers: Speaker identities.
|
186 |
+
- texts: Text inputs.
|
187 |
+
- src_lens: Lengths of the source sequences.
|
188 |
+
- mels: Mel spectrogram targets.
|
189 |
+
- pitches: Pitch targets.
|
190 |
+
- pitches_stat: Statistics of the pitches.
|
191 |
+
- mel_lens: Lengths of the mel spectrograms.
|
192 |
+
- langs: Language identities.
|
193 |
+
- attn_priors: Prior attention weights.
|
194 |
+
- wavs: Waveform targets.
|
195 |
+
- energies: Energy targets.
|
196 |
+
batch_idx (int): Index of the batch.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
- 'loss': The total loss for the training step.
|
200 |
+
"""
|
201 |
+
(
|
202 |
+
_,
|
203 |
+
_,
|
204 |
+
speakers,
|
205 |
+
texts,
|
206 |
+
src_lens,
|
207 |
+
mels,
|
208 |
+
pitches,
|
209 |
+
_,
|
210 |
+
mel_lens,
|
211 |
+
langs,
|
212 |
+
attn_priors,
|
213 |
+
audio,
|
214 |
+
energies,
|
215 |
+
) = batch
|
216 |
+
|
217 |
+
#####################################
|
218 |
+
## Acoustic model train step ##
|
219 |
+
#####################################
|
220 |
+
|
221 |
+
outputs = self.acoustic_model.forward_train(
|
222 |
+
x=texts,
|
223 |
+
speakers=speakers,
|
224 |
+
src_lens=src_lens,
|
225 |
+
mels=mels,
|
226 |
+
mel_lens=mel_lens,
|
227 |
+
pitches=pitches,
|
228 |
+
langs=langs,
|
229 |
+
attn_priors=attn_priors,
|
230 |
+
energies=energies,
|
231 |
+
)
|
232 |
+
|
233 |
+
y_pred = outputs["y_pred"]
|
234 |
+
log_duration_prediction = outputs["log_duration_prediction"]
|
235 |
+
p_prosody_ref = outputs["p_prosody_ref"]
|
236 |
+
p_prosody_pred = outputs["p_prosody_pred"]
|
237 |
+
pitch_prediction = outputs["pitch_prediction"]
|
238 |
+
energy_pred = outputs["energy_pred"]
|
239 |
+
energy_target = outputs["energy_target"]
|
240 |
+
|
241 |
+
src_mask = get_mask_from_lengths(src_lens)
|
242 |
+
mel_mask = get_mask_from_lengths(mel_lens)
|
243 |
+
|
244 |
+
(
|
245 |
+
acc_total_loss,
|
246 |
+
acc_mel_loss,
|
247 |
+
acc_ssim_loss,
|
248 |
+
acc_duration_loss,
|
249 |
+
acc_u_prosody_loss,
|
250 |
+
acc_p_prosody_loss,
|
251 |
+
acc_pitch_loss,
|
252 |
+
acc_ctc_loss,
|
253 |
+
acc_bin_loss,
|
254 |
+
acc_energy_loss,
|
255 |
+
) = self.loss_acoustic.forward(
|
256 |
+
src_masks=src_mask,
|
257 |
+
mel_masks=mel_mask,
|
258 |
+
mel_targets=mels,
|
259 |
+
mel_predictions=y_pred,
|
260 |
+
log_duration_predictions=log_duration_prediction,
|
261 |
+
u_prosody_ref=outputs["u_prosody_ref"],
|
262 |
+
u_prosody_pred=outputs["u_prosody_pred"],
|
263 |
+
p_prosody_ref=p_prosody_ref,
|
264 |
+
p_prosody_pred=p_prosody_pred,
|
265 |
+
pitch_predictions=pitch_prediction,
|
266 |
+
p_targets=outputs["pitch_target"],
|
267 |
+
durations=outputs["attn_hard_dur"],
|
268 |
+
attn_logprob=outputs["attn_logprob"],
|
269 |
+
attn_soft=outputs["attn_soft"],
|
270 |
+
attn_hard=outputs["attn_hard"],
|
271 |
+
src_lens=src_lens,
|
272 |
+
mel_lens=mel_lens,
|
273 |
+
energy_pred=energy_pred,
|
274 |
+
energy_target=energy_target,
|
275 |
+
step=self.trainer.global_step,
|
276 |
+
)
|
277 |
+
|
278 |
+
self.log(
|
279 |
+
"acc_total_loss", acc_total_loss, sync_dist=True, batch_size=self.batch_size
|
280 |
+
)
|
281 |
+
self.log(
|
282 |
+
"acc_mel_loss", acc_mel_loss, sync_dist=True, batch_size=self.batch_size
|
283 |
+
)
|
284 |
+
self.log(
|
285 |
+
"acc_ssim_loss", acc_ssim_loss, sync_dist=True, batch_size=self.batch_size
|
286 |
+
)
|
287 |
+
self.log(
|
288 |
+
"acc_duration_loss",
|
289 |
+
acc_duration_loss,
|
290 |
+
sync_dist=True,
|
291 |
+
batch_size=self.batch_size,
|
292 |
+
)
|
293 |
+
self.log(
|
294 |
+
"acc_u_prosody_loss",
|
295 |
+
acc_u_prosody_loss,
|
296 |
+
sync_dist=True,
|
297 |
+
batch_size=self.batch_size,
|
298 |
+
)
|
299 |
+
self.log(
|
300 |
+
"acc_p_prosody_loss",
|
301 |
+
acc_p_prosody_loss,
|
302 |
+
sync_dist=True,
|
303 |
+
batch_size=self.batch_size,
|
304 |
+
)
|
305 |
+
self.log(
|
306 |
+
"acc_pitch_loss", acc_pitch_loss, sync_dist=True, batch_size=self.batch_size
|
307 |
+
)
|
308 |
+
self.log(
|
309 |
+
"acc_ctc_loss", acc_ctc_loss, sync_dist=True, batch_size=self.batch_size
|
310 |
+
)
|
311 |
+
self.log(
|
312 |
+
"acc_bin_loss", acc_bin_loss, sync_dist=True, batch_size=self.batch_size
|
313 |
+
)
|
314 |
+
self.log(
|
315 |
+
"acc_energy_loss",
|
316 |
+
acc_energy_loss,
|
317 |
+
sync_dist=True,
|
318 |
+
batch_size=self.batch_size,
|
319 |
+
)
|
320 |
+
|
321 |
+
#####################################
|
322 |
+
## Univnet model train step ##
|
323 |
+
#####################################
|
324 |
+
fake_audio = self.univnet.forward(y_pred)
|
325 |
+
|
326 |
+
res_fake, period_fake = self.discriminator(fake_audio.detach())
|
327 |
+
res_real, period_real = self.discriminator(audio)
|
328 |
+
|
329 |
+
(
|
330 |
+
voc_total_loss_gen,
|
331 |
+
voc_total_loss_disc,
|
332 |
+
voc_stft_loss,
|
333 |
+
voc_score_loss,
|
334 |
+
voc_esr_loss,
|
335 |
+
voc_snr_loss,
|
336 |
+
) = self.loss_univnet.forward(
|
337 |
+
audio,
|
338 |
+
fake_audio,
|
339 |
+
res_fake,
|
340 |
+
period_fake,
|
341 |
+
res_real,
|
342 |
+
period_real,
|
343 |
+
)
|
344 |
+
|
345 |
+
self.log(
|
346 |
+
"voc_total_loss_gen",
|
347 |
+
voc_total_loss_gen,
|
348 |
+
sync_dist=True,
|
349 |
+
batch_size=self.batch_size,
|
350 |
+
)
|
351 |
+
self.log(
|
352 |
+
"voc_total_loss_disc",
|
353 |
+
voc_total_loss_disc,
|
354 |
+
sync_dist=True,
|
355 |
+
batch_size=self.batch_size,
|
356 |
+
)
|
357 |
+
self.log(
|
358 |
+
"voc_stft_loss", voc_stft_loss, sync_dist=True, batch_size=self.batch_size
|
359 |
+
)
|
360 |
+
self.log(
|
361 |
+
"voc_score_loss", voc_score_loss, sync_dist=True, batch_size=self.batch_size
|
362 |
+
)
|
363 |
+
self.log(
|
364 |
+
"voc_esr_loss", voc_esr_loss, sync_dist=True, batch_size=self.batch_size
|
365 |
+
)
|
366 |
+
self.log(
|
367 |
+
"voc_snr_loss", voc_snr_loss, sync_dist=True, batch_size=self.batch_size
|
368 |
+
)
|
369 |
+
|
370 |
+
# Manual optimizer
|
371 |
+
# Access your optimizers
|
372 |
+
optimizers = self.optimizers()
|
373 |
+
schedulers = self.lr_schedulers()
|
374 |
+
|
375 |
+
####################################
|
376 |
+
# Acoustic model manual optimizer ##
|
377 |
+
