Spaces:
Running
on
Zero
Running
on
Zero
### | |
# Author: Kai Li | |
# Date: 2021-06-18 16:32:50 | |
# LastEditors: Kai Li | |
# LastEditTime: 2021-06-19 01:02:04 | |
### | |
import os | |
import warnings | |
import torch | |
import numpy as np | |
import soundfile as sf | |
def get_device(tensor_or_module, default=None): | |
if hasattr(tensor_or_module, "device"): | |
return tensor_or_module.device | |
elif hasattr(tensor_or_module, "parameters"): | |
return next(tensor_or_module.parameters()).device | |
elif default is None: | |
raise TypeError( | |
f"Don't know how to get device of {type(tensor_or_module)} object" | |
) | |
else: | |
return torch.device(default) | |
class Separator: | |
def forward_wav(self, wav, **kwargs): | |
raise NotImplementedError | |
def sample_rate(self): | |
raise NotImplementedError | |
def separate(model, wav, **kwargs): | |
if isinstance(wav, np.ndarray): | |
return numpy_separate(model, wav, **kwargs) | |
elif isinstance(wav, torch.Tensor): | |
return torch_separate(model, wav, **kwargs) | |
else: | |
raise ValueError( | |
f"Only support filenames, numpy arrays and torch tensors, received {type(wav)}" | |
) | |
def torch_separate(model: Separator, wav: torch.Tensor, **kwargs) -> torch.Tensor: | |
"""Core logic of `separate`.""" | |
if model.in_channels is not None and wav.shape[-2] != model.in_channels: | |
raise RuntimeError( | |
f"Model supports {model.in_channels}-channel inputs but found audio with {wav.shape[-2]} channels." | |
f"Please match the number of channels." | |
) | |
# Handle device placement | |
input_device = get_device(wav, default="cpu") | |
model_device = get_device(model, default="cpu") | |
wav = wav.to(model_device) | |
# Forward | |
separate_func = getattr(model, "forward_wav", model) | |
out_wavs = separate_func(wav, **kwargs) | |
# FIXME: for now this is the best we can do. | |
out_wavs *= wav.abs().sum() / (out_wavs.abs().sum()) | |
# Back to input device (and numpy if necessary) | |
out_wavs = out_wavs.to(input_device) | |
return out_wavs | |
def numpy_separate(model: Separator, wav: np.ndarray, **kwargs) -> np.ndarray: | |
"""Numpy interface to `separate`.""" | |
wav = torch.from_numpy(wav) | |
out_wavs = torch_separate(model, wav, **kwargs) | |
out_wavs = out_wavs.data.numpy() | |
return out_wavs | |
def wav_chunk_inference(model, mixture_tensor, sr=16000, target_length=12.0, hop_length=4.0, batch_size=10, n_tracks=3): | |
""" | |
Input: | |
mixture_tensor: Tensor, [nch, input_length] | |
Output: | |
all_target_tensor: Tensor, [nch, n_track, input_length] | |
""" | |
batch_mixture = mixture_tensor | |
# split data into segments | |
batch_length = batch_mixture.shape[-1] | |
session = int(sr * target_length) | |
target = int(sr * target_length) | |
ignore = (session - target) // 2 | |
hop = int(sr * hop_length) | |
tr_ratio = target_length / hop_length | |
if ignore > 0: | |
zero_pad = torch.zeros(batch_mixture.shape[0], batch_mixture.shape[1], ignore).type(batch_mixture.type()).to(batch_mixture.device) | |
batch_mixture_pad = torch.cat([zero_pad, batch_mixture, zero_pad], -1) | |
else: | |
batch_mixture_pad = batch_mixture | |
if target - hop > 0: | |
hop_pad = torch.zeros(batch_mixture.shape[0], batch_mixture.shape[1], target-hop).type(batch_mixture.type()).to(batch_mixture.device) | |
batch_mixture_pad = torch.cat([hop_pad, batch_mixture_pad, hop_pad], -1) | |
skip_idx = ignore + target - hop | |
zero_pad = torch.zeros(batch_mixture.shape[0], batch_mixture.shape[1], session).type(batch_mixture.type()).to(batch_mixture.device) | |
num_session = (batch_mixture_pad.shape[-1] - session) // hop + 2 | |
all_target = torch.zeros(batch_mixture_pad.shape[0], n_tracks, batch_mixture_pad.shape[1], batch_mixture_pad.shape[2]).to(batch_mixture_pad.device) | |
all_input = [] | |
all_segment_length = [] | |
for i in range(num_session): | |
this_input = batch_mixture_pad[:,:,i*hop:i*hop+session] | |
segment_length = this_input.shape[-1] | |
if segment_length < session: | |
this_input = torch.cat([this_input, zero_pad[:,:,:session-segment_length]], -1) | |
all_input.append(this_input) | |
all_segment_length.append(segment_length) | |
all_input = torch.cat(all_input, 0) | |
num_batch = num_session // batch_size | |
if num_session % batch_size > 0: | |
num_batch += 1 | |
for i in range(num_batch): | |
this_input = all_input[i*batch_size:(i+1)*batch_size] | |
actual_batch_size = this_input.shape[0] | |
with torch.no_grad(): | |
est_target = model(this_input) | |
# print(est_target.shape) | |
for j in range(actual_batch_size): | |
this_est_target = est_target[j,:,:,:all_segment_length[i*batch_size+j]][:,:,ignore:ignore+target].unsqueeze(0) | |
all_target[:,:,:,ignore+(i*batch_size+j)*hop:ignore+(i*batch_size+j)*hop+target] += this_est_target | |
all_target = all_target[:,:,:,skip_idx:skip_idx+batch_length].contiguous() / tr_ratio | |
return all_target.squeeze(0) |