File size: 1,551 Bytes
2b6420a
d128798
 
 
 
 
 
 
 
f789d71
d99a89e
d128798
 
 
 
 
 
 
 
 
 
 
 
 
7a01fd5
d128798
7a01fd5
d128798
 
 
 
 
7a01fd5
 
 
 
 
d128798
 
1f523aa
d128798
 
1f523aa
d99a89e
d128798
f789d71
 
 
 
 
d128798
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
import uvicorn
import duckdb
from query_engine import set_query_engine
from llama_index.core.indices.struct_store import NLSQLTableQueryEngine
import os
from huggingface_hub import hf_hub_download
from models import SQL, Prompt
import json

app = FastAPI()

origins = ["*"]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

query_engine:NLSQLTableQueryEngine
query_file_path = ""
llm_file_path = ""

@app.on_event("startup")
def startup():
    dataset_name = "pdrMottaS/afabd-duckdb"
    global query_file_path
    global llm_file_path
    global query_engine
    llm_file_path = hf_hub_download(repo_id=dataset_name, filename='llm_afabd.db', repo_type="dataset")
    query_file_path = hf_hub_download(repo_id=dataset_name, filename='afabd.db', repo_type="dataset")
    query_engine = set_query_engine(llm_file_path)

@app.post("/sql")
async def query_database(query_data: SQL):
    global query_file_path
    conn = duckdb.connect(query_file_path,read_only=True)
    df = conn.execute(query_data.query).fetch_df()
    return JSONResponse(json.loads(df.to_json(orient = "records")))

@app.post("/llm")
async def llm(prompt_data: Prompt):
    global query_engine
    response = query_engine.query(prompt_data.promt)
    return JSONResponse({"promt":prompt_data.promt,"response":response})

uvicorn.run(app,host='0.0.0.0',port=7860)