####################################
|
378 |
+
opt_acoustic: Optimizer = optimizers[0] # type: ignore
|
379 |
+
sch_acoustic: ExponentialLR = schedulers[0] # type: ignore
|
380 |
+
|
381 |
+
opt_univnet: Optimizer = optimizers[0] # type: ignore
|
382 |
+
sch_univnet: ExponentialLR = schedulers[0] # type: ignore
|
383 |
+
|
384 |
+
opt_discriminator: Optimizer = optimizers[1] # type: ignore
|
385 |
+
sch_discriminator: ExponentialLR = schedulers[1] # type: ignore
|
386 |
+
|
387 |
+
# Backward pass for the acoustic model
|
388 |
+
# NOTE: the loss is divided by the accumulated gradient steps
|
389 |
+
self.manual_backward(acc_total_loss / self.acc_grad_steps, retain_graph=True)
|
390 |
+
|
391 |
+
# Perform manual optimization univnet
|
392 |
+
self.manual_backward(
|
393 |
+
voc_total_loss_gen / self.acc_grad_steps, retain_graph=True
|
394 |
+
)
|
395 |
+
self.manual_backward(
|
396 |
+
voc_total_loss_disc / self.acc_grad_steps, retain_graph=True
|
397 |
+
)
|
398 |
+
|
399 |
+
# accumulate gradients of N batches
|
400 |
+
if (batch_idx + 1) % self.acc_grad_steps == 0:
|
401 |
+
# Acoustic model optimizer step
|
402 |
+
# clip gradients
|
403 |
+
self.clip_gradients(
|
404 |
+
opt_acoustic, gradient_clip_val=0.5, gradient_clip_algorithm="norm"
|
405 |
+
)
|
406 |
+
|
407 |
+
# optimizer step
|
408 |
+
opt_acoustic.step()
|
409 |
+
# Scheduler step
|
410 |
+
sch_acoustic.step()
|
411 |
+
# zero the gradients
|
412 |
+
opt_acoustic.zero_grad()
|
413 |
+
|
414 |
+
# Univnet model optimizer step
|
415 |
+
# clip gradients
|
416 |
+
self.clip_gradients(
|
417 |
+
opt_univnet, gradient_clip_val=0.5, gradient_clip_algorithm="norm"
|
418 |
+
)
|
419 |
+
self.clip_gradients(
|
420 |
+
opt_discriminator, gradient_clip_val=0.5, gradient_clip_algorithm="norm"
|
421 |
+
)
|
422 |
+
|
423 |
+
# optimizer step
|
424 |
+
opt_univnet.step()
|
425 |
+
opt_discriminator.step()
|
426 |
+
|
427 |
+
# Scheduler step
|
428 |
+
sch_univnet.step()
|
429 |
+
sch_discriminator.step()
|
430 |
+
|
431 |
+
# zero the gradients
|
432 |
+
opt_univnet.zero_grad()
|
433 |
+
opt_discriminator.zero_grad()
|
434 |
+
|
435 |
+
# Update SWA model every swa_steps
|
436 |
+
if self.trainer.global_step % self.swa_steps == 0:
|
437 |
+
self.swa_averaged_acoustic.update_parameters(self.acoustic_model)
|
438 |
+
self.swa_averaged_univnet.update_parameters(self.univnet)
|
439 |
+
self.swa_averaged_discriminator.update_parameters(self.discriminator)
|
440 |
+
|
441 |
+
def on_train_epoch_end(self):
|
442 |
+
r"""Updates the averaged model after each optimizer step with SWA."""
|
443 |
+
self.swa_averaged_acoustic.update_parameters(self.acoustic_model)
|
444 |
+
self.swa_averaged_univnet.update_parameters(self.univnet)
|
445 |
+
self.swa_averaged_discriminator.update_parameters(self.discriminator)
|
446 |
+
|
447 |
+
def configure_optimizers(self):
|
448 |
+
r"""Configures the optimizer used for training.
|
449 |
+
|
450 |
+
Returns
|
451 |
+
tuple: A tuple containing three dictionaries. Each dictionary contains the optimizer and learning rate scheduler for one of the models.
|
452 |
+
"""
|
453 |
+
####################################
|
454 |
+
# Acoustic model optimizer config ##
|
455 |
+
####################################
|
456 |
+
# Compute the gamma and initial learning rate based on the current step
|
457 |
+
lr_decay = self.train_config_acoustic.optimizer_config.lr_decay
|
458 |
+
default_lr = self.train_config_acoustic.optimizer_config.learning_rate
|
459 |
+
|
460 |
+
init_lr = (
|
461 |
+
default_lr
|
462 |
+
if self.trainer.global_step == 0
|
463 |
+
else default_lr * (lr_decay**self.trainer.global_step)
|
464 |
+
)
|
465 |
+
|
466 |
+
optimizer_acoustic = AdamW(
|
467 |
+
self.acoustic_model.parameters(),
|
468 |
+
lr=init_lr,
|
469 |
+
betas=self.train_config_acoustic.optimizer_config.betas,
|
470 |
+
eps=self.train_config_acoustic.optimizer_config.eps,
|
471 |
+
weight_decay=self.train_config_acoustic.optimizer_config.weight_decay,
|
472 |
+
)
|
473 |
+
|
474 |
+
scheduler_acoustic = ExponentialLR(optimizer_acoustic, gamma=lr_decay)
|
475 |
+
|
476 |
+
####################################
|
477 |
+
# Univnet model optimizer config ##
|
478 |
+
####################################
|
479 |
+
optim_univnet = AdamW(
|
480 |
+
self.univnet.parameters(),
|
481 |
+
self.train_config.learning_rate,
|
482 |
+
betas=(self.train_config.adam_b1, self.train_config.adam_b2),
|
483 |
+
)
|
484 |
+
scheduler_univnet = ExponentialLR(
|
485 |
+
optim_univnet,
|
486 |
+
gamma=self.train_config.lr_decay,
|
487 |
+
last_epoch=-1,
|
488 |
+
)
|
489 |
+
|
490 |
+
####################################
|
491 |
+
# Discriminator optimizer config ##
|
492 |
+
####################################
|
493 |
+
optim_discriminator = AdamW(
|
494 |
+
self.discriminator.parameters(),
|
495 |
+
self.train_config.learning_rate,
|
496 |
+
betas=(self.train_config.adam_b1, self.train_config.adam_b2),
|
497 |
+
)
|
498 |
+
scheduler_discriminator = ExponentialLR(
|
499 |
+
optim_discriminator,
|
500 |
+
gamma=self.train_config.lr_decay,
|
501 |
+
last_epoch=-1,
|
502 |
+
)
|
503 |
+
|
504 |
+
return (
|
505 |
+
{"optimizer": optimizer_acoustic, "lr_scheduler": scheduler_acoustic},
|
506 |
+
{"optimizer": optim_univnet, "lr_scheduler": scheduler_univnet},
|
507 |
+
{"optimizer": optim_discriminator, "lr_scheduler": scheduler_discriminator},
|
508 |
+
)
|
509 |
+
|
510 |
+
def on_train_end(self):
|
511 |
+
# Update SWA models after training
|
512 |
+
swa_utils.update_bn(self.train_dataloader(), self.swa_averaged_acoustic)
|
513 |
+
swa_utils.update_bn(self.train_dataloader(), self.swa_averaged_univnet)
|
514 |
+
swa_utils.update_bn(self.train_dataloader(), self.swa_averaged_discriminator)
|
515 |
+
|
516 |
+
def train_dataloader(
|
517 |
+
self,
|
518 |
+
num_workers: int = 5,
|
519 |
+
root: str = "datasets_cache/LIBRITTS",
|
520 |
+
cache: bool = True,
|
521 |
+
cache_dir: str = "datasets_cache",
|
522 |
+
mem_cache: bool = False,
|
523 |
+
url: str = "train-960",
|
524 |
+
) -> DataLoader:
|
525 |
+
r"""Returns the training dataloader, that is using the LibriTTS dataset.
