Spaces:
Build error
Build error
import sys | |
sys.path.insert(0, './WordLM') | |
import PIL | |
import torch | |
import torch.nn as nn | |
import cv2 | |
from skimage.color import lab2rgb, rgb2lab, rgb2gray | |
from skimage import io | |
import matplotlib.pyplot as plt | |
import numpy as np | |
class ColorizationNet(nn.Module): | |
def __init__(self, input_size=128): | |
super(ColorizationNet, self).__init__() | |
MIDLEVEL_FEATURE_SIZE = 128 | |
resnet=models.resnet18(pretrained=True) | |
resnet.conv1.weight=nn.Parameter(resnet.conv1.weight.sum(dim=1).unsqueeze(1)) | |
self.midlevel_resnet =nn.Sequential(*list(resnet.children())[0:6]) | |
self.upsample = nn.Sequential( | |
nn.Conv2d(MIDLEVEL_FEATURE_SIZE, 128, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.Upsample(scale_factor=2), | |
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.Upsample(scale_factor=2), | |
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(32), | |
nn.ReLU(), | |
nn.Conv2d(32, 2, kernel_size=3, stride=1, padding=1), | |
nn.Upsample(scale_factor=2) | |
) | |
def forward(self, input): | |
# Pass input through ResNet-gray to extract features | |
midlevel_features = self.midlevel_resnet(input) | |
# Upsample to get colors | |
output = self.upsample(midlevel_features) | |
return output | |
def show_output(grayscale_input, ab_input): | |
'''Show/save rgb image from grayscale and ab channels | |
Input save_path in the form {'grayscale': '/path/', 'colorized': '/path/'}''' | |
color_image = torch.cat((grayscale_input, ab_input), 0).detach().numpy() # combine channels | |
color_image = color_image.transpose((1, 2, 0)) # rescale for matplotlib | |
color_image[:, :, 0:1] = color_image[:, :, 0:1] * 100 | |
color_image[:, :, 1:3] = color_image[:, :, 1:3] * 255 - 128 | |
color_image = lab2rgb(color_image.astype(np.float64)) | |
grayscale_input = grayscale_input.squeeze().numpy() | |
# plt.imshow(grayscale_input) | |
# plt.imshow(color_image) | |
return color_image | |
model=torch.load("model-final.pth") | |
def colorize(img_path,print_img=True): | |
img=cv2.imread(img_path) | |
img=cv2.resize(img,(224,224)) | |
grayscale_input= torch.Tensor(rgb2gray(img)) | |
ab_input=model(grayscale_input.unsqueeze(0).unsqueeze(0)).squeeze(0) | |
predicted=show_output(grayscale_input.unsqueeze(0), ab_input) | |
if print_img: | |
plt.imshow(predicted) | |
return predicted | |
# out=colorize("download.png") | |
# print(out) | |