Spaces:
Sleeping
Sleeping
pdrMottaS
commited on
Commit
·
7a01fd5
1
Parent(s):
d99a89e
add llm endpoint
Browse files- main.py +7 -3
- query_engine.py +3 -3
main.py
CHANGED
@@ -22,15 +22,19 @@ app.add_middleware(
|
|
22 |
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
-
|
26 |
query_file_path = ""
|
|
|
27 |
|
28 |
@app.on_event("startup")
|
29 |
def startup():
|
30 |
dataset_name = "pdrMottaS/afabd-duckdb"
|
31 |
-
duckdb_filename = "afabd.db"
|
32 |
global query_file_path
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
@app.post("/sql")
|
36 |
async def query_database(query_data: SQL):
|
|
|
22 |
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
+
query_engine:NLSQLTableQueryEngine
|
26 |
query_file_path = ""
|
27 |
+
llm_file_path = ""
|
28 |
|
29 |
@app.on_event("startup")
|
30 |
def startup():
|
31 |
dataset_name = "pdrMottaS/afabd-duckdb"
|
|
|
32 |
global query_file_path
|
33 |
+
global llm_file_path
|
34 |
+
global query_engine
|
35 |
+
llm_file_path = hf_hub_download(repo_id=dataset_name, filename='llm_afabd.db', repo_type="dataset")
|
36 |
+
query_file_path = hf_hub_download(repo_id=dataset_name, filename='afabd.db', repo_type="dataset")
|
37 |
+
query_engine = set_query_engine(llm_file_path)
|
38 |
|
39 |
@app.post("/sql")
|
40 |
async def query_database(query_data: SQL):
|
query_engine.py
CHANGED
@@ -5,7 +5,7 @@ from sqlalchemy import create_engine
|
|
5 |
from llama_index.core import SQLDatabase
|
6 |
from llama_index.core.indices.struct_store import NLSQLTableQueryEngine
|
7 |
|
8 |
-
def set_query_engine():
|
9 |
llm = Groq(
|
10 |
model="llama3-8b-8192",
|
11 |
api_key="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"
|
@@ -13,10 +13,10 @@ def set_query_engine():
|
|
13 |
embedding = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
14 |
Settings.llm = llm
|
15 |
Settings.embed_model = embedding
|
16 |
-
engine = create_engine("duckdb:///
|
17 |
sql_database = SQLDatabase(engine)
|
18 |
return NLSQLTableQueryEngine(
|
19 |
sql_database=sql_database, # The SQL database instance to query
|
20 |
-
tables=["
|
21 |
llm=llm, # The language model used for processing natural language queries
|
22 |
)
|
|
|
5 |
from llama_index.core import SQLDatabase
|
6 |
from llama_index.core.indices.struct_store import NLSQLTableQueryEngine
|
7 |
|
8 |
+
def set_query_engine(path:str):
|
9 |
llm = Groq(
|
10 |
model="llama3-8b-8192",
|
11 |
api_key="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"
|
|
|
13 |
embedding = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
14 |
Settings.llm = llm
|
15 |
Settings.embed_model = embedding
|
16 |
+
engine = create_engine(f"duckdb:///{path}")
|
17 |
sql_database = SQLDatabase(engine)
|
18 |
return NLSQLTableQueryEngine(
|
19 |
sql_database=sql_database, # The SQL database instance to query
|
20 |
+
tables=["escola", "curso", "avaliacao"], # List of tables to include in the query engine
|
21 |
llm=llm, # The language model used for processing natural language queries
|
22 |
)
|