|
526 |
+
|
527 |
+
Args:
|
528 |
+
num_workers (int): The number of workers.
|
529 |
+
root (str): The root directory of the dataset.
|
530 |
+
cache (bool): Whether to cache the preprocessed data.
|
531 |
+
cache_dir (str): The directory for the cache.
|
532 |
+
mem_cache (bool): Whether to use memory cache.
|
533 |
+
url (str): The URL of the dataset.
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
Tupple[DataLoader, DataLoader]: The training and validation dataloaders.
|
537 |
+
"""
|
538 |
+
return train_dataloader(
|
539 |
+
batch_size=self.batch_size,
|
540 |
+
num_workers=num_workers,
|
541 |
+
root=root,
|
542 |
+
cache=cache,
|
543 |
+
cache_dir=cache_dir,
|
544 |
+
mem_cache=mem_cache,
|
545 |
+
url=url,
|
546 |
+
lang=self.lang,
|
547 |
+
)
|
models/generators/tests/__init__.py
ADDED
File without changes
|
models/generators/tests/test_delightful_univnet.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# import unittest
|
3 |
+
|
4 |
+
# from lightning.pytorch import Trainer
|
5 |
+
|
6 |
+
# from models.generators.delightful_univnet import DelightfulUnivnet
|
7 |
+
|
8 |
+
# checkpoint = "checkpoints/logs_new_training_libri-360_energy_epoch=263-step=45639.ckpt"
|
9 |
+
|
10 |
+
# # NOTE: this is needed to avoid CUDA_LAUNCH_BLOCKING error
|
11 |
+
# os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
12 |
+
|
13 |
+
# DEPRECATED
|
14 |
+
# class TestDelightfulUnivnet(unittest.TestCase):
|
15 |
+
# def test_train_steps(self):
|
16 |
+
# default_root_dir = "checkpoints/acoustic"
|
17 |
+
|
18 |
+
# trainer = Trainer(
|
19 |
+
# default_root_dir=default_root_dir,
|
20 |
+
# limit_train_batches=1,
|
21 |
+
# max_epochs=1,
|
22 |
+
# accelerator="cpu",
|
23 |
+
# )
|
24 |
+
|
25 |
+
# module = DelightfulUnivnet(batch_size=1, acc_grad_steps=1, swa_steps=1)
|
26 |
+
|
27 |
+
# train_dataloader = module.train_dataloader(2, cache=False, mem_cache=False)
|
28 |
+
|
29 |
+
# result = trainer.fit(model=module, train_dataloaders=train_dataloader)
|
30 |
+
# self.assertIsNone(result)
|
models/helpers/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .acoustic import *
|
2 |
+
from .tools import *
|
models/helpers/acoustic.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def positional_encoding(
|
7 |
+
d_model: int, length: int,
|
8 |
+
) -> torch.Tensor:
|
9 |
+
r"""Function to calculate positional encoding for transformer model.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
d_model (int): Dimension of the model (often corresponds to embedding size).
|
13 |
+
length (int): Length of sequences.
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
torch.Tensor: Tensor having positional encodings.
|
17 |
+
"""
|
18 |
+
# Initialize placeholder for positional encoding
|
19 |
+
pe = torch.zeros(length, d_model)
|
20 |
+
|
21 |
+
# Generate position indices and reshape to have shape (length, 1)
|
22 |
+
position = torch.arange(0, length, dtype=torch.float).unsqueeze(1)
|
23 |
+
|
24 |
+
# Calculate term for division
|
25 |
+
div_term = torch.exp(
|
26 |
+
torch.arange(0, d_model, 2).float()
|
27 |
+
* -(math.log(10000.0) / d_model),
|
28 |
+
)
|
29 |
+
|
30 |
+
# Assign sin of position * div_term to even indices in the encoding matrix
|
31 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
32 |
+
|
33 |
+
# Assign cos of position * div_term to odd indices in the encoding matrix
|
34 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
35 |
+
|
36 |
+
# Add an extra dimension to match expected output shape
|
37 |
+
return pe.unsqueeze(0)
|
38 |
+
|
39 |
+
|
40 |
+
def pitch_phoneme_averaging(
|
41 |
+
durations: torch.Tensor,
|
42 |
+
pitches: torch.Tensor,
|
43 |
+
max_phoneme_len: int) -> torch.Tensor:
|
44 |
+
r"""Function to compute the average pitch values over the duration of each phoneme.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
durations (torch.Tensor): Duration of each phoneme for each sample in a batch.
|
48 |
+
Shape: (batch_size, n_phones)
|
49 |
+
pitches (torch.Tensor): Per-frame pitch values for each sample in a batch.
|
50 |
+
Shape: (batch_size, n_mel_timesteps)
|
51 |
+
max_phoneme_len (int): Maximum length of the phoneme sequence in a batch.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
pitches_averaged (torch.Tensor): Tensor containing the averaged pitch values
|
55 |
+
for each phoneme. Shape: (batch_size, max_phoneme_len)
|
56 |
+
"""
|
57 |
+
# Initialize placeholder for averaged pitch values, filling with zeros
|
58 |
+
pitches_averaged = torch.zeros(
|
59 |
+
(pitches.shape[0], max_phoneme_len), device=pitches.device,
|
60 |
+
)
|
61 |
+
# Loop over each sample in the batch
|
62 |
+
for batch_idx in range(durations.shape[0]):
|
63 |
+
# Set the starting index of pitch sequence
|
64 |
+
start_idx = 0
|
65 |
+
# Loop over each phoneme duration
|
66 |
+
for i, duration in enumerate(durations[batch_idx]):
|
67 |
+
# Convert duration to integer
|
68 |
+
duration = duration.int().item()
|
69 |
+
# If the duration is not zero
|
70 |
+
if duration != 0:
|
71 |
+
# Calculate the mean pitch value for the duration of the current phoneme
|
72 |
+
mean = torch.mean(pitches[batch_idx, start_idx : start_idx + duration])
|
73 |
+
# Store the averaged pitch value
|
74 |
+
pitches_averaged[batch_idx][i] = mean
|
75 |
+
# Update the starting index for the next phoneme
|
76 |
+
start_idx += duration
|
77 |
+
|
78 |
+
# Return tensor with the averaged pitch values
|
79 |
+
return pitches_averaged
|
models/helpers/dataloaders.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple
|
2 |
+
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from torch.utils.data import DataLoader, SequentialSampler
|
5 |
+
|
6 |
+
from training.datasets import LibriTTSDatasetAcoustic
|
7 |
+
|
8 |
+
|
9 |
+
def train_dataloader(
|
10 |
+
batch_size: int = 6,
|
11 |
+
num_workers: int = 5,
|
12 |
+
root: str = "datasets_cache/LIBRITTS",
|
13 |
+
cache: bool = True,
|
14 |
+
cache_dir: str = "datasets_cache",
|
15 |
+
mem_cache: bool = False,
|
16 |
+
url: str = "train-clean-360",
|
17 |
+
lang: str = "en",
|
18 |
+
selected_speaker_ids: Optional[List[int]] = None,
|
19 |
+
) -> DataLoader:
|
20 |
+
r"""Returns the training dataloader, that is using the LibriTTS dataset.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
batch_size (int): The batch size.
|
24 |
+
num_workers (int): The number of workers.
|
25 |
+
root (str): The root directory of the dataset.
|
26 |
+
cache (bool): Whether to cache the preprocessed data.
|
27 |
+
cache_dir (str): The directory for the cache.
|
28 |
+
mem_cache (bool): Whether to use memory cache.
|
29 |
+
url (str): The URL of the dataset.
|
30 |
+
lang (str): The language of the dataset.
|
31 |
+
selected_speaker_ids (Optional[List[int]]): A list of selected speakers.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
DataLoader: The training and validation dataloaders.
|
35 |
+
"""
|
36 |
+
dataset = LibriTTSDatasetAcoustic(
|
37 |
+
root=root,
|
38 |
+
lang=lang,
|
39 |
+
cache=cache,
|
40 |
+
cache_dir=cache_dir,
|
41 |
+
mem_cache=mem_cache,
|
42 |
+
url=url,
|
43 |
+
selected_speaker_ids=selected_speaker_ids,
|
44 |
+
)
|
45 |
+
|
46 |
+
train_loader = DataLoader(
|
47 |
+
dataset,
|
48 |
+
# 4x80Gb max 10 sec audio
|
49 |
+
# batch_size=20, # self.train_config.batch_size,
|
50 |
+
# 4*80Gb max ~20.4 sec audio
|
51 |
+
batch_size=batch_size,
|
52 |
+
# TODO: find the optimal num_workers
|
53 |
+
num_workers=num_workers,
|
54 |
+
persistent_workers=True,
|
55 |
+
pin_memory=True,
|
56 |
+
shuffle=False,
|
57 |
+
collate_fn=dataset.collate_fn,
|
58 |
+
)
|
59 |
+
|
60 |
+
return train_loader
|
61 |
+
|
62 |
+
|
63 |
+
def train_val_dataloader(
|
64 |
+
batch_size: int = 6,
|
65 |
+
num_workers: int = 5,
|
66 |
+
root: str = "datasets_cache/LIBRITTS",
|
67 |
+
cache: bool = True,
|
68 |
+
cache_dir: str = "datasets_cache",
|
69 |
+
mem_cache: bool = False,
|
70 |
+
url: str = "train-clean-360",
|
71 |
+
lang: str = "en",
|
72 |
+
validation_split: float = 0.02, # Percentage of data to use for validation
|
73 |
+
) -> Tuple[DataLoader, DataLoader]:
|
74 |
+
r"""Returns the training dataloader, that is using the LibriTTS dataset.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
batch_size (int): The batch size.
|
78 |
+
num_workers (int): The number of workers.
|
79 |
+
root (str): The root directory of the dataset.
|
80 |
+
cache (bool): Whether to cache the preprocessed data.
|
81 |
+
cache_dir (str): The directory for the cache.
|
82 |
+
mem_cache (bool): Whether to use memory cache.
|
83 |
+
url (str): The URL of the dataset.
|
84 |
+
lang (str): The language of the dataset.
|
85 |
+
validation_split (float): The percentage of data to use for validation.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
Tupple[DataLoader, DataLoader]: The training and validation dataloaders.
|
89 |
+
"""
|
90 |
+
dataset = LibriTTSDatasetAcoustic(
|
91 |
+
root=root,
|
92 |
+
lang=lang,
|
93 |
+
cache=cache,
|
94 |
+
cache_dir=cache_dir,
|
95 |
+
mem_cache=mem_cache,
|
96 |
+
url=url,
|
97 |
+
)
|
98 |
+
|
99 |
+
# Split dataset into train and validation
|
100 |
+
train_indices, val_indices = train_test_split(
|
101 |
+
list(range(len(dataset))),
|
102 |
+
test_size=validation_split,
|
103 |
+
random_state=42,
|
104 |
+
)
|
105 |
+
|
106 |
+
# Create Samplers
|
107 |
+
train_sampler = SequentialSampler(train_indices)
|
108 |
+
val_sampler = SequentialSampler(val_indices)
|
109 |
+
|
110 |
+
# dataset = LibriTTSMMDatasetAcoustic("checkpoints/libri_preprocessed_data.pt")
|
111 |
+
train_loader = DataLoader(
|
112 |
+
dataset,
|
113 |
+
# 4x80Gb max 10 sec audio
|
114 |
+
# batch_size=20, # self.train_config.batch_size,
|
115 |
+
# 4*80Gb max ~20.4 sec audio
|
116 |
+
batch_size=batch_size,
|
117 |
+
# TODO: find the optimal num_workers
|
118 |
+
num_workers=num_workers,
|
119 |
+
sampler=train_sampler,
|
120 |
+
persistent_workers=True,
|
121 |
+
pin_memory=True,
|
122 |
+
shuffle=False,
|
123 |
+
collate_fn=dataset.collate_fn,
|
124 |
+
)
|
125 |
+
|
126 |
+
val_loader = DataLoader(
|
127 |
+
dataset,
|
128 |
+
# 4x80Gb max 10 sec audio
|
129 |
+
# batch_size=20, # self.train_config.batch_size,
|
130 |
+
# 4*80Gb max ~20.4 sec audio
|
131 |
+
batch_size=batch_size,
|
132 |
+
# TODO: find the optimal num_workers
|
133 |
+
num_workers=num_workers,
|
134 |
+
sampler=val_sampler,
|
135 |
+
persistent_workers=True,
|
136 |
+
pin_memory=True,
|
137 |
+
shuffle=False,
|
138 |
+
collate_fn=dataset.collate_fn,
|
139 |
+
)
|
140 |
+
|
141 |
+
return train_loader, val_loader
|
models/helpers/initializer.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from models.config import (
|
7 |
+
SUPPORTED_LANGUAGES,
|
8 |
+
AcousticENModelConfig,
|
9 |
+
AcousticModelConfigType,
|
10 |
+
AcousticPretrainingConfig,
|
11 |
+
)
|
12 |
+
from models.config import (
|
13 |
+
PreprocessingConfigUnivNet as PreprocessingConfig,
|
14 |
+
)
|
15 |
+
from models.helpers import positional_encoding, tools
|
16 |
+
from models.tts.delightful_tts.acoustic_model import AcousticModel
|
17 |
+
from models.tts.delightful_tts.attention.conformer import Conformer
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class ConformerConfig:
|
22 |
+
dim: int
|
23 |
+
n_layers: int
|
24 |
+
n_heads: int
|
25 |
+
embedding_dim: int
|
26 |
+
p_dropout: float
|
27 |
+
kernel_size_conv_mod: int
|
28 |
+
with_ff: bool
|
29 |
+
|
30 |
+
|
31 |
+
def get_test_configs(
|
32 |
+
srink_factor: int = 4,
|
33 |
+
) -> Tuple[PreprocessingConfig, AcousticENModelConfig, AcousticPretrainingConfig]:
|
34 |
+
r"""Returns a tuple of configuration objects for testing purposes.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
srink_factor (int, optional): The shrink factor to apply to the model configuration. Defaults to 4.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
Tuple[PreprocessingConfig, AcousticENModelConfig, AcousticPretrainingConfig]: A tuple of configuration objects for testing purposes.
|
41 |
+
|
42 |
+
This function returns a tuple of configuration objects for testing purposes. The configuration objects are as follows:
|
43 |
+
- `PreprocessingConfig`: A configuration object for preprocessing.
|
44 |
+
- `AcousticENModelConfig`: A configuration object for the acoustic model.
|
45 |
+
- `AcousticPretrainingConfig`: A configuration object for acoustic pretraining.
|
46 |
+
|
47 |
+
The `srink_factor` parameter is used to shrink the dimensions of the model configuration to prevent out of memory issues during testing.
|
48 |
+
"""
|
49 |
+
preprocess_config = PreprocessingConfig("english_only")
|
50 |
+
model_config = AcousticENModelConfig()
|
51 |
+
|
52 |
+
model_config.speaker_embed_dim = model_config.speaker_embed_dim // srink_factor
|
53 |
+
model_config.encoder.n_hidden = model_config.encoder.n_hidden // srink_factor
|
54 |
+
model_config.decoder.n_hidden = model_config.decoder.n_hidden // srink_factor
|
55 |
+
model_config.variance_adaptor.n_hidden = (
|
56 |
+
model_config.variance_adaptor.n_hidden // srink_factor
|
57 |
+
)
|
58 |
+
|
59 |
+
acoustic_pretraining_config = AcousticPretrainingConfig()
|
60 |
+
|
61 |
+
return (preprocess_config, model_config, acoustic_pretraining_config)
|
62 |
+
|
63 |
+
|
64 |
+
# Function to initialize a Conformer with a given AcousticModelConfigType configuration
|
65 |
+
def init_conformer(
|
66 |
+
model_config: AcousticModelConfigType,
|
67 |
+
) -> Tuple[Conformer, ConformerConfig]:
|
68 |
+
r"""Function to initialize a `Conformer` with a given `AcousticModelConfigType` configuration.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
model_config (AcousticModelConfigType): The object that holds the configuration details.
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
Conformer: Initialized Conformer object.
|
75 |
+
|
76 |
+
The function sets the details of the `Conformer` object based on the `model_config` parameter.
|
77 |
+
The `Conformer` configuration is set as follows:
|
78 |
+
- dim: The number of hidden units, taken from the encoder part of the `model_config.encoder.n_hidden`.
|
79 |
+
- n_layers: The number of layers, taken from the encoder part of the `model_config.encoder.n_layers`.
|
80 |
+
- n_heads: The number of attention heads, taken from the encoder part of the `model_config.encoder.n_heads`.
|
81 |
+
- embedding_dim: The sum of dimensions of speaker embeddings and language embeddings.
|
82 |
+
The speaker_embed_dim and lang_embed_dim are a part of the `model_config.speaker_embed_dim`.
|
83 |
+
- p_dropout: Dropout rate taken from the encoder part of the `model_config.encoder.p_dropout`.
|
84 |
+
It adds a regularization parameter to prevent overfitting.
|
85 |
+
- kernel_size_conv_mod: The kernel size for the convolution module taken from the encoder part of the `model_config.encoder.kernel_size_conv_mod`.
|
86 |
+
- with_ff: A Boolean value denoting if feedforward operation is involved, taken from the encoder part of the `model_config.encoder.with_ff`.
|
87 |
+
|
88 |
+
"""
|
89 |
+
conformer_config = ConformerConfig(
|
90 |
+
dim=model_config.encoder.n_hidden,
|
91 |
+
n_layers=model_config.encoder.n_layers,
|
92 |
+
n_heads=model_config.encoder.n_heads,
|
93 |
+
embedding_dim=model_config.speaker_embed_dim
|
94 |
+
+ model_config.lang_embed_dim, # speaker_embed_dim + lang_embed_dim = 385
|
95 |
+
p_dropout=model_config.encoder.p_dropout,
|
96 |
+
kernel_size_conv_mod=model_config.encoder.kernel_size_conv_mod,
|
97 |
+
with_ff=model_config.encoder.with_ff,
|
98 |
+
)
|
99 |
+
|
100 |
+
model = Conformer(**vars(conformer_config))
|
101 |
+
|
102 |
+
return model, conformer_config
|
103 |
+
|
104 |
+
|
105 |
+
@dataclass
|
106 |
+
class AcousticModelConfig:
|
107 |
+
preprocess_config: PreprocessingConfig
|
108 |
+
model_config: AcousticENModelConfig
|
109 |
+
n_speakers: int
|
110 |
+
|
111 |
+
|
112 |
+
def init_acoustic_model(
|
113 |
+
preprocess_config: PreprocessingConfig,
|
114 |
+
model_config: AcousticENModelConfig,
|
115 |
+
n_speakers: int = 10,
|
116 |
+
) -> Tuple[AcousticModel, AcousticModelConfig]:
|
117 |
+
r"""Function to initialize an `AcousticModel` with given preprocessing and model configurations.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
preprocess_config (PreprocessingConfig): Configuration object for pre-processing.
|
121 |
+
model_config (AcousticENModelConfig): Configuration object for English Acoustic model.
|
122 |
+
n_speakers (int, optional): Number of speakers. Defaults to 10.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
AcousticModel: Initialized Acoustic Model.
|
126 |
+
|
127 |
+
The function creates an `AcousticModelConfig` instance which is then used to initialize the `AcousticModel`.
|
128 |
+
The `AcousticModelConfig` is configured as follows:
|
129 |
+
- preprocess_config: Pre-processing configuration.
|
130 |
+
- model_config: English Acoustic model configuration.
|
131 |
+
- fine_tuning: Boolean flag set to True indicating the model is for fine-tuning.
|
132 |
+
- n_speakers: Number of speakers.
|
133 |
+
|
134 |
+
"""
|
135 |
+
# Create an AcousticModelConfig instance
|
136 |
+
acoustic_model_config = AcousticModelConfig(
|
137 |
+
preprocess_config=preprocess_config,
|
138 |
+
model_config=model_config,
|
139 |
+
n_speakers=n_speakers,
|
140 |
+
)
|
141 |
+
|
142 |
+
model = AcousticModel(**vars(acoustic_model_config))
|
143 |
+
|
144 |
+
return model, acoustic_model_config
|
145 |
+
|
146 |
+
|
147 |
+
@dataclass
|
148 |
+
class ForwardTrainParams:
|
149 |
+
x: torch.Tensor
|
150 |
+
speakers: torch.Tensor
|
151 |
+
src_lens: torch.Tensor
|
152 |
+
mels: torch.Tensor
|
153 |
+
mel_lens: torch.Tensor
|
154 |
+
enc_len: torch.Tensor
|
155 |
+
pitches: torch.Tensor
|
156 |
+
pitches_range: Tuple[float, float]
|
157 |
+
energies: torch.Tensor
|
158 |
+
langs: torch.Tensor
|
159 |
+
attn_priors: torch.Tensor
|
160 |
+
use_ground_truth: bool = True
|
161 |
+
|
162 |
+
|
163 |
+
def init_forward_trains_params(
|
164 |
+
model_config: AcousticENModelConfig,
|
165 |
+
acoustic_pretraining_config: AcousticPretrainingConfig,
|
166 |
+
preprocess_config: PreprocessingConfig,
|
167 |
+
n_speakers: int = 10,
|
168 |
+
) -> ForwardTrainParams:
|
169 |
+
r"""Function to initialize the parameters for forward propagation during training.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
model_config (AcousticENModelConfig): Configuration object for English Acoustic model.
|
173 |
+
acoustic_pretraining_config (AcousticPretrainingConfig): Configuration object for acoustic pretraining.
|
174 |
+
preprocess_config (PreprocessingConfig): Configuration object for pre-processing.
|
175 |
+
n_speakers (int, optional): Number of speakers. Defaults to 10.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
ForwardTrainParams: Initialized parameters for forward propagation during training.
|
179 |
+
|
180 |
+
The function initializes the ForwardTrainParams object with the following parameters:
|
181 |
+
- x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size]
|
182 |
+
- speakers: Tensor containing the speaker indices. Shape: [speaker_embed_dim, batch_size]
|
183 |
+
- src_lens: Tensor containing the lengths of source sequences. Shape: [batch_size]
|
184 |
+
- mels: Tensor containing the mel spectrogram. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
|
185 |
+
- mel_lens: Tensor containing the lengths of mel sequences. Shape: [batch_size]
|
186 |
+
- pitches: Tensor containing the pitch values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
|
187 |
+
- energies: Tensor containing the energy values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
|
188 |
+
- langs: Tensor containing the language indices. Shape: [speaker_embed_dim, batch_size]
|
189 |
+
- attn_priors: Tensor containing the attention priors. Shape: [batch_size, speaker_embed_dim, speaker_embed_dim]
|
190 |
+
- use_ground_truth: Boolean flag indicating if ground truth values should be used or not.
|
191 |
+
|
192 |
+
All the Tensors are initialized with random values.
|
193 |
+
"""
|
194 |
+
return ForwardTrainParams(
|
195 |
+
# x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size]
|
196 |
+
x=torch.randint(
|
197 |
+
1,
|
198 |
+
255,
|
199 |
+
(
|
200 |
+
model_config.speaker_embed_dim,
|
201 |
+
acoustic_pretraining_config.batch_size,
|
202 |
+
),
|
203 |
+
),
|
204 |
+
pitches_range=(0.0, 1.0),
|
205 |
+
# speakers: Tensor containing the speaker indices. Shape: [speaker_embed_dim, batch_size]
|
206 |
+
speakers=torch.randint(
|
207 |
+
1,
|
208 |
+
n_speakers - 1,
|
209 |
+
(
|
210 |
+
model_config.speaker_embed_dim,
|
211 |
+
acoustic_pretraining_config.batch_size,
|
212 |
+
),
|
213 |
+
),
|
214 |
+
# src_lens: Tensor containing the lengths of source sequences. Shape: [speaker_embed_dim]
|
215 |
+
src_lens=torch.cat(
|
216 |
+
[
|
217 |
+
# torch.tensor([self.model_config.speaker_embed_dim]),
|
218 |
+
torch.randint(
|
219 |
+
1,
|
220 |
+
acoustic_pretraining_config.batch_size + 1,
|
221 |
+
(model_config.speaker_embed_dim,),
|
222 |
+
),
|
223 |
+
],
|
224 |
+
dim=0,
|
225 |
+
),
|
226 |
+
# mels: Tensor containing the mel spectrogram. Shape: [batch_size, stft.n_mel_channels, encoder.n_hidden]
|
227 |
+
mels=torch.randn(
|
228 |
+
model_config.speaker_embed_dim,
|
229 |
+
preprocess_config.stft.n_mel_channels,
|
230 |
+
model_config.encoder.n_hidden,
|
231 |
+
),
|
232 |
+
# enc_len: Tensor containing the lengths of mel sequences. Shape: [speaker_embed_dim]
|
233 |
+
enc_len=torch.cat(
|
234 |
+
[
|
235 |
+
torch.randint(
|
236 |
+
1,
|
237 |
+
model_config.speaker_embed_dim,
|
238 |
+
(model_config.speaker_embed_dim - 1,),
|
239 |
+
),
|
240 |
+
torch.tensor([model_config.speaker_embed_dim]),
|
241 |
+
],
|
242 |
+
dim=0,
|
243 |
+
),
|
244 |
+
# mel_lens: Tensor containing the lengths of mel sequences. Shape: [batch_size]
|
245 |
+
mel_lens=torch.cat(
|
246 |
+
[
|
247 |
+
torch.randint(
|
248 |
+
1,
|
249 |
+
model_config.speaker_embed_dim,
|
250 |
+
(model_config.speaker_embed_dim - 1,),
|
251 |
+
),
|
252 |
+
torch.tensor([model_config.speaker_embed_dim]),
|
253 |
+
],
|
254 |
+
dim=0,
|
255 |
+
),
|
256 |
+
# pitches: Tensor containing the pitch values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
|
257 |
+
pitches=torch.randn(
|
258 |
+
# acoustic_pretraining_config.batch_size,
|
259 |
+
model_config.speaker_embed_dim,
|
260 |
+
# model_config.speaker_embed_dim,
|
261 |
+
model_config.encoder.n_hidden,
|
262 |
+
),
|
263 |
+
# energies: Tensor containing the energy values. Shape: [batch_size, speaker_embed_dim, encoder.n_hidden]
|
264 |
+
energies=torch.randn(
|
265 |
+
model_config.speaker_embed_dim,
|
266 |
+
1,
|
267 |
+
model_config.encoder.n_hidden,
|
268 |
+
),
|
269 |
+
# langs: Tensor containing the language indices. Shape: [speaker_embed_dim, batch_size]
|
270 |
+
langs=torch.randint(
|
271 |
+
1,
|
272 |
+
len(SUPPORTED_LANGUAGES) - 1,
|
273 |
+
(
|
274 |
+
model_config.speaker_embed_dim,
|
275 |
+
acoustic_pretraining_config.batch_size,
|
276 |
+
),
|
277 |
+
),
|
278 |
+
# attn_priors: Tensor containing the attention priors. Shape: [batch_size, speaker_embed_dim, speaker_embed_dim]
|
279 |
+
attn_priors=torch.randn(
|
280 |
+
model_config.speaker_embed_dim,
|
281 |
+
model_config.speaker_embed_dim,
|
282 |
+
acoustic_pretraining_config.batch_size,
|
283 |
+
),
|
284 |
+
use_ground_truth=True,
|
285 |
+
)
|
286 |
+
|
287 |
+
|
288 |
+
def init_mask_input_embeddings_encoding_attn_mask(
|
289 |
+
acoustic_model: AcousticModel,
|
290 |
+
forward_train_params: ForwardTrainParams,
|
291 |
+
model_config: AcousticENModelConfig,
|
292 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
293 |
+
r"""Function to initialize masks for padding positions, input sequences, embeddings, positional encoding and attention masks.
|
294 |
+
|
295 |
+
Args:
|
296 |
+
acoustic_model (AcousticModel): Initialized Acoustic Model.
|
297 |
+
forward_train_params (ForwardTrainParams): Parameters for the forward training process.
|
298 |
+
model_config (AcousticENModelConfig): Configuration object for English Acoustic model.
|
299 |
+
|
300 |
+
Returns:
|
301 |
+
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing the following elements:
|
302 |
+
- src_mask: Tensor containing the masks for padding positions in the source sequences. Shape: [1, batch_size]
|
303 |
+
- x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim]
|
304 |
+
- embeddings: Tensor containing the embeddings. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim + lang_embed_dim]
|
305 |
+
- encoding: Tensor containing the positional encoding. Shape: [lang_embed_dim, max(forward_train_params.mel_lens), model_config.encoder.n_hidden]
|
306 |
+
- attn_maskЖ Tensor containing the attention masks. Shape: [1, 1, 1, batch_size]
|
307 |
+
|
308 |
+
The function starts by generating masks for padding positions in the source and mel sequences.
|
309 |
+
Then, it uses the acoustic model to get the input sequences and embeddings.
|
310 |
+
Finally, it computes the positional encoding.
|
311 |
+
|
312 |
+
"""
|
313 |
+
# Generate masks for padding positions in the source sequences and mel sequences
|
314 |
+
# src_mask: Tensor containing the masks for padding positions in the source sequences. Shape: [1, batch_size]
|
315 |
+
src_mask = tools.get_mask_from_lengths(forward_train_params.src_lens)
|
316 |
+
|
317 |
+
# x: Tensor containing the input sequences. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim]
|
318 |
+
# embeddings: Tensor containing the embeddings. Shape: [speaker_embed_dim, batch_size, speaker_embed_dim + lang_embed_dim]
|
319 |
+
x, embeddings = acoustic_model.get_embeddings(
|
320 |
+
token_idx=forward_train_params.x,
|
321 |
+
speaker_idx=forward_train_params.speakers,
|
322 |
+
src_mask=src_mask,
|
323 |
+
lang_idx=forward_train_params.langs,
|
324 |
+
)
|
325 |
+
|
326 |
+
# encoding: Tensor containing the positional encoding
|
327 |
+
# Shape: [lang_embed_dim, max(forward_train_params.mel_lens), encoder.n_hidden]
|
328 |
+
encoding = positional_encoding(
|
329 |
+
model_config.encoder.n_hidden,
|
330 |
+
max(x.shape[1], int(forward_train_params.mel_lens.max().item())),
|
331 |
+
)
|
332 |
+
|
333 |
+
attn_mask = src_mask.view((src_mask.shape[0], 1, 1, src_mask.shape[1]))
|
334 |
+
|
335 |
+
return src_mask, x, embeddings, encoding, attn_mask
|
models/helpers/tests/__init__.py
ADDED
File without changes
|
models/helpers/tests/test_dataloaders.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
from unittest.mock import patch
|
3 |
+
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
|
6 |
+
from models.helpers.dataloaders import train_dataloader, train_val_dataloader
|
7 |
+
|
8 |
+
|
9 |
+
class TestDataLoader(unittest.TestCase):
|
10 |
+
def test_train_dataloader(self):
|
11 |
+
train_loader = train_dataloader(
|
12 |
+
batch_size=2,
|
13 |
+
num_workers=2,
|
14 |
+
cache=False,
|
15 |
+
mem_cache=False,
|
16 |
+
)
|
17 |
+
|
18 |
+
# Assertions
|
19 |
+
self.assertIsInstance(train_loader, DataLoader)
|
20 |
+
|
21 |
+
for batch in train_loader:
|
22 |
+
self.assertEqual(len(batch), 13)
|
23 |
+
break
|
24 |
+
|
25 |
+
def test_train_val_dataloader(self):
|
26 |
+
train_loader, val_loader = train_val_dataloader(
|
27 |
+
batch_size=2,
|
28 |
+
num_workers=2,
|
29 |
+
cache=False,
|
30 |
+
mem_cache=False,
|
31 |
+
)
|
32 |
+
|
33 |
+
# Assertions
|
34 |
+
self.assertIsInstance(train_loader, DataLoader)
|
35 |
+
self.assertIsInstance(val_loader, DataLoader)
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
unittest.main()
|
models/helpers/tests/test_pitch_phoneme_averaging.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from models.helpers import (
|
6 |
+
pitch_phoneme_averaging,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
class TestPitchPhonemeAveraging(unittest.TestCase):
|
11 |
+
def test_pitch_phoneme_averaging(self):
|
12 |
+
# Initialize inputs
|
13 |
+
durations = torch.tensor([[5, 1, 3, 0], [2, 4, 0, 0]], dtype=torch.float32)
|
14 |
+
num_phonemes = durations.shape[-1]
|
15 |
+
max_length = int(torch.sum(durations, dim=1).int().max().item())
|
16 |
+
pitches = torch.rand(2, max_length)
|
17 |
+
|
18 |
+
max_phoneme_len = num_phonemes
|
19 |
+
|
20 |
+
# Call the pitch_phoneme_averaging method
|
21 |
+
result = pitch_phoneme_averaging(durations, pitches, max_phoneme_len)
|
22 |
+
|
23 |
+
# Assert output type
|
24 |
+
self.assertIsInstance(result, torch.Tensor)
|
25 |
+
|
26 |
+
# Assert output shape
|
27 |
+
expected_shape = durations.shape
|
28 |
+
self.assertEqual(result.shape, expected_shape)
|
29 |
+
|
30 |
+
# Assert all pitch values are within [0,1] since input pitch values were from a uniform distribution over [0,1]
|
31 |
+
self.assertTrue(torch.all((result >= 0) & (result <= 1)))
|
32 |
+
|
33 |
+
|
34 |
+
# Run tests
|
35 |
+
if __name__ == "__main__":
|
36 |
+
unittest.main()
|
models/helpers/tests/test_position_encoding.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Required Libraries
|
2 |
+
import unittest
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from models.helpers import positional_encoding
|
7 |
+
|
8 |
+
|
9 |
+
class TestPositionalEncoding(unittest.TestCase):
|
10 |
+
def test_positional_encoding(self):
|
11 |
+
# Test with d_model=128, length=10
|
12 |
+
d_model = 128
|
13 |
+
length = 10
|
14 |
+
result = positional_encoding(d_model, length)
|
15 |
+
|
16 |
+
# Assert that output is a torch.Tensor
|
17 |
+
self.assertIsInstance(result, torch.Tensor)
|
18 |
+
|
19 |
+
# Assert the output tensor shape is correct
|
20 |
+
# The extra dimension from unsqueeze is considered
|
21 |
+
expected_shape = (1, length, d_model)
|
22 |
+
self.assertEqual(result.shape, expected_shape)
|
23 |
+
|
24 |
+
# Assert that values lie in the range [-1, 1]
|
25 |
+
self.assertTrue(torch.all((result >= -1) & (result <= 1)))
|
26 |
+
|
27 |
+
|
28 |
+
# Run tests
|
29 |
+
if __name__ == "__main__":
|
30 |
+
unittest.main()
|
models/helpers/tests/tests_tools/__init__.py
ADDED
File without changes
|
models/helpers/tests/tests_tools/test_calc_same_padding.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
from models.helpers.tools import calc_same_padding
|
4 |
+
|
5 |
+
|
6 |
+
class TestCalcSamePadding(unittest.TestCase):
|
7 |
+
def test_odd_kernel_size(self):
|
8 |
+
"""Test that the padding returns correct tuple for odd-sized kernel."""
|
9 |
+
kernel_size = 3 # an odd-sized kernel
|
10 |
+
pad = calc_same_padding(kernel_size)
|
11 |
+
self.assertEqual(pad, (1, 1)) # we expect padding of size 1 on both sides
|
12 |
+
|
13 |
+
def test_even_kernel_size(self):
|
14 |
+
"""Test that the padding returns correct tuple for even-sized kernel."""
|
15 |
+
kernel_size = 4 # an even-sized kernel
|
16 |
+
pad = calc_same_padding(kernel_size)
|
17 |
+
self.assertEqual(
|
18 |
+
pad, (2, 1),
|
19 |
+
) # we expect padding of size 2 on one side, and size 1 on the other side
|
20 |
+
|
21 |
+
def test_one_kernel_size(self):
|
22 |
+
"""Test that the padding returns correct tuple for kernel of size 1."""
|
23 |
+
kernel_size = 1 # kernel of size 1
|
24 |
+
pad = calc_same_padding(kernel_size)
|
25 |
+
self.assertEqual(pad, (0, 0)) # we expect no padding on both sides
|
26 |
+
|
27 |
+
def test_zero_kernel_size(self):
|
28 |
+
"""Test that the padding raises ValueError for invalid kernel size of zero."""
|
29 |
+
with self.assertRaises(ValueError):
|
30 |
+
calc_same_padding(0) # a kernel of size 0 is not valid
|
31 |
+
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
unittest.main()
|
models/helpers/tests/tests_tools/test_get_mask_from_lengths.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from models.helpers.tools import get_mask_from_lengths
|
6 |
+
|
7 |
+
|
8 |
+
class TestGetMaskFromLengths(unittest.TestCase):
|
9 |
+
def setUp(self):
|
10 |
+
# Test cases: [2, 3, 1, 4]
|
11 |
+
self.input_lengths = torch.tensor([2, 3, 1, 4])
|
12 |
+
|
13 |
+
def test_get_mask_from_lengths(self):
|
14 |
+
expected_output = torch.tensor(
|
15 |
+
[
|
16 |
+
[False, False, True, True],
|
17 |
+
[False, False, False, True],
|
18 |
+
[False, True, True, True],
|
19 |
+
[False, False, False, False],
|
20 |
+
],
|
21 |
+
)
|
22 |
+
|
23 |
+
# Call the function with the test cases
|
24 |
+
output = get_mask_from_lengths(self.input_lengths)
|
25 |
+
|
26 |
+
# Check if the output is a tensor
|
27 |
+
self.assertIsInstance(output, torch.Tensor)
|
28 |
+
|
29 |
+
# Check if the output shape is as expected
|
30 |
+
self.assertEqual(output.shape, expected_output.shape)
|
31 |
+
|
32 |
+
# Check if the output values are as expected
|
33 |
+
self.assertTrue(torch.all(output.eq(expected_output)))
|
34 |
+
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
unittest.main()
|
models/helpers/tests/tests_tools/test_initialize_embeddings.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from models.helpers.tools import initialize_embeddings
|
7 |
+
|
8 |
+
|
9 |
+
class TestInitializeEmbeddings(unittest.TestCase):
|
10 |
+
def test_initialize_embeddings(self):
|
11 |
+
# Test with correct input shape
|
12 |
+
shape = (5, 10)
|
13 |
+
result = initialize_embeddings(shape)
|
14 |
+
# Assert output is torch.Tensor
|
15 |
+
self.assertIsInstance(result, torch.Tensor)
|
16 |
+
# Assert output shape
|
17 |
+
self.assertEqual(result.shape, shape)
|
18 |
+
# Assert type of elements
|
19 |
+
self.assertEqual(result.dtype, torch.float32)
|
20 |
+
|
21 |
+
# Assert standard deviation is close to expected (within some tolerance)
|
22 |
+
expected_stddev = np.sqrt(2 / shape[1])
|
23 |
+
tolerance = 0.1
|
24 |
+
self.assertLessEqual(abs(result.std().item() - expected_stddev), tolerance)
|
25 |
+
|
26 |
+
# Test with incorrect number of dimensions in shape
|
27 |
+
incorrect_shape = (5, 10, 15)
|
28 |
+
with self.assertRaises(AssertionError) as context:
|
29 |
+
initialize_embeddings(incorrect_shape)
|
30 |
+
self.assertEqual(
|
31 |
+
str(context.exception), "Can only initialize 2-D embedding matrices ...",
|
32 |
+
)
|
33 |
+
|
34 |
+
# Test with zero dimensions in shape
|
35 |
+
zero_dim_shape = ()
|
36 |
+
with self.assertRaises(AssertionError) as context:
|
37 |
+
initialize_embeddings(zero_dim_shape)
|
38 |
+
self.assertEqual(
|
39 |
+
str(context.exception), "Can only initialize 2-D embedding matrices ...",
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
# Run tests
|
44 |
+
if __name__ == "__main__":
|
45 |
+
unittest.main()
|
models/helpers/tests/tests_tools/test_pad.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from models.helpers.tools import pad
|
6 |
+
|
7 |
+
|
8 |
+
class TestPad(unittest.TestCase):
|
9 |
+
def test_1D_tensors_pad(self):
|
10 |
+
# 1D tensor inputs
|
11 |
+
tensors = [torch.ones(n) for n in range(1, 11)]
|
12 |
+
# Ten 1D tensors of length 1 to 10
|
13 |
+
max_len = max(t.numel() for t in tensors)
|
14 |
+
|
15 |
+
# Call the function
|
16 |
+
result = pad(tensors, max_len)
|
17 |
+
|
18 |
+
# Check the output shape is as expected
|
19 |
+
self.assertTrue(all(t.numel() == max_len for t in result))
|
20 |
+
|
21 |
+
def test_2D_tensors_pad(self):
|
22 |
+
# 2D tensor inputs
|
23 |
+
tensors = [torch.ones(n, 5) for n in range(1, 11)]
|
24 |
+
max_len = max(t.size(0) for t in tensors)
|
25 |
+
|
26 |
+
# Call the function
|
27 |
+
result = pad(tensors, max_len)
|
28 |
+
|
29 |
+
# Check the output shape is as expected
|
30 |
+
self.assertTrue(all(t.size(0) == max_len for t in result))
|
31 |
+
# Make sure second dimension wasn't changed
|
32 |
+
self.assertTrue(all(t.size(1) == 5 for t in result))
|
33 |
+
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
unittest.main()
|
models/helpers/tests/tests_tools/test_stride_lens_downsampling.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from models.helpers import (
|
6 |
+
stride_lens_downsampling,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
class TestStrideLens(unittest.TestCase):
|
11 |
+
def test_stride_lens(self):
|
12 |
+
# Define test case inputs
|
13 |
+
input_lengths = torch.tensor([5, 7, 10, 12])
|
14 |
+
stride = 2
|
15 |
+
|
16 |
+
# Correct output for this would be ceil([5, 7, 10, 12] / 2) => [3, 4, 5, 6]
|
17 |
+
expected_output = torch.tensor([3, 4, 5, 6])
|
18 |
+
|
19 |
+
# Call the function with the test cases
|
20 |
+
output = stride_lens_downsampling(input_lengths, stride)
|
21 |
+
|
22 |
+
# Check if the output is a tensor
|
23 |
+
self.assertIsInstance(output, torch.Tensor)
|
24 |
+
|
25 |
+
# Check if the output shape is as expected
|
26 |
+
self.assertEqual(output.shape, expected_output.shape)
|
27 |
+
|
28 |
+
# Check if the output values are as expected
|
29 |
+
self.assertTrue(torch.all(output.eq(expected_output)))
|
30 |
+
|
31 |
+
def test_stride_lens_default_stride(self):
|
32 |
+
# Define test case inputs. Here, we do not provide the stride.
|
33 |
+
input_lengths = torch.tensor([10, 20, 4, 11])
|
34 |
+
|
35 |
+
# Correct output for this would be ceil([10, 20, 4, 11] / 2) => [5, 10, 2, 6]
|
36 |
+
expected_output = torch.tensor([5, 10, 2, 6])
|
37 |
+
|
38 |
+
# Call the function with the test cases
|
39 |
+
output = stride_lens_downsampling(input_lengths)
|
40 |
+
|
41 |
+
# Check if the output is a tensor
|
42 |
+
self.assertIsInstance(output, torch.Tensor)
|
43 |
+
|
44 |
+
# Check if the output shape is as expected
|
45 |
+
self.assertEqual(output.shape, expected_output.shape)
|
46 |
+
|
47 |
+
# Check if the output values are as expected
|
48 |
+
self.assertTrue(torch.all(output.eq(expected_output)))
|
49 |
+
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
unittest.main()